This should in theory result in increased burstiness since we remove
the plain `trio.sleep()` and instead always wait on the receive channel
as much as possible until the `trio.move_on_after()` (+ time diffing
calcs) times out and signals the next throttled send cycle. This also is
slightly easier to grok code-wise instead of the `try, except` and
another tight while loop until a `trio.WouldBlock`. The only simpler
way i can think to do it is with 2 tasks: 1 to collect ticks and the
other to read and send at the throttle rate.
Comment out the log msg for now to avoid latency and add much more
detailed comments. Add an overrun log msg to the main sample loop.
There's lotsa movement on the project these days with stuff getting
improved, borked, fixed, rinse repeat. Might as well use a pin on our
fork so we can more easily hack on it and pull in latest features
piece-wise for testing.
A `QRectF` is easier to make and draw (i think?) so use that and fill it
on volume events for decent sleek real-time look. Adjust the step array
generator to allow for an endpoints flag. Comment and/or clean out all
the old path filling calls that gave us perf issues..
Turns out the performance of updating and refilling step curves > 1k ish
points is super slow :sadkek:. Disabling the fill basically returns
normal performance, so it seems maybe we'll stick with unfilled volume
"bars" for now. The other tricky bit is getting the path to extend and
fill which is particularly slow if you use the `QPainterPath.united()`
(what `+` set op does) operation which seems to require an entire redraw
of the curve each paint iteration. Removing the pixel buffer cache makes
things that much worse too..
One technique i tried was only setting a `._fill` flag when so many
datums are in view (< 1k as determined by the chart widget), and this
helps, but under high load (trade rates) you still see more lag then
without the fill which makes me say screw it and let's stick with
unfilled bars for now. Trying go to get performant filled curves will be
an exercise for an aspiring graphics eng :P
In latest `pyqtgraph` it seems there's a discrepancy
since `function.arrayToQPath()` was reworked and now
we need to *not* connect the last point for each bar.
The prior PR for fixing fsp array misalignment also added
`tractor.Context` usage which wasn't reflected in the graphics update
loop (newer code added it but the prior PR was factored from path
dependent history) and thus was broken. Further in newer work we don't
have fsp actors actually stream value updates since the display loop can
already pull from the source feed and update graphics at a preferred
throttle rate. Re-enabled the fsp stream sending here by default until
that newer only-throttle-pull-from-source code is landed in the display
loop.
This should finally be correct fsp src-to-dst array syncing now..
There's a few edge cases but mostly we need to be sure we sync both
back-filled history diffs and avoid current step lag/leads. Use
a polling routine and the more stringent task re-spawn system to get
this right.
There was a lingering issue where the fsp daemon would sync its shm
array with the source data and we'd set the start/end indices to the
same value. Under some races a reader would then read an empty `.array`
which it wasn't expecting. This fixes that as well as tidies up the
`ShmArray.push()` logic and adds a temporary check in `.array` for zero
length if the array hasn't been written yet.
We can now start removing read array length checks in consumer code
and hopefully no more races will show up.
Litter the engine code with `pyqtgraph` profiling to see if we can
improve startup times - likely it'll mean pre-allocating a small fsp
daemon cluster at startup.