Such that we still y-range auto-sort inside
`ChartView.interact_graphics_cycle()` still runs on the unit vlm axis
and we always size such that the y-label stays in view.
Since we pretty much always want the 'bottom' and any side that is not
declared by the caller move the axis hides into this method. Lets us
drop the same calls in `.ui._fsp` and `._display`.
This also disables the auto-ranging back-linking for now since it
doesn't seem to be working quite yet?
In situations where clients are (dynamically) subscribing *while*
broadcasts are starting to taking place we need to handle the
`set`-modified-during-iteration case. This scenario seems to be more
common during races on concurrent startup of multiple symbols. The
solution here is to use another set to take note of subscribers which
are successfully sent-to and then skipping them on re-try.
This also contains an attempt to exception-handle throttled stream
overruns caused by higher frequency feeds (like binance) pushing more
quotes then can be handled during (UI) client startup.
This was a subtle logic error when building the `plots: dict` we weren't
adding the "main (ohlc or other source) chart" from the `LinkedSplits`
set when interacting with some sub-chart from `.subplots`..
Further this tries out bypassing `numpy.median()` altogether by just
using `median = (ymx - ymn) / 2` which should be nearly the same?
In the (incrementally updated) display loop we have range logic that is
incrementally updated in real-time by streams, as such we don't really
need to update all linked chart's (for any given, currently updated
chart) y-ranges on calls of each separate (sub-)chart's
`ChartView.interact_graphics_cycle()`. In practise there are plenty of
cases where resizing in one chart (say the vlm fsps sub-plot) requires
a y-range re-calc but not in the OHLC price chart. Therefore
we always avoid doing more resizing then necessary despite it resulting
in potentially more method call overhead (which will later be justified
by better leveraging incrementally updated `Viz.maxmin()` and
`media_from_range()` calcs).
A super snappy `numpy.median()` calculator (per input range) which we
slap an `lru_cache` on thanks to handy dunder method hacks for such
things on mutable types XD
use the new `do_overlay_scaling: bool` since we know each feed will have
its own updates (cuz multiplexed by feed..) and we can avoid
ranging/scaling overlays that will make their own calls.
Also, pass in the last datum "brighter" color for ohlc curves as it was
originally (and now that we can pass that styling bit through).
Facepalm, obviously absolute array indexes are not going to necessarily
align vs. time over multiple feeds/history. Instead use
`np.searchsorted()` on whatever curve has the smallest support and find
the appropriate index of intersection in time so that alignment always
starts at a sensible reference.
Also adds a `debug_print: bool` input arg which can enable all the
prints when working on this.
We can determine the major curve (in view) in the first pass of all
`Viz`s so drop the 2nd loop and thus the `mxmn_groups: dict`. Also
simplifies logic for the case of only one (the major) curve in view.
Turns out this is a limitation of the `ViewBox.setYRange()` api: you
can't call it more then once and expect anything but the first call to
be applied without letting a render cycle run. As such, we wait until
the end of the log-linear scaling loop to finally apply the major curves
y-mx/mn after all minor curves have been evaluated.
This also drops all the debug prints (for now) to get a feel for latency
in production mode.
We ended up doing groups maxmin sorting at the interaction layer (new
the view box) and thus this method is no longer needed, though it was
the reference for the code now in `ChartView.interact_graphics_cycle()`.
Further this adds a `remove_axes: bool` arg to `.insert_plotitem()`
which can be used to drop axis entries from the inserted pi (though it
doesn't seem like we really ever need that?) and does the removal in
a separate loop to avoid removing axes before they are registered in
`ComposedGridLayout._pi2axes`.
When there are `N`-curves we need to consider the smallest
x-data-support subset when figuring out for each major-minor pair such
that the "shorter" series is always returns aligned to the longer one.
This makes the var naming more explicit with `major/minor_i_start` as
well as clarifies more stringently a bunch of other variables and
explicitly uses the `minor_y_intersect` y value in the scaling transform
calcs. Also fixes some debug prints.
In very close manner to the original (gut instinct) attempt, this
properly (y-axis-vertically) aligns and scales overlaid curves according
to what we are calling a "log-linearized y-range multi-plot" B)
The basic idea is that a simple returns measure (eg. `R = (p1 - p0)
/ p0`) applied to all curves gives a constant output `R` no matter the
price co-domain in use and thus gives a constant returns over all assets
in view styled scaling; a intuitive visual of returns correlation. The
reference point is for now the left-most point in view (or highest
common index available to all curves), though we can make this
a parameter based on user needs.
A slew of debug `print()`s are left in for now until we iron out the
remaining edge cases to do with re-scaling a major (dispersion) curve
based on a minor now requiring a larger log-linear y-range from that
previous major' range.
In the dispersion swing calcs, use the series median from the in-view
data to determine swing proportions to apply on each "minor curve"
(series with lesser dispersion the one with the greatest). Track the
major `Viz` as before by max dispersion. Apply the dispersion swing
proportions to each minor curve-series in a third loop/pass of all
overlay groups: this ensures all overlays are dispersion normalized in
their ranges but, minor curves are currently (vertically) centered (vs.
the major) via their medians.
There is a ton of commented code from attempts to try and vertically
align minor curves to the major via the "first datum" in-view/available.
This still needs work and we may want to offer it as optional.
Also adds logic to allow skipping margin adjustments in `._set_yrange()`
if you pass `range_margin=None`.
On overlaid ohlc vizs we compute the largest max/min spread and
apply that maxmimum "up and down swing" proportion to each `Viz`'s
viewbox in the group.
We obviously still need to clip to the shortest x-range so that
it doesn't look exactly the same as before XD
We were hacking this before using the whole `ChartView._maxmin()`
setting stuff since in some cases you might want similarly ranged paths
on the same view, but of course you need to max/min them together..
This adds that group sorting by using a table of `dict[PlotItem,
tuple[float, float]` and taking the abs highest/lowest value for each
plot in the viz interaction update loop.
Also removes the now commented signal registry calls and thus
`._yranger`, drops the `set_range: bool` from `._set_yrange` and adds
and extra `.maybe_downsample_graphics()` to the mouse wheel handler to
avoid a weird slow debounce where ds-ing is delayed until a further
interaction.
It's kind of hard to understand with the C++ fan-out to multiple views
(imo a cluster-f#$*&) and seems honestly just plain faster to loop (in
python) through all the linked view handlers XD
Core adjustments:
- make the panning and wheel-scroll handlers just call
`.maybe_downsample_graphics()` directly; drop all signal emissions.
- make `.maybe_downsample_graphics()` loop through all vizs per subchart
and use the new pipeline-style call sequence of:
- `Viz.update_graphics() -> <read_slc>: tuple`
- `Viz.maxmin(i_read_range=<read_slc>) -> yrange: tuple`
- `Viz.plot.vb._set_yrange(yrange=yrange)`
which inlines all the necessary calls in the most efficient way whilst
leveraging `.maxmin()` caching and ymxmn-from-m4-during-render to
boot.
- drop registering `._set_yrange()` for handling `.sigRangeChangedManually`.
Computes the maxmin values for each underlying plot's in-view range as
well as the max up/down swing (in percentage terms) from the plot with
most dispersion and returns a all these values plus a `dict` of plots to
their ranges as part of output.
This broke non-disti-mode actor tree spawn / runtime, seemingly because
the cli entrypoint for a `piker chart` also sends these values down
through the call stack independently? Pretty sure we don't need to send
the `enable_modules` from the chart actor anyway.
Needed to move the startup sequence inside the `try:` block to guarantee
we always do the (now shielded) `.cancel()` call if we get a cancel
during startup.
Also, support an optional `started_afunc` field in the config if
backends want to just provide a one-off blocking async func to sync
container startup. Add a `drop_root_perms: bool` to allow persisting
sudo perms for testing or dyanmic container spawning purposes.
Provides a more correct solution (particularly for distributed testing)
to override the `piker` configuration directory by reading the path from
a specific `tractor._state._runtime_vars` entry that can be provided by
the test harness.
Also fix some typing and comments.
Not really sure there's much we can do besides dump Grpc stuff when we
detect an "error" `str` for the moment..
Either way leave a buncha complaints (como siempre) and do linting
fixups..
Previously we would make the `ahabd` supervisor-actor sync to docker
container startup using pseudo-blocking log message processing.
This has issues,
- we're forced to do a hacky "yield back to `trio`" in order to be
"fake async" when reading the log stream and further,
- blocking on a message is fragile and often slow.
Instead, run the log processor in a background task and in the parent
task poll for the container to be in the client list using a similar
pseudo-async poll pattern. This allows the super to `Context.started()`
sooner (when the container is actually registered as "up") and thus
unblock its (remote) caller faster whilst still doing full log msg
proxying!
Deatz:
- adds `Container.cuid: str` a unique container id for logging.
- correctly proxy through the `loglevel: str` from `pikerd` caller task.
- shield around `Container.cancel()` in the teardown block and use
cancel level logging in that method.
With the addition of a new `elastixsearch` docker support in
https://github.com/pikers/piker/pull/464, adjustments were made
to container startup sync logic (particularly the `trio` checkpoint
sleep period - which itself is a hack around a sync client api) which
caused a regression in upstream startup logic wherein container error
logs were not being bubbled up correctly causing a silent failure mode:
- `marketstore` container started with corrupt input config
- `ahabd` super code timed out on startup phase due to a larger log
polling period, skipped processing startup logs from the container,
and continued on as though the container was started
- history client fails on grpc connection with no clear error on why the
connection failed.
Here we revert to the old poll period (1ms) to avoid any more silent
failures and further extend supervisor control through a configuration
override mechanism. To address the underlying design issue, this patch
adds support for container-endpoint-callbacks to override supervisor
startup configuration parameters via the 2nd value in their returned
tuple: the already delivered configuration `dict` value.
The current exposed values include:
{
'startup_timeout': 1.0,
'startup_query_period': 0.001,
'log_msg_key': 'msg',
},
This allows for container specific control over the startup-sync query
period (the hack mentioned above) as well as the expected log msg key
and of course the startup timeout.
Adds a `piker storage` subcmd with a `-d` flag to wipe a particular
fqsn's time series (both 1s and 60s). Obviously this needs to be
extended much more but provides a start point.
Since apparently the container we were using is totally borked on new
kernels and/or latest jvm, this move our old manual local-X-desktop script
back for use in `brokerd` backend code.
Adds a new `.brokers.ib._util` which contains the 2 methods and fails
over to this one when we can't connect to a VNC server. Also adjusts the
original in `scripts/ib_data_reset.py` to import and run the module code
as a script-program.
Also includes a retyping of `Client._pair: dict[str, Pair]` to look up
pair structs and map all alt-key-name-sets to each for easy precision
info lookup to set the `.sym` field for each transaction including for
on-chain transfers which kraken provides as an "asset decimals" field,
presumably pulled from the particular block-token's limitation info.
In order to support existing `pps.toml` files in the wild which don't
have the `asset_type, price_tick_size, lot_tick_size` fields, we need to
only optionally read them and instead expect that backends will write
the fields going forward (coming in follow patches).
Further this makes some small asset-size (vlm accounting) quantization
related adjustments:
- rename `Symbol.decimal_quant()` -> `.quantize_size()` since that is
explicitly what this method is doing.
- and expect an input `size: float` which we cast to decimal instead of
doing it inside the `.calc_size()` caller code.
- drop `Symbol.iterfqsns()` which wasn't being used anywhere at all..
Additionally, this drafts out a new replacement market-trading-pair data
type to eventually replace `.data._source.Symbol` -> `MktPair` which we
aren't using yet, but serves as the documentation-driven motivator ;)
and, it relates to https://github.com/pikers/piker/issues/467.
Add decimal quantize API to Symbol to simplify by-broker truncation
Add symbol info to `pps.toml`
Move _assert call to outside the _async_main context manager
Minor indentation and styling changes, also convert a few prints to log calls
Fix multi write / race condition on open_pps call
Switch open_pps to not write by default
Fix integer math kraken syminfo _tick_size initialization
ensure not to write pp header on startup
Comment out pytest settings
Add comments explaining delete_testing_dir fixture
use nonlocal instead of global for test state
Add unpacking get_fqsn method
Format test_paper
Add comments explaining sync/async book.send calls
Curve-path colouring and cache mode settings are used (and can thus be
factored out of) all child types; this moves them into the parent type's
`.__init__()` and adjusts all sub-types match:
- the bulk was moved out of the `Curve.__init__()` including all
previous commentary around cache settings.
- adjust `BarItems` to use a `NoCache` mode and instead use the
`last_step_pen: pg.Pen` and `._pen` inside it's `.pain()` instead of
defining functionally duplicate vars.
- adjust all (transitive) calls to `BarItems` to use the new kwargs
names.
Allows callers to know if they should care about a particular viz
rendering call by immediately knowing if the graphics are in view. This
turns out super useful particularly when doing dynamic y-ranging overlay
calcs.
First, we rename what was `chart_maxmin()` -> `multi_maxmin()` and don't
`partial` it in to the `DisplayState`, just call it with correct `Viz`
ref inputs.
Second, as we've done with `ChartView.maybe_downsample_graphics()` use
the output from the main `Viz.update_graphics()` and feed it to the
`.maxmin()` calls for the ohlc and vlm chart but still deliver the same
output signature as prior. Also accept and use an optional profiler
input, drop `DisplayState.maxmin()` and add `.vlm_viz`.
Further perf related tweak to do with more efficient incremental
updates:
- only call `multi_maxmin()` if the main fast chart viz does a pixel
column step.
- mask out hist viz and vlm viz and all linked fsp `._set_yrange()`
calls for now until we figure out how to best optimize these updates
when considering the new group-scaled-by-% style for multicharts.
- drop `.enable_auto_yrange()` calls during startup.
Acts as short cut when pipe-lining from `Viz.update_graphics()` (which
now returns the needed in-view array-relative-read-slice as output) such
that `Viz.read()` and `.datums_range()` doesn't need to be called
internally multiple times. In this case where `i_read_range` is provided
we of course skip doing time index translations and consequently lookup
the appropriate (epoch-time) index indices for caching.
Removes the multi-maxmin usage as well as ensures appropriate `Viz` refs
are passed into the view methods now requiring it. Also drops the "back
linking" of the vlm chart view to the source OHLC chart since we're
going to add this as a default to the charting API.
The max min for a given data range is defined on the lowest level
through the `Viz` api intermingling it with the view is a layering
issue. Instead make `._set_yrange()` call the appropriate view's viz
(since they should be one-to-one) directly and thus avoid any callback
monkey patching nonsense.
Requires that we now make `._set_yrange()` require either one of an
explicit `yrange: tuple[float, float]` min/max pair or the `Viz` ref (so
that maxmin can be called) as input. Adjust
`enable/disable_auto_yrange()` to bind in a new `._yranger()` partial
that's (solely) needed for signal reg/unreg which binds in the now
required input `Viz` to these methods.
Comment the `autoscale_overlays` block in `.maybe_downsample_graphics()`
for now until we figure out the most sane way to auto-range all linked
overlays and subplots (with their own overlays).
In an effort to ensure uniform and uppx-optimized last datum graphics
updates call this method directly instead of the equivalent graphics
object thus ensuring we only update the last pixel column according with
the appropriate max/min computed from the last uppx's worth of data.
Fixes / improvements to enable `.draw_last()` usage include,
- change `Viz._render_table` -> `._alt_r: tuple[Renderer, pg.GraphicsItem] | None`
which holds an alternative (usually downsampled) render and graphics
obj.
- extend the `.draw_last()` signature to include:
- `last_read` to allow passing in the already read data from
`.update_graphics()`, if it isn't passed then a manual read is done
internally.
- `reset_cache: bool` which is passed through to the graphics obj.
- use the new `Formatter.flat_index_ratio: float` when indexing into xy
1d data to compute the max/min for that px column.
Other,
- drop `bars_range` input from `maxmin()` since it's unused.
For the purposes of avoiding another full format call we can stash the
last rendered 1d xy pre-graphics formats as
`IncrementalFormatter.x/y_1d: np.ndarray`s and allow readers in the viz
and render machinery to use this data easily for things like "only
drawing the last uppx's worth of data as a line". Also add
a `.flat_index_ratio: float` which can be used similarly as a scalar
applied to indexes into the src array but instead when indexing
(flattened) 1d xy formatted outputs. Finally, this drops the way
overdone/noisy `.__repr__()` meth we had XD
When a new tick comes in but no new time step / bar is yet needed (to be
appended) we can simply adjust **only** the last bar datum
lines-graphic(s) to avoid a redraw of the preceding `QPainterPath` on
every tick. Do this by calling `Viz.draw_last()` on the fast and slow
chart and adjusting the guards around calls to `Viz.update_graphics()`
(which *does* update paths) to only enter when there's a `do_px_step`
condition. We can stop calling `main_viz.plot.vb._set_yrange()` on view
treading cases since the range should have already been adjusted by the
clearing-tick processing mxmn updates.
Further this changes,
- the `chart_maxmin()` helper (which we should eventually just get rid
of) to take bound in `Viz`s for the ohlc and vlm chart instead of the
chart widget handles.
- extend the guard around hist viz yranging to only enter when not in
"axis mode" - the same as for the fast viz.
Since we removed the `Viz.update_graphics()` call from the main rt loop
we have to be sure to call it in the history chart incr-loop to avoid
a gap between the last bar and prior history since startup. We only
need to update on tread since that should be the only time a full redraw
is ever necessary, ow only the last datum is needed.
Further this moves the graphics cycle func's profiler init to the top in
an effort to get more correct latency measures.
Since `ChartPlotWidget.update_graphics_from_flow()` is more or less just
a call to `Viz.update_graphics()` try to call that directly where
possible.
Changes include:
- calling the viz in the display state specific `maxmin()`.
- passing a viz instance to each `ChartView._set_yrange()` call (in prep
of explicit group auto-ranging); not that this input is unused in the
method for now.
- drop `bars_range` var passing since we don't use it.
Inside `._interaction` routines we need access to `Viz` instances.
Instead of doing `CharPlotWidget._vizs: dict` lookups this ensures each
plot can lookup it's (parent) viz without error.
Also, adjusts `Viz.maxmin()` output parsing to new signature.
Move the `Viz.datums_range()` call into `Viz.maxmin()` itself thus
minimizing the chart `.maxmin()` method to an ultra light wrapper around
the viz call. Also move all profiling into the `Viz` method.
Adjust `Viz.maxmin()` to return both the (rounded) x-range values which
correspond to the range containing the y-domain min and max so that
it can be used for up and coming overlay group maxmin calcs.
We obviously don't want to be debugging a sample-index issue if/when the
market for the asset is closed (since we'll be guaranteed to have
a mismatch, lul). Pass in the `feed_is_live: trio.Event` throughout the
backfilling routines to allow first checking for the live feed being active
so as to avoid breakpointing on false +ves. Also, add a detailed warning
log message for when *actually* investigating a mismatch.
This should never really happen but when it does it appears to be a race
with writing startup pre-graphics-formatter array data where we get
`x_end` epoch value subtracting some really small offset value (like
`-/+0.5`) or the opposite where the `x_start` is epoch and `x_end` is
small.
This adds a warning msg and `breakpoint()` as well as guards around the
entire code downsampling code path so that when resumed the downsampling
cycle should just be skipped and avoid a crash.
This attempt was unsuccessful since trying to (re)select the last
highlighted item on both an "enter" or "click" of that item causes
a hang and then segfault in `Qt`; no clue why..
Adds a `keep_current_item_selected: bool` flag to
`CompleterView.show_cache_entries()` but using it seems to always cause
a hang and crash; we keep all potential use spots commented for now
obviously to avoid this. Also included is a bunch of tidying to logic
blocks in the kb-control loop for readability.
Whenever the last datum is in view `slice_from_time()` need to always
spec the final array index (i.e. the len - 1 value we set as
`read_i_max`) to avoid a uniform-step arithmetic error where gaps in the
underlying time series causes an index that's too low to be returned.
- adjust zoom focal to be min of the view-right coord or the right-most
point on the flow graphic in view and drop all the legacy l1-in-view
focal point cruft.
- flip to not auto-scaling overlays by default.
- change the `._set_yrange()` margin to `0.09`.
- drop `use_vr: bool` usage.
Before this axes were being stacked from the outside in (for `'right'`
and 'bottom'` axes) which is somewhat non-intuitive for an `.append()`
operation. As such this change makes a symbol list stack a set of
`'right'` axes from left-to-right.
Details:
- rename `ComposeGridLayout.items` -> `.pitems`
- return `(int, list[AxisItem])` pairs from `.insert/append_plotitem()`
and the down stream `PlotItemOverlay.add_plotitem()`.
- drop `PlotItemOverlay.overlays` and add it back as `@property` around
the underlying `.layout.pitems`.
Factor and fix dst <- src pair parsing into a new func
`get_likely_pair()` and use throughout initial position loading; solves
a parsing bug for src asset balances which aren't only 3 chars long..
a terrible assumption.
Goes back to always adjusting the y-axis range to include the L1 spread
and clearing label in view whenever the last datum is also in view,
previously this was broken after reworking the display loop for
multi-feeds.
Drops a bunch of old commented tick looping cruft from before we started
using tick-type framing. Also adds more stringent guards for ignoring
but error logging quote values that are more then 25% out of range; it
seems particularly our `ib` feed has some issues with strange `price`
values that are way off here and there?