Add `Viz.median_from_range()`
A super snappy `numpy.median()` calculator (per input range) which we slap an `lru_cache` on thanks to handy dunder method hacks for such things on mutable types XDlog_linearized_curve_overlays
parent
9418f53244
commit
ec8679ad74
|
@ -19,6 +19,7 @@ Data vizualization APIs
|
|||
|
||||
'''
|
||||
from __future__ import annotations
|
||||
from functools import lru_cache
|
||||
from math import (
|
||||
ceil,
|
||||
floor,
|
||||
|
@ -282,6 +283,21 @@ class Viz(msgspec.Struct): # , frozen=True):
|
|||
tuple[float, float],
|
||||
] = {}
|
||||
|
||||
# cache of median calcs from input read slice hashes
|
||||
# see `.median()`
|
||||
_meds: dict[
|
||||
int,
|
||||
float,
|
||||
] = {}
|
||||
|
||||
# to make lru_cache-ing work, see
|
||||
# https://docs.python.org/3/faq/programming.html#how-do-i-cache-method-calls
|
||||
def __eq__(self, other):
|
||||
return self._shm._token == other._shm._token
|
||||
|
||||
def __hash__(self):
|
||||
return hash(self._shm._token)
|
||||
|
||||
@property
|
||||
def shm(self) -> ShmArray:
|
||||
return self._shm
|
||||
|
@ -462,6 +478,19 @@ class Viz(msgspec.Struct): # , frozen=True):
|
|||
mxmn,
|
||||
)
|
||||
|
||||
@lru_cache(maxsize=6116)
|
||||
def median_from_range(
|
||||
self,
|
||||
start: int,
|
||||
stop: int,
|
||||
|
||||
) -> float:
|
||||
in_view = self.shm.array[start:stop]
|
||||
if self.is_ohlc:
|
||||
return np.median(in_view['close'])
|
||||
else:
|
||||
return np.median(in_view[self.name])
|
||||
|
||||
def view_range(self) -> tuple[int, int]:
|
||||
'''
|
||||
Return the start and stop x-indexes for the managed ``ViewBox``.
|
||||
|
|
Loading…
Reference in New Issue