ib has a throttle limit for "hft" bars but contained in here is some
hackery using ``xdotool`` to reset data farms auto-magically B)
This copies the working script into the ib backend mod as a routine and
now uses `trio.run_process()` and calls into it from the `get_bars()`
history retriever and then waits for "data re-established" events to be
received from the client before making more history queries.
TL;DR summary of changes:
- relay ib's "system status" events (like for data farm statuses)
as a new "event" msg that can be processed by registers of
`Client.inline_errors()` (though we should probably make a new
method for this).
- add `MethodProxy.status_event()` which allows a proxy user to register
for a particular "system event" (as mentioned above), which puts
a `trio.Event` entry in a small table can be set by an relay task if
there are any detected waiters.
- start a "msg relay task" when opening the method proxy which does
the event setting mentioned above in the background.
- drop the request error handling around the proxy creation, doesn't
seem necessary any more now that we have better error propagation from
`asyncio`.
- add event waiting logic around the data feed reset hackzorin.
- change the order relay task to only log system events for now (though
we need to do some better parsing/logic to get tws-external order
updates to work again..
If `marketstore` is detected try to only load most recent missing data
from the data provider (broker) and the rest from the tsdb and push it
all to shm for display in the UI. If the provider/broker doesn't have
the history client endpoint, just use the old one for now so we can
start to incrementally add support. Don't start the ohlc step
incrementer task until the backend signals that the feed is live.
Add some basic `numpy` epoch slice logic to generate append and prepend
arrays to write to the db.
Mooar cool things,
- add a `Storage.delete_ts()` method to wipe a column series from the db
easily.
- don't attempt to read in any OHLC series by default on client load
- add some `pyqtgraph` profiling and drop manual latency measures
- if no db series for the fqsn exists write the entire shm array
Pretty sure this was most of the cause of the stale (more downsampled)
curves showing when zooming in and out from bars mode quickly. All this
stuff needs to get factored out into a new abstraction anyway, but
i think this get's mostly correct functionality.
Only draw new ds curve on uppx steps >= 4 and stop adding/removing
graphics objects from the scene; doesn't seem to speed anything up
afaict. Add better reporting of ds scale changes.
Found an issue (that was predictably brushed aside XD) where the
`ib_insync.util.df()` helper was changing the timestamps on bars data to
be way off (probably a `pandas.Timestamp` timezone thing?).
Anyway, dropped all that (which will hopefully let us drop `pandas` as
a hard dep) and added a buncha timestamp checking as well as start/end
datetime return values using `pendulum` so that consumer code can know
which "slice" is output.
Also added some WIP code to work around "no history found" request
errors where instead now we try to increment backward another 200
seconds - not sure if this actually correct yet.
Make the throttle error propagate through to `trio` again by adding
`dict`-msg support between the two loops such that errors can be
re-raised on the `trio` side. This is all integrated into the
`MethoProxy` and accompanying result relay task.
Further fix a longer standing issue where sometimes the `ib_insync`
order entry method will raise a weird assertion error because it detects
some internal order-id state issue.. Just ignore those and make relay
back an error to the ems in such cases.
Add a bunch of notes for todos surrounding data feed reset hackery.
In effort to get back to a usable REPL around the mkts client
this adds usage of the new `tractor` integration api as well as logic
for skipping backfilling if existing tsdb arrays are found.
Only if the uppx increases by more then 2 we redraw the entire line
otherwise just ds with previous params and update the current curve.
This *should* avoid strange lower sample rate artefacts from showing on
updates.
Summary:
- stash both uppx and px width in `._dsi` (downsample info)
- use the new `ohlc_to_m4_line()` flags
- add notes about using `.reserve()` and friends
- always delete last `._array` ref prior to line updates
In an effort to try and make `QPainterPath.reserve()` work, add internal
logic to use the same object without de-allocating memory from
a previous path write/creation.
Note this required the addition of a `._redraw` flag (to be used in
`.clear()` and a small patch to `pyqtgraph.functions.arrayToQPath` to
allow passing in an existing path (thus reusing the same underlying mem
alloc) which will likely be first pushed to our fork.
We were previously ad-hoc scaling up the px count/width to get more
detail at lower uppx values. Add a log scaling sigmoid that range scales
between 1 < px_width < 16.
Add in a flag to use the mxmn OH tracer in `ohlc_flatten()` if desired.
Helpers to quickly convert ohlc struct-array sequences into lines
for consumption by the m4 downsampler. Strip trailing zero entries
from the `ds_m4()` output if found (avoids lines back to origin).
This makes the `'r'` hotkey snap the last bar to the middle of the pp
line arrow marker no matter the zoom level. Now we also boot with
approximately the most number of x units on screen that keep the bars
graphics drawn in full (just before downsampling to a line).
Moved some internals around to get this all in place,
- drop `_anchors.marker_right_points()` and move it to a chart method.
- change `.pre_l1_x()` -> `.pre_l1_xs()` and just have it return the
two view-mapped x values from the former method.
Instead of using a guess about how many x-indexes to reset the last
datum in-view to, calculate and shift the latest index such that it's
just before any L1 spread labels on the y-axis. This makes the view
placement "widget aware" and gives a much more cross-display UX.
Summary:
- add `ChartPlotWidget.pre_l1_x()` which returns a `tuple` of
x view-coord points for the absolute x-pos and length of any L1
line/labels
- make `.default_view()` only shift to see the xlast just outside
the l1 but keep whatever view range xfirst as the first datum in view
- drop `LevelLine.right_point()` since this is now just a
`.pre_l1_x()` call and can be retrieved from the line's internal chart
ref
- drop `._style.bars_from/to_..` vars since we aren't using hard coded
offsets any more
Use fqsn as input to the client-side EMS apis but strip broker-name
stuff before generating and sending `Brokerd*` msgs to each backend for
live order requests (since it's weird for a backend to expect it's own
name, though maybe that could be a sanity check?).
Summary of fqsn use vs. broker native keys:
- client side pps, order requests and general UX for order management
use an fqsn for tracking
- brokerd side order dialogs use the broker-specific symbol which is
usually nearly the same key minus the broker name
- internal dark book and quote feed lookups use the fqsn where possible
In order to support instruments with lifetimes (aka derivatives) we need
generally need special symbol annotations which detail such meta data
(such as `MNQ.GLOBEX.20220717` for daq futes). Further there is really
no reason for the public api for this feed layer to care about getting
a special "brokername" field since generally the data is coming directly
from UIs (eg. search selection) so we might as well accept a fqsn (fully
qualified symbol name) which includes the broker name; for now a suffix
like `'.ib'`. We may change this schema (soon) but this at least gets us
to a point where we expect the full name including broker/provider.
An additional detail: for certain "generic" symbol names (like for
futes) we will pull a so called "front contract" and map this to
a specific fqsn underneath, so there is a double (cached) entry for that
entry such that other consumers can use it the same way if desired.
Some other machinery changes:
- expect the `stream_quotes()` endpoint to deliver it's `.started()` msg
almost immediately since we now need it deliver any fqsn asap (yes
this means the ep should no longer wait on a "live" first quote and
instead deliver what quote data it can right away.
- expect the quotes ohlc sampler task to add in the broker name before
broadcast to remote (actor) consumers since the backend isn't (yet)
expected to do that add in itself.
- obviously we start using all the new fqsn related `Symbol` apis
To start we only have futes working but this allows both searching
and loading multiple expiries of the same instrument by specifying
different expiries with a `.<expiry>` suffix in the symbol key (eg.
`mnq.globex.20220617`). This also paves the way for options contracts
which will need something similar plus a strike property. This change
set also required a patch to `ib_insync` to allow retrieving multiple
"ambiguous" contracts from the `IB.reqContractDetailsAcync()` method,
see https://github.com/erdewit/ib_insync/pull/454 for further discussion
since the approach here might change.
This patch also includes a lot of serious reworking of some `trio`-`asyncio`
integration to use the newer `tractor.to_asyncio.open_channel_from()`
api and use it (with a relay task) to open a persistent connection with
an in-actor `ib_insync` `Client` mostly for history requests.
Deats,
- annot the module with a `_infect_asyncio: bool` for `tractor` spawning
- add a futes venu list
- support ambiguous futes contracts lookups so that all expiries will
show in search
- support both continuous and specific expiry fute contract
qualification
- allow searching with "fqsn" keys
- don't crash on "data not found" errors in history requests
- move all quotes msg "topic-key" generation (which should now be
a broker-specific fqsn) and per-contract quote processing into
`normalize()`
- set the fqsn key in the symbol info init msg
- use `open_client_proxy()` in bars backfiller endpoint
- include expiry suffix in position update keys