This new type wraps a shm data flow and will eventually include things
like incremental path-graphics updates and serialization + bg downsampling
techniques. The main immediate motivation was to get a cached y-range max/min
calc going since profiling revealed the `numpy` equivalents were
actually quite slow as the data set grows large. Likely we can use all
this to drive a streaming mx/mn routine that's always launched as part
of each on-host flow.
This is our official foray into use of `msgspec.Struct` B) and I have to
say, pretty impressed; we'll likely completely ditch `pydantic` from
here on out.
We don't need update graphics on every x-range change since that's what
the display loop does. Instead, only on manual changes do we make manual
calls into `.update_graphics_from_array()` and be sure to iterate all
linked subplots and all their embedded graphics.
The pg profiler seems to have trouble with early `return`s in function
calls (likely muckery with the GC/`.__delete__()`) so let's just try
to avoid it for now until we either fix it (probably by implementing as
a ctx mngr) or use diff one.
Ugh, turns out the wacky `ChartView.maxmin` callback stuff we did (for
determining y-range sizings) currently requires that the volume array
has a "bars in view" result.. so let's make that keep working without
rendering the graphics for the curve (since we're disabling them once
$vlm comes up).
As with the `BarItems` graphics, this makes it possible to pass in a "in
view" range of array data that can be *only* rendered improving
performance for large(r) data sets. All the other normal behaviour is
kept (i.e a persistent, (pre/ap)pendable path can still be maintained)
if a ``view_range`` is not provided.
Further updates,
- drop the `.should_ds_or_redraw()` and `.maybe_downsample()` predicates
instead moving all that logic inside `.update_from_array()`.
- disable the "cache flipping", which doesn't seem to be needed to avoid
artifacts any more?
- handle all redraw/dowsampling logic in `.update_from_array()`.
- even more profiling.
- drop path `.reserve()` stuff until we better figure out how it's
supposed to work.
Drop all the logic originally in `.update_ds_line()` which is now done
internal to our `FastAppendCurve`. Add incremental update of the
flattened OHLC -> line curve (unfortunately using `np.concatenate()` for
the moment) and maintain a new `._ds_line_xy` arrays tuple which keeps
the internal state. Add `.maybe_downsample()` as per the new interaction
update method requirement. Draft out some fast path curve stuff like in
our line graphic. Short-circuit bars path updates when we downsample to
line. Oh, and add a ton more profiling in prep for getting
all this stuff faf.
Build out an interface that makes it super easy to downsample curves
using the m4 algorithm while keeping our incremental `QPainterPath`
update feature. A lot of hard work and tinkering went into getting this
working all in-thread correctly and there are quite a few details..
New interface methods:
- `.x_uppx()` which returns the x-axis "view units per pixel"
- `.px_width()` which returns the total (rounded) x-axis pixels spanned
by the curve in view.
- `.should_ds_or_redraw()` a predicate which checks internal state to
see if either downsampling of the curve should take place, or the curve
should have all downsampling removed and be redrawn with source array
data.
- `.downsample()` the actual ds processing routine which delegates into
the m4 algo impl.
- `.maybe_downsample()` a simple update method which can be called by
the view box when the user changes the zoom level.
Implementation details/changes:
- make `.update_from_array()` check for downsample (or revert to source
aka de-downsample) conditions exist and then downsample and re-draw
path graphics accordingly.
- in order to even further speed up path appends (since our main
bottleneck is measured to be `QPainter.drawPath()` calls with large
paths which are frequently updates), add a secondary path `.fast_path`
which is the path that is real-time updates by incremental appends and
which is painted separately for speed in `.pain()`.
- drop all the `QPolyLine` stuff since it was tested to be much slower
in general and especially so for append-updates.
- stop disabling the cache settings on updates since it doesn't seem to
be required any more?
- more move toward deprecating and removing all lingering interface
requirements from `pg.PlotCurveItem` (like `.xData`/`.yData`).
- adjust `.paint()` and `.boundingRect()` to compensate for the new
`.fast_path`
- add a butt-load of profiling B)
Pretty sure this was most of the cause of the stale (more downsampled)
curves showing when zooming in and out from bars mode quickly. All this
stuff needs to get factored out into a new abstraction anyway, but
i think this get's mostly correct functionality.
Only draw new ds curve on uppx steps >= 4 and stop adding/removing
graphics objects from the scene; doesn't seem to speed anything up
afaict. Add better reporting of ds scale changes.
Only if the uppx increases by more then 2 we redraw the entire line
otherwise just ds with previous params and update the current curve.
This *should* avoid strange lower sample rate artefacts from showing on
updates.
Summary:
- stash both uppx and px width in `._dsi` (downsample info)
- use the new `ohlc_to_m4_line()` flags
- add notes about using `.reserve()` and friends
- always delete last `._array` ref prior to line updates
In an effort to try and make `QPainterPath.reserve()` work, add internal
logic to use the same object without de-allocating memory from
a previous path write/creation.
Note this required the addition of a `._redraw` flag (to be used in
`.clear()` and a small patch to `pyqtgraph.functions.arrayToQPath` to
allow passing in an existing path (thus reusing the same underlying mem
alloc) which will likely be first pushed to our fork.
We were previously ad-hoc scaling up the px count/width to get more
detail at lower uppx values. Add a log scaling sigmoid that range scales
between 1 < px_width < 16.
Add in a flag to use the mxmn OH tracer in `ohlc_flatten()` if desired.
Helpers to quickly convert ohlc struct-array sequences into lines
for consumption by the m4 downsampler. Strip trailing zero entries
from the `ds_m4()` output if found (avoids lines back to origin).
This makes the `'r'` hotkey snap the last bar to the middle of the pp
line arrow marker no matter the zoom level. Now we also boot with
approximately the most number of x units on screen that keep the bars
graphics drawn in full (just before downsampling to a line).
Moved some internals around to get this all in place,
- drop `_anchors.marker_right_points()` and move it to a chart method.
- change `.pre_l1_x()` -> `.pre_l1_xs()` and just have it return the
two view-mapped x values from the former method.
Instead of using a guess about how many x-indexes to reset the last
datum in-view to, calculate and shift the latest index such that it's
just before any L1 spread labels on the y-axis. This makes the view
placement "widget aware" and gives a much more cross-display UX.
Summary:
- add `ChartPlotWidget.pre_l1_x()` which returns a `tuple` of
x view-coord points for the absolute x-pos and length of any L1
line/labels
- make `.default_view()` only shift to see the xlast just outside
the l1 but keep whatever view range xfirst as the first datum in view
- drop `LevelLine.right_point()` since this is now just a
`.pre_l1_x()` call and can be retrieved from the line's internal chart
ref
- drop `._style.bars_from/to_..` vars since we aren't using hard coded
offsets any more