Add optional uppx log scaling to m4 sampler
We were previously ad-hoc scaling up the px count/width to get more detail at lower uppx values. Add a log scaling sigmoid that range scales between 1 < px_width < 16. Add in a flag to use the mxmn OH tracer in `ohlc_flatten()` if desired.big_data_lines
parent
03e0e3e76b
commit
44f3a08ef1
|
@ -20,6 +20,7 @@ limits on the display device.
|
|||
|
||||
'''
|
||||
import math
|
||||
from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
from numpy.lib import recfunctions as rfn
|
||||
|
@ -34,11 +35,7 @@ from ..log import get_logger
|
|||
log = get_logger(__name__)
|
||||
|
||||
|
||||
def hl2mxmn(
|
||||
ohlc: np.ndarray,
|
||||
# downsample_by: int = 0,
|
||||
|
||||
) -> np.ndarray:
|
||||
def hl2mxmn(ohlc: np.ndarray) -> np.ndarray:
|
||||
'''
|
||||
Convert a OHLC struct-array containing 'high'/'low' columns
|
||||
to a "joined" max/min 1-d array.
|
||||
|
@ -50,12 +47,6 @@ def hl2mxmn(
|
|||
'high',
|
||||
]]
|
||||
|
||||
# XXX: don't really need this any more since we implemented
|
||||
# the "tracer" routine, `numba`-style..
|
||||
# create a "max and min" sequence from ohlc datums
|
||||
# hl2d = structured_to_unstructured(hls)
|
||||
# hl1d = hl2d.flatten()
|
||||
|
||||
mxmn = np.empty(2*hls.size, dtype=np.float64)
|
||||
x = np.empty(2*hls.size, dtype=np.float64)
|
||||
trace_hl(hls, mxmn, x, index[0])
|
||||
|
@ -63,18 +54,6 @@ def hl2mxmn(
|
|||
|
||||
return mxmn, x
|
||||
|
||||
# if downsample_by < 2:
|
||||
# return mxmn, x
|
||||
|
||||
# dsx, dsy = downsample(
|
||||
# y=mxmn,
|
||||
# x=x,
|
||||
# bins=downsample_by,
|
||||
# )
|
||||
# log.info(f'downsampling by {downsample_by}')
|
||||
# print(f'downsampling by {downsample_by}')
|
||||
# return dsy, dsx
|
||||
|
||||
|
||||
@jit(
|
||||
# TODO: the type annots..
|
||||
|
@ -176,6 +155,7 @@ def downsample(
|
|||
|
||||
def ohlc_flatten(
|
||||
ohlc: np.ndarray,
|
||||
use_mxmn: bool = False,
|
||||
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
'''
|
||||
|
@ -186,15 +166,18 @@ def ohlc_flatten(
|
|||
'''
|
||||
index = ohlc['index']
|
||||
|
||||
flat = rfn.structured_to_unstructured(
|
||||
ohlc[['open', 'high', 'low', 'close']]
|
||||
).flatten()
|
||||
if use_mxmn:
|
||||
flat, x = hl2mxmn(ohlc)
|
||||
else:
|
||||
flat = rfn.structured_to_unstructured(
|
||||
ohlc[['open', 'high', 'low', 'close']]
|
||||
).flatten()
|
||||
|
||||
x = np.linspace(
|
||||
start=index[0] - 0.5,
|
||||
stop=index[-1] + 0.5,
|
||||
num=4*len(ohlc),
|
||||
)
|
||||
x = np.linspace(
|
||||
start=index[0] - 0.5,
|
||||
stop=index[-1] + 0.5,
|
||||
num=len(flat),
|
||||
)
|
||||
return x, flat
|
||||
|
||||
|
||||
|
@ -202,16 +185,33 @@ def ohlc_to_m4_line(
|
|||
ohlc: np.ndarray,
|
||||
px_width: int,
|
||||
|
||||
uppx: Optional[float] = None,
|
||||
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
'''
|
||||
Convert an OHLC struct-array to a m4 downsampled 1-d array.
|
||||
|
||||
'''
|
||||
xpts, flat = ohlc_flatten(ohlc)
|
||||
|
||||
if uppx:
|
||||
# optionally log-scale down the "supposed pxs on screen"
|
||||
# as the units-per-px (uppx) get's large.
|
||||
scaler = round(
|
||||
max(
|
||||
# NOTE: found that a 16x px width brought greater
|
||||
# detail, likely due to dpi scaling?
|
||||
# px_width=px_width * 16,
|
||||
32 / (1 + math.log(uppx, 2)),
|
||||
1
|
||||
)
|
||||
)
|
||||
px_width *= scaler
|
||||
|
||||
bins, x, y = ds_m4(
|
||||
xpts,
|
||||
flat,
|
||||
px_width=px_width * 16,
|
||||
px_width=px_width,
|
||||
)
|
||||
x = np.broadcast_to(x[:, None], y.shape)
|
||||
x = (x + np.array([-0.43, 0, 0, 0.43])).flatten()
|
||||
|
@ -313,6 +313,7 @@ def ds_m4(
|
|||
|
||||
@jit(
|
||||
nopython=True,
|
||||
nogil=True,
|
||||
)
|
||||
def _m4(
|
||||
|
||||
|
|
Loading…
Reference in New Issue