Clearly this wasn't developed against a task that spawned just an async
func in `asyncio`.. Fix all that and remove a bunch of unnecessary func
layers. Add provisional support for the target receiving the `to_trio`
and `from_trio` channels and for the @tractor.stream marker.
The function is useful if you want to run the "main process" under
`asyncio`. Until `trio` core wraps this better we'll keep our own copy
in the interim (there's a new "inside-out-guest" mode almost on
mainline so hang tight).
This should mostly maintain top level SC principles for any task spawned
using `tractor.to_asyncio.run()`. When the `asyncio` task completes make
sure to cancel the pertaining `trio` cancel scope and raise any error
that may have resulted.
Resolves#120
The std lib's `pdb` internals override SIGINT handling whenever one
enters the debugger repl. Force a handler that kills the tree if SIGINT
is triggered from the root actor, otherwise igore it since supervised
children should be managed already. This resolves an issue with guest
mode where `pdb` causes SIGINTs to be swallowed resulting in the host
loop never terminating the process tree.
Add a sync method that can be used to cancel the current actor from
a synchronous context. This is useful in debugging situations where
sync debugger code may need to kill the process tree.
Also, make the internal "lifetime stack" a global var; easier to manage
from client code that may was to add callbacks prior to the actor
runtime being fully setup.
The channel server should be torn down *before* the rpc
task/service nursery. Do this explicitly even in the root's main task
to avoid a strange hang I found in the pubsub tests. Start dropping
the `warnings.warn()` usage.
Add `Actor._cancel_called` and `._cancel_complete` making it possible to
determine whether the actor has started the cancellation sequence and
whether that sequence has fully completed. This allows for blocking in
internal machinery tasks as necessary. Also, always trigger the end of
ongoing rpc tasks even if the last task errors; there's no guarantee the
trio cancellation semantics will guarantee us a nice internal "state"
without this.
For reliable remote cancellation we need to "report" `trio.Cancelled`s
(just like any other error) when exhausting a portal such that the
caller can make decisions about cancelling the respective actor if need
be.
Resolves#156
This appears to demonstrate the same bug found in #156. It looks like
cancelling a subactor with a child, while that child is running sync code,
can result in the child never getting cancelled due to some strange
condition where the internal nurseries aren't being torn down as
expected when a `trio.Cancelled` is raised.