Decentralized compute layer
 
 
Go to file
Guillermo Rodriguez 3622c8ea11
Add venv to dockerignore
Improve readme
Improve dockerization as ipfs cli exec runs not needed anymore
Fix pyproject toml for gpu workers
Add more sections on example config
Drop and siomplify many cli commands, try to use config.ini for everything now
Use more dynamic imports on cli to speed up startup
Improve model pipelines to allow low mem cards to run big models
Add upscaler download to `skynet download` cmd
2023-10-07 11:01:40 -03:00
docker Add venv to dockerignore 2023-10-07 11:01:40 -03:00
skynet Add venv to dockerignore 2023-10-07 11:01:40 -03:00
tests Add test for new ipfs async apis, fix cli entrypoints endpoint loading to new format 2023-09-24 15:23:25 -03:00
.dockerignore Add venv to dockerignore 2023-10-07 11:01:40 -03:00
.gitignore Snappier dgpu, fix captioning & gitignores 2023-05-29 19:03:39 -03:00
LICENSE Update LICENSE 2023-04-09 19:50:08 -03:00
README.md Add venv to dockerignore 2023-10-07 11:01:40 -03:00
build_docker.sh Add venv to dockerignore 2023-10-07 11:01:40 -03:00
launch_ipfs.sh Add venv to dockerignore 2023-10-07 11:01:40 -03:00
poetry.lock Add venv to dockerignore 2023-10-07 11:01:40 -03:00
poetry.toml Switch to using poetry package manager 2023-10-07 11:01:40 -03:00
pyproject.toml Add venv to dockerignore 2023-10-07 11:01:40 -03:00
pytest.ini Add test for new ipfs async apis, fix cli entrypoints endpoint loading to new format 2023-09-24 15:23:25 -03:00
skynet.ini.example Add venv to dockerignore 2023-10-07 11:01:40 -03:00

README.md

skynet

decentralized compute platform

To launch a worker:

native install

system dependencies: - cuda 11.8 - llvm 10 - python 3.10+ - docker (for ipfs node)

# create and edit config from template
cp skynet.ini.example skynet.ini

# install poetry package manager
curl -sSL https://install.python-poetry.org | python3 -

# install
poetry install

# enable environment
poetry shell

# test you can run this command
skynet --help

# launch ipfs node
skynet run ipfs

# to launch worker
skynet run dgpu

dockerized install

system dependencies: - docker with gpu enabled

# pull runtime container
docker pull guilledk/skynet:runtime-cuda

# or build it (takes a bit of time)
./build_docker.sh

# launch simple ipfs node
./launch_ipfs.sh

# run worker
docker run \
    -it \
    --rm \
    --gpus all \
    --network host \
    --mount type=bind,source="$(pwd)",target=/root/target \
    guilledk/skynet:runtime-cuda \
    skynet run dgpu