mirror of https://github.com/skygpu/skynet.git
Minor fixes to upscaler cli tool
parent
6bc555f0d6
commit
896b0f684b
|
@ -56,7 +56,7 @@ def pipeline_for(algo: str, mem_fraction: float = 1.0):
|
|||
|
||||
pipe.enable_vae_slicing()
|
||||
|
||||
return pipe.to("cuda")
|
||||
return pipe.to('cuda')
|
||||
|
||||
|
||||
class DGPUComputeError(BaseException):
|
||||
|
|
|
@ -64,18 +64,19 @@ def upscale(
|
|||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
login(token=hf_token)
|
||||
params = {
|
||||
'torch_dtype': torch.float16,
|
||||
'safety_checker': None
|
||||
}
|
||||
|
||||
pipe = StableDiffusionUpscalePipeline.from_pretrained(
|
||||
'stabilityai/stable-diffusion-x4-upscaler', **params)
|
||||
'stabilityai/stable-diffusion-x4-upscaler',
|
||||
revision="fp16", torch_dtype=torch.float16)
|
||||
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
||||
pipe.scheduler.config)
|
||||
pipe = pipe.to('cuda')
|
||||
|
||||
prompt = prompt
|
||||
image = pipe(
|
||||
prompt,
|
||||
image=Image.open(img_path)
|
||||
image=Image.open(img_path).convert("RGB"),
|
||||
num_inference_steps=steps
|
||||
).images[0]
|
||||
|
||||
image.save(output)
|
||||
|
|
Loading…
Reference in New Issue