mirror of https://github.com/skygpu/skynet.git
Simplify pipeline_for function and add the infra needed for diferent io/types than png
parent
ee1fdcc557
commit
3d2069d151
|
@ -15,7 +15,6 @@ Pillow = '^10.0.1'
|
|||
docker = '^6.1.3'
|
||||
py-leap = {git = 'https://github.com/guilledk/py-leap.git', rev = 'v0.1a14'}
|
||||
toml = "^0.10.2"
|
||||
tractor = {git = "https://github.com/goodboy/tractor.git"}
|
||||
|
||||
[tool.poetry.group.frontend]
|
||||
optional = true
|
||||
|
|
|
@ -85,7 +85,7 @@ def download():
|
|||
hf_token = load_key(config, 'skynet.dgpu.hf_token')
|
||||
hf_home = load_key(config, 'skynet.dgpu.hf_home')
|
||||
set_hf_vars(hf_token, hf_home)
|
||||
utils.download_all_models(hf_token)
|
||||
utils.download_all_models(hf_token, hf_home)
|
||||
|
||||
@skynet.command()
|
||||
@click.option(
|
||||
|
@ -120,21 +120,21 @@ def enqueue(
|
|||
|
||||
cleos = CLEOS(None, None, url=node_url, remote=node_url)
|
||||
|
||||
binary = kwargs['binary_data']
|
||||
if not kwargs['strength']:
|
||||
if binary:
|
||||
raise ValueError('strength -Z param required if binary data passed')
|
||||
|
||||
del kwargs['strength']
|
||||
|
||||
else:
|
||||
kwargs['strength'] = float(kwargs['strength'])
|
||||
|
||||
async def enqueue_n_jobs():
|
||||
for i in range(jobs):
|
||||
if not kwargs['seed']:
|
||||
kwargs['seed'] = random.randint(0, 10e9)
|
||||
|
||||
binary = kwargs['binary_data']
|
||||
if not kwargs['strength']:
|
||||
if binary:
|
||||
raise ValueError('strength -Z param required if binary data passed')
|
||||
|
||||
del kwargs['strength']
|
||||
|
||||
else:
|
||||
kwargs['strength'] = float(kwargs['strength'])
|
||||
|
||||
req = json.dumps({
|
||||
'method': 'diffuse',
|
||||
'params': kwargs
|
||||
|
|
|
@ -5,18 +5,20 @@ VERSION = '0.1a12'
|
|||
DOCKER_RUNTIME_CUDA = 'skynet:runtime-cuda'
|
||||
|
||||
MODELS = {
|
||||
'prompthero/openjourney': {'short': 'midj', 'mem': 8},
|
||||
'runwayml/stable-diffusion-v1-5': {'short': 'stable', 'mem': 8},
|
||||
'stabilityai/stable-diffusion-2-1-base': {'short': 'stable2', 'mem': 8},
|
||||
'snowkidy/stable-diffusion-xl-base-0.9': {'short': 'stablexl0.9', 'mem': 24},
|
||||
'stabilityai/stable-diffusion-xl-base-1.0': {'short': 'stablexl', 'mem': 24},
|
||||
'Linaqruf/anything-v3.0': {'short': 'hdanime', 'mem': 8},
|
||||
'hakurei/waifu-diffusion': {'short': 'waifu', 'mem': 8},
|
||||
'nitrosocke/Ghibli-Diffusion': {'short': 'ghibli', 'mem': 8},
|
||||
'dallinmackay/Van-Gogh-diffusion': {'short': 'van-gogh', 'mem': 8},
|
||||
'lambdalabs/sd-pokemon-diffusers': {'short': 'pokemon', 'mem': 8},
|
||||
'Envvi/Inkpunk-Diffusion': {'short': 'ink', 'mem': 8},
|
||||
'nousr/robo-diffusion': {'short': 'robot', 'mem': 8}
|
||||
'prompthero/openjourney': {'short': 'midj', 'mem': 6},
|
||||
'runwayml/stable-diffusion-v1-5': {'short': 'stable', 'mem': 6},
|
||||
'stabilityai/stable-diffusion-2-1-base': {'short': 'stable2', 'mem': 6},
|
||||
'snowkidy/stable-diffusion-xl-base-0.9': {'short': 'stablexl0.9', 'mem': 8.3},
|
||||
'Linaqruf/anything-v3.0': {'short': 'hdanime', 'mem': 6},
|
||||
'hakurei/waifu-diffusion': {'short': 'waifu', 'mem': 6},
|
||||
'nitrosocke/Ghibli-Diffusion': {'short': 'ghibli', 'mem': 6},
|
||||
'dallinmackay/Van-Gogh-diffusion': {'short': 'van-gogh', 'mem': 6},
|
||||
'lambdalabs/sd-pokemon-diffusers': {'short': 'pokemon', 'mem': 6},
|
||||
'Envvi/Inkpunk-Diffusion': {'short': 'ink', 'mem': 6},
|
||||
'nousr/robo-diffusion': {'short': 'robot', 'mem': 6},
|
||||
|
||||
# default is always last
|
||||
'stabilityai/stable-diffusion-xl-base-1.0': {'short': 'stablexl', 'mem': 8.3},
|
||||
}
|
||||
|
||||
SHORT_NAMES = [
|
||||
|
@ -158,7 +160,7 @@ DEFAULT_GUIDANCE = 7.5
|
|||
DEFAULT_STRENGTH = 0.5
|
||||
DEFAULT_STEP = 28
|
||||
DEFAULT_CREDITS = 10
|
||||
DEFAULT_MODEL = list(MODELS.keys())[4]
|
||||
DEFAULT_MODEL = list(MODELS.keys())[-1]
|
||||
DEFAULT_ROLE = 'pleb'
|
||||
DEFAULT_UPSCALER = None
|
||||
|
||||
|
|
|
@ -1,165 +0,0 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
import gc
|
||||
import json
|
||||
import logging
|
||||
|
||||
from hashlib import sha256
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
import trio
|
||||
import torch
|
||||
|
||||
from skynet.constants import DEFAULT_INITAL_MODELS, MODELS
|
||||
from skynet.dgpu.errors import DGPUComputeError
|
||||
|
||||
from skynet.utils import convert_from_bytes_and_crop, convert_from_cv2_to_image, convert_from_image_to_cv2, convert_from_img_to_bytes, init_upscaler, pipeline_for
|
||||
|
||||
|
||||
def prepare_params_for_diffuse(
|
||||
params: dict,
|
||||
binary: bytes | None = None
|
||||
):
|
||||
image = None
|
||||
if binary:
|
||||
image = convert_from_bytes_and_crop(binary, 512, 512)
|
||||
|
||||
_params = {}
|
||||
if image:
|
||||
_params['image'] = image
|
||||
_params['strength'] = float(params['strength'])
|
||||
|
||||
else:
|
||||
_params['width'] = int(params['width'])
|
||||
_params['height'] = int(params['height'])
|
||||
|
||||
return (
|
||||
params['prompt'],
|
||||
float(params['guidance']),
|
||||
int(params['step']),
|
||||
torch.manual_seed(int(params['seed'])),
|
||||
params['upscaler'] if 'upscaler' in params else None,
|
||||
_params
|
||||
)
|
||||
|
||||
|
||||
_models = {}
|
||||
|
||||
def is_model_loaded(model_name: str, image: bool):
|
||||
for model_key, model_data in _models.items():
|
||||
if (model_key == model_name and
|
||||
model_data['image'] == image):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def load_model(
|
||||
model_name: str,
|
||||
image: bool,
|
||||
force=False
|
||||
):
|
||||
logging.info(f'loading model {model_name}...')
|
||||
if force or len(_models.keys()) == 0:
|
||||
pipe = pipeline_for(
|
||||
model_name, image=image)
|
||||
|
||||
_models[model_name] = {
|
||||
'pipe': pipe,
|
||||
'generated': 0,
|
||||
'image': image
|
||||
}
|
||||
|
||||
else:
|
||||
least_used = list(_models.keys())[0]
|
||||
|
||||
for model in _models:
|
||||
if _models[
|
||||
least_used]['generated'] > _models[model]['generated']:
|
||||
least_used = model
|
||||
|
||||
del _models[least_used]
|
||||
|
||||
logging.info(f'swapping model {least_used} for {model_name}...')
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
pipe = pipeline_for(
|
||||
model_name, image=image)
|
||||
|
||||
_models[model_name] = {
|
||||
'pipe': pipe,
|
||||
'generated': 0,
|
||||
'image': image
|
||||
}
|
||||
|
||||
logging.info(f'loaded model {model_name}')
|
||||
return pipe
|
||||
|
||||
def get_model(model_name: str, image: bool) -> DiffusionPipeline:
|
||||
if model_name not in MODELS:
|
||||
raise DGPUComputeError(f'Unknown model {model_name}')
|
||||
|
||||
if not is_model_loaded(model_name, image):
|
||||
pipe = load_model(model_name, image=image)
|
||||
|
||||
else:
|
||||
pipe = _models[model_name]['pipe']
|
||||
|
||||
return pipe
|
||||
|
||||
def _static_compute_one(kwargs: dict):
|
||||
request_id: int = kwargs['request_id']
|
||||
method: str = kwargs['method']
|
||||
params: dict = kwargs['params']
|
||||
binary: bytes | None = kwargs['binary']
|
||||
|
||||
def _checkpoint(*args, **kwargs):
|
||||
trio.from_thread.run(trio.sleep, 0)
|
||||
|
||||
try:
|
||||
match method:
|
||||
case 'diffuse':
|
||||
image = None
|
||||
|
||||
arguments = prepare_params_for_diffuse(params, binary)
|
||||
prompt, guidance, step, seed, upscaler, extra_params = arguments
|
||||
model = get_model(params['model'], 'image' in extra_params)
|
||||
|
||||
image = model(
|
||||
prompt,
|
||||
guidance_scale=guidance,
|
||||
num_inference_steps=step,
|
||||
generator=seed,
|
||||
callback=_checkpoint,
|
||||
callback_steps=1,
|
||||
**extra_params
|
||||
).images[0]
|
||||
|
||||
if upscaler == 'x4':
|
||||
upscaler = init_upscaler()
|
||||
input_img = image.convert('RGB')
|
||||
up_img, _ = upscaler.enhance(
|
||||
convert_from_image_to_cv2(input_img), outscale=4)
|
||||
|
||||
image = convert_from_cv2_to_image(up_img)
|
||||
|
||||
img_raw = convert_from_img_to_bytes(image)
|
||||
img_sha = sha256(img_raw).hexdigest()
|
||||
|
||||
return img_sha, img_raw
|
||||
|
||||
case _:
|
||||
raise DGPUComputeError('Unsupported compute method')
|
||||
|
||||
except BaseException as e:
|
||||
logging.error(e)
|
||||
raise DGPUComputeError(str(e))
|
||||
|
||||
finally:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
||||
async def _tractor_static_compute_one(**kwargs):
|
||||
return await trio.to_thread.run_sync(
|
||||
_static_compute_one, kwargs)
|
|
@ -3,10 +3,11 @@
|
|||
# Skynet Memory Manager
|
||||
|
||||
import gc
|
||||
import json
|
||||
import logging
|
||||
|
||||
from hashlib import sha256
|
||||
import zipfile
|
||||
from PIL import Image
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
import trio
|
||||
|
@ -15,22 +16,29 @@ import torch
|
|||
from skynet.constants import DEFAULT_INITAL_MODELS, MODELS
|
||||
from skynet.dgpu.errors import DGPUComputeError, DGPUInferenceCancelled
|
||||
|
||||
from skynet.utils import convert_from_bytes_and_crop, convert_from_cv2_to_image, convert_from_image_to_cv2, convert_from_img_to_bytes, init_upscaler, pipeline_for
|
||||
from skynet.utils import crop_image, convert_from_cv2_to_image, convert_from_image_to_cv2, convert_from_img_to_bytes, init_upscaler, pipeline_for
|
||||
|
||||
from ._mp_compute import _static_compute_one, _tractor_static_compute_one
|
||||
|
||||
def prepare_params_for_diffuse(
|
||||
params: dict,
|
||||
binary: bytes | None = None
|
||||
input_type: str,
|
||||
binary = None
|
||||
):
|
||||
image = None
|
||||
if binary:
|
||||
image = convert_from_bytes_and_crop(binary, 512, 512)
|
||||
|
||||
_params = {}
|
||||
if image:
|
||||
_params['image'] = image
|
||||
_params['strength'] = float(params['strength'])
|
||||
if binary != None:
|
||||
match input_type:
|
||||
case 'png':
|
||||
image = crop_image(
|
||||
binary, params['width'], params['height'])
|
||||
|
||||
_params['image'] = image
|
||||
_params['strength'] = float(params['strength'])
|
||||
|
||||
case 'none':
|
||||
...
|
||||
|
||||
case _:
|
||||
raise DGPUComputeError(f'Unknown input_type {input_type}')
|
||||
|
||||
else:
|
||||
_params['width'] = int(params['width'])
|
||||
|
@ -136,6 +144,7 @@ class SkynetMM:
|
|||
request_id: int,
|
||||
method: str,
|
||||
params: dict,
|
||||
input_type: str = 'png',
|
||||
binary: bytes | None = None
|
||||
):
|
||||
def maybe_cancel_work(step, *args, **kwargs):
|
||||
|
@ -147,16 +156,21 @@ class SkynetMM:
|
|||
|
||||
maybe_cancel_work(0)
|
||||
|
||||
output_type = 'png'
|
||||
if 'output_type' in params:
|
||||
output_type = params['output_type']
|
||||
|
||||
output = None
|
||||
output_hash = None
|
||||
try:
|
||||
match method:
|
||||
case 'diffuse':
|
||||
image = None
|
||||
|
||||
arguments = prepare_params_for_diffuse(params, binary)
|
||||
arguments = prepare_params_for_diffuse(
|
||||
params, input_type, binary=binary)
|
||||
prompt, guidance, step, seed, upscaler, extra_params = arguments
|
||||
model = self.get_model(params['model'], 'image' in extra_params)
|
||||
|
||||
image = model(
|
||||
output = model(
|
||||
prompt,
|
||||
guidance_scale=guidance,
|
||||
num_inference_steps=step,
|
||||
|
@ -166,17 +180,22 @@ class SkynetMM:
|
|||
**extra_params
|
||||
).images[0]
|
||||
|
||||
if upscaler == 'x4':
|
||||
input_img = image.convert('RGB')
|
||||
up_img, _ = self.upscaler.enhance(
|
||||
convert_from_image_to_cv2(input_img), outscale=4)
|
||||
output_binary = b''
|
||||
match output_type:
|
||||
case 'png':
|
||||
if upscaler == 'x4':
|
||||
input_img = output.convert('RGB')
|
||||
up_img, _ = self.upscaler.enhance(
|
||||
convert_from_image_to_cv2(input_img), outscale=4)
|
||||
|
||||
image = convert_from_cv2_to_image(up_img)
|
||||
output = convert_from_cv2_to_image(up_img)
|
||||
|
||||
img_raw = convert_from_img_to_bytes(image)
|
||||
img_sha = sha256(img_raw).hexdigest()
|
||||
output_binary = convert_from_img_to_bytes(output)
|
||||
|
||||
return img_sha, img_raw
|
||||
case _:
|
||||
raise DGPUComputeError(f'Unsupported output type: {output_type}')
|
||||
|
||||
output_hash = sha256(output_binary).hexdigest()
|
||||
|
||||
case _:
|
||||
raise DGPUComputeError('Unsupported compute method')
|
||||
|
@ -187,3 +206,5 @@ class SkynetMM:
|
|||
|
||||
finally:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return output_hash, output
|
||||
|
|
|
@ -9,10 +9,10 @@ from hashlib import sha256
|
|||
from functools import partial
|
||||
|
||||
import trio
|
||||
import tractor
|
||||
from skynet.constants import MODELS
|
||||
|
||||
from skynet.dgpu.errors import *
|
||||
from skynet.dgpu.compute import SkynetMM, _tractor_static_compute_one
|
||||
from skynet.dgpu.compute import SkynetMM
|
||||
from skynet.dgpu.network import SkynetGPUConnector
|
||||
|
||||
|
||||
|
@ -97,6 +97,11 @@ class SkynetDGPUDaemon:
|
|||
body = json.loads(req['body'])
|
||||
model = body['params']['model']
|
||||
|
||||
# if model not known
|
||||
if model not in MODELS:
|
||||
logging.warning(f'Unknown model {model}')
|
||||
continue
|
||||
|
||||
# if whitelist enabled and model not in it continue
|
||||
if (len(self.model_whitelist) > 0 and
|
||||
not model in self.model_whitelist):
|
||||
|
@ -111,7 +116,7 @@ class SkynetDGPUDaemon:
|
|||
statuses = self._snap['requests'][rid]
|
||||
|
||||
if len(statuses) == 0:
|
||||
binary = await self.conn.get_input_data(req['binary_data'])
|
||||
binary, input_type = await self.conn.get_input_data(req['binary_data'])
|
||||
|
||||
hash_str = (
|
||||
str(req['nonce'])
|
||||
|
@ -134,46 +139,31 @@ class SkynetDGPUDaemon:
|
|||
|
||||
else:
|
||||
try:
|
||||
output_type = 'png'
|
||||
if 'output_type' in body['params']:
|
||||
output_type = body['params']['output_type']
|
||||
|
||||
output = None
|
||||
output_hash = None
|
||||
match self.backend:
|
||||
case 'sync-on-thread':
|
||||
self.mm._should_cancel = self.should_cancel_work
|
||||
img_sha, img_raw = await trio.to_thread.run_sync(
|
||||
output_hash, output = await trio.to_thread.run_sync(
|
||||
partial(
|
||||
self.mm.compute_one,
|
||||
rid,
|
||||
body['method'], body['params'], binary=binary
|
||||
)
|
||||
)
|
||||
|
||||
case 'tractor':
|
||||
async def _should_cancel_oracle():
|
||||
while True:
|
||||
await trio.sleep(1)
|
||||
if (await self.should_cancel_work(rid)):
|
||||
raise DGPUInferenceCancelled
|
||||
|
||||
async with (
|
||||
trio.open_nursery() as trio_n,
|
||||
tractor.open_nursery() as tractor_n
|
||||
):
|
||||
trio_n.start_soon(_should_cancel_oracle)
|
||||
portal = await tractor_n.run_in_actor(
|
||||
_tractor_static_compute_one,
|
||||
name='tractor-cuda-mp',
|
||||
request_id=rid,
|
||||
method=body['method'],
|
||||
params=body['params'],
|
||||
body['method'], body['params'],
|
||||
input_type=input_type,
|
||||
binary=binary
|
||||
)
|
||||
img_sha, img_raw = await portal.result()
|
||||
trio_n.cancel_scope.cancel()
|
||||
)
|
||||
|
||||
case _:
|
||||
raise DGPUComputeError(f'Unsupported backend {self.backend}')
|
||||
|
||||
ipfs_hash = await self.conn.publish_on_ipfs(img_raw)
|
||||
ipfs_hash = await self.conn.publish_on_ipfs(output, typ=output_type)
|
||||
|
||||
await self.conn.submit_work(rid, request_hash, img_sha, ipfs_hash)
|
||||
await self.conn.submit_work(rid, request_hash, output_hash, ipfs_hash)
|
||||
|
||||
except BaseException as e:
|
||||
traceback.print_exc()
|
||||
|
|
|
@ -9,17 +9,19 @@ from pathlib import Path
|
|||
from functools import partial
|
||||
|
||||
import asks
|
||||
import numpy
|
||||
import trio
|
||||
import anyio
|
||||
import torch
|
||||
|
||||
from PIL import Image, UnidentifiedImageError
|
||||
|
||||
from leap.cleos import CLEOS
|
||||
from leap.sugar import Checksum256, Name, asset_from_str
|
||||
from skynet.constants import DEFAULT_DOMAIN
|
||||
|
||||
from skynet.dgpu.errors import DGPUComputeError
|
||||
from skynet.ipfs import AsyncIPFSHTTP, get_ipfs_file
|
||||
from skynet.dgpu.errors import DGPUComputeError
|
||||
from skynet.constants import DEFAULT_DOMAIN
|
||||
|
||||
|
||||
REQUEST_UPDATE_TIME = 3
|
||||
|
@ -235,11 +237,19 @@ class SkynetGPUConnector:
|
|||
)
|
||||
|
||||
# IPFS helpers
|
||||
async def publish_on_ipfs(self, raw_img: bytes):
|
||||
async def publish_on_ipfs(self, raw, typ: str = 'png'):
|
||||
Path('ipfs-staging').mkdir(exist_ok=True)
|
||||
logging.info('publish_on_ipfs')
|
||||
img = Image.open(io.BytesIO(raw_img))
|
||||
img.save('ipfs-staging/image.png')
|
||||
|
||||
target_file = ''
|
||||
match typ:
|
||||
case 'png':
|
||||
raw: Image
|
||||
target_file = 'ipfs-staging/image.png'
|
||||
raw.save(target_file)
|
||||
|
||||
case _:
|
||||
raise ValueError(f'Unsupported output type: {typ}')
|
||||
|
||||
if self.ipfs_gateway_url:
|
||||
# check peer connections, reconnect to skynet gateway if not
|
||||
|
@ -248,16 +258,18 @@ class SkynetGPUConnector:
|
|||
if gateway_id not in [p['Peer'] for p in peers]:
|
||||
await self.ipfs_client.connect(self.ipfs_gateway_url)
|
||||
|
||||
file_info = await self.ipfs_client.add(Path('ipfs-staging/image.png'))
|
||||
file_info = await self.ipfs_client.add(Path(target_file))
|
||||
file_cid = file_info['Hash']
|
||||
|
||||
await self.ipfs_client.pin(file_cid)
|
||||
|
||||
return file_cid
|
||||
|
||||
async def get_input_data(self, ipfs_hash: str) -> bytes:
|
||||
async def get_input_data(self, ipfs_hash: str) -> tuple[bytes, str]:
|
||||
input_type = 'none'
|
||||
|
||||
if ipfs_hash == '':
|
||||
return b''
|
||||
return b'', input_type
|
||||
|
||||
results = {}
|
||||
ipfs_link = f'https://ipfs.{DEFAULT_DOMAIN}/ipfs/{ipfs_hash}'
|
||||
|
@ -272,9 +284,10 @@ class SkynetGPUConnector:
|
|||
|
||||
else:
|
||||
try:
|
||||
with Image.open(io.BytesIO(res.raw)):
|
||||
results[link] = res.raw
|
||||
n.cancel_scope.cancel()
|
||||
# attempt to decode as image
|
||||
results[link] = Image.open(io.BytesIO(res.raw))
|
||||
input_type = 'png'
|
||||
n.cancel_scope.cancel()
|
||||
|
||||
except UnidentifiedImageError:
|
||||
logging.warning(f'couldn\'t get ipfs binary data at {link}!')
|
||||
|
@ -284,14 +297,14 @@ class SkynetGPUConnector:
|
|||
n.start_soon(
|
||||
get_and_set_results, ipfs_link_legacy)
|
||||
|
||||
png_img = None
|
||||
input_data = None
|
||||
if ipfs_link_legacy in results:
|
||||
png_img = results[ipfs_link_legacy]
|
||||
input_data = results[ipfs_link_legacy]
|
||||
|
||||
if ipfs_link in results:
|
||||
png_img = results[ipfs_link]
|
||||
input_data = results[ipfs_link]
|
||||
|
||||
if not png_img:
|
||||
if input_data == None:
|
||||
raise DGPUComputeError('Couldn\'t gather input data from ipfs')
|
||||
|
||||
return png_img
|
||||
return input_data, input_type
|
||||
|
|
|
@ -18,15 +18,10 @@ from PIL import Image
|
|||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from diffusers import (
|
||||
DiffusionPipeline,
|
||||
StableDiffusionXLPipeline,
|
||||
StableDiffusionXLImg2ImgPipeline,
|
||||
StableDiffusionPipeline,
|
||||
StableDiffusionImg2ImgPipeline,
|
||||
EulerAncestralDiscreteScheduler
|
||||
)
|
||||
from realesrgan import RealESRGANer
|
||||
from huggingface_hub import login
|
||||
from torch.distributions import weibull
|
||||
import trio
|
||||
|
||||
from .constants import MODELS
|
||||
|
@ -56,11 +51,10 @@ def convert_from_img_to_bytes(image: Image, fmt='PNG') -> bytes:
|
|||
return byte_arr.getvalue()
|
||||
|
||||
|
||||
def convert_from_bytes_and_crop(raw: bytes, max_w: int, max_h: int) -> Image:
|
||||
image = convert_from_bytes_to_img(raw)
|
||||
def crop_image(image: Image, max_w: int, max_h: int) -> Image:
|
||||
w, h = image.size
|
||||
if w > max_w or h > max_h:
|
||||
image.thumbnail((512, 512))
|
||||
image.thumbnail((max_w, max_h))
|
||||
|
||||
return image.convert('RGB')
|
||||
|
||||
|
@ -74,7 +68,6 @@ def pipeline_for(
|
|||
|
||||
assert torch.cuda.is_available()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.set_per_process_memory_fraction(mem_fraction)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
|
@ -89,6 +82,7 @@ def pipeline_for(
|
|||
|
||||
req_mem = model_info['mem']
|
||||
mem_gb = torch.cuda.mem_get_info()[1] / (10**9)
|
||||
mem_gb *= mem_fraction
|
||||
over_mem = mem_gb < req_mem
|
||||
if over_mem:
|
||||
logging.warn(f'model requires {req_mem} but card has {mem_gb}, model will run slower..')
|
||||
|
@ -96,26 +90,19 @@ def pipeline_for(
|
|||
shortname = model_info['short']
|
||||
|
||||
params = {
|
||||
'torch_dtype': torch.float16,
|
||||
'safety_checker': None,
|
||||
'cache_dir': cache_dir
|
||||
'torch_dtype': torch.float16,
|
||||
'cache_dir': cache_dir,
|
||||
'variant': 'fp16'
|
||||
}
|
||||
|
||||
if shortname == 'stable':
|
||||
params['revision'] = 'fp16'
|
||||
match shortname:
|
||||
case 'stable':
|
||||
params['revision'] = 'fp16'
|
||||
|
||||
if 'xl' in shortname:
|
||||
if image:
|
||||
pipe_class = StableDiffusionXLImg2ImgPipeline
|
||||
else:
|
||||
pipe_class = StableDiffusionXLPipeline
|
||||
else:
|
||||
if image:
|
||||
pipe_class = StableDiffusionImg2ImgPipeline
|
||||
else:
|
||||
pipe_class = StableDiffusionPipeline
|
||||
torch.cuda.set_per_process_memory_fraction(mem_fraction)
|
||||
|
||||
pipe = pipe_class.from_pretrained(
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
model, **params)
|
||||
|
||||
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
||||
|
@ -151,12 +138,6 @@ def txt2img(
|
|||
steps: int = 28,
|
||||
seed: Optional[int] = None
|
||||
):
|
||||
assert torch.cuda.is_available()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.set_per_process_memory_fraction(1.0)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
login(token=hf_token)
|
||||
pipe = pipeline_for(model)
|
||||
|
||||
|
@ -184,12 +165,6 @@ def img2img(
|
|||
steps: int = 28,
|
||||
seed: Optional[int] = None
|
||||
):
|
||||
assert torch.cuda.is_available()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.set_per_process_memory_fraction(1.0)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
login(token=hf_token)
|
||||
pipe = pipeline_for(model, image=True)
|
||||
|
||||
|
@ -230,12 +205,6 @@ def upscale(
|
|||
output: str = 'output.png',
|
||||
model_path: str = 'weights/RealESRGAN_x4plus.pth'
|
||||
):
|
||||
assert torch.cuda.is_available()
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.set_per_process_memory_fraction(1.0)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
input_img = Image.open(img_path).convert('RGB')
|
||||
|
||||
upscaler = init_upscaler(model_path=model_path)
|
||||
|
@ -258,7 +227,7 @@ async def download_upscaler():
|
|||
f.write(response.content)
|
||||
print('done')
|
||||
|
||||
def download_all_models(hf_token: str):
|
||||
def download_all_models(hf_token: str, hf_home: str):
|
||||
assert torch.cuda.is_available()
|
||||
|
||||
trio.run(download_upscaler)
|
||||
|
@ -266,6 +235,4 @@ def download_all_models(hf_token: str):
|
|||
login(token=hf_token)
|
||||
for model in MODELS:
|
||||
print(f'DOWNLOADING {model.upper()}')
|
||||
pipeline_for(model)
|
||||
print(f'DOWNLOADING IMAGE {model.upper()}')
|
||||
pipeline_for(model, image=True)
|
||||
pipeline_for(model, cache_dir=hf_home)
|
||||
|
|
Loading…
Reference in New Issue