mirror of https://github.com/skygpu/skynet.git
Start using msgspec for message serialization/deseraliazation
Add new pipeline_for_v2 that loads based on ModelParams struct Fix cli to new protocol_v2 Fix worker code to new protocol_v2 Switch to pdbplus Split cuda_utils and normal utilsprotocol_v2
parent
d18d59a0ab
commit
2c4a8661ef
File diff suppressed because it is too large
Load Diff
|
@ -11,10 +11,12 @@ python = '>=3.10,<3.12'
|
|||
pytz = '^2023.3.post1'
|
||||
trio = '^0.22.2'
|
||||
asks = '^3.0.0'
|
||||
toml = '^0.10.2'
|
||||
Pillow = '^10.0.1'
|
||||
docker = '^6.1.3'
|
||||
py-leap = {git = 'https://github.com/guilledk/py-leap.git', rev = 'v0.1a14'}
|
||||
toml = '^0.10.2'
|
||||
ueosio = {git = 'https://github.com/EOSArgentina/ueosio.git', rev = '543ab0a8b4b515d4b34ff02f1af4252b34ebd554'}
|
||||
py-leap = {git = 'https://github.com/guilledk/py-leap.git', rev = 'multi_push_action'}
|
||||
msgspec = '^0.18.4'
|
||||
|
||||
[tool.poetry.group.frontend]
|
||||
optional = true
|
||||
|
@ -30,7 +32,7 @@ pyTelegramBotAPI = {version = '^4.14.0'}
|
|||
optional = true
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pdbpp = {version = '^0.10.3'}
|
||||
pdbplus = {version = '^1.5.0'}
|
||||
pytest = {version = '^7.4.2'}
|
||||
|
||||
[tool.poetry.group.cuda]
|
||||
|
@ -41,6 +43,7 @@ torch = {version = '2.0.1+cu118', source = 'torch'}
|
|||
scipy = {version = '^1.11.2'}
|
||||
numba = {version = '0.57.0'}
|
||||
quart = {version = '^0.19.3'}
|
||||
compel = {version = '^2.0.2'}
|
||||
triton = {version = '2.0.0', source = 'torch'}
|
||||
basicsr = {version = '^1.4.2'}
|
||||
xformers = {version = '^0.0.22'}
|
||||
|
|
|
@ -19,6 +19,13 @@ auto_withdraw = true
|
|||
non_compete = []
|
||||
api_bind = '127.0.0.1:42690'
|
||||
|
||||
[[initial_models]]
|
||||
name = 'stabilityai/stable-diffusion-xl-base-1.0'
|
||||
pipe_fqn = 'diffusers.DiffusionPipeline'
|
||||
|
||||
[initial_models.setup]
|
||||
variant = 'fp16'
|
||||
|
||||
# telegram bot config (optional)
|
||||
[skynet.telegram]
|
||||
account = 'telegram'
|
||||
|
|
|
@ -1,2 +1,3 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
import pdbp
|
||||
|
|
143
skynet/cli.py
143
skynet/cli.py
|
@ -8,7 +8,10 @@ from functools import partial
|
|||
|
||||
import click
|
||||
|
||||
from leap.sugar import Name, asset_from_str
|
||||
from leap.sugar import Name, ListArgument, asset_from_str, symbol_from_str
|
||||
import msgspec
|
||||
|
||||
from skynet.protocol import ComputeRequest, ParamsStruct, RequestRow
|
||||
|
||||
from .config import *
|
||||
from .constants import *
|
||||
|
@ -93,37 +96,49 @@ def download():
|
|||
@click.option('--jobs', '-j', default=1)
|
||||
@click.option('--model', '-m', default='stabilityai/stable-diffusion-xl-base-1.0')
|
||||
@click.option(
|
||||
'--prompt', '-p', default='a red old tractor in a sunny wheat field')
|
||||
@click.option('--output', '-o', default='output.png')
|
||||
@click.option('--width', '-w', default=1024)
|
||||
@click.option('--height', '-h', default=1024)
|
||||
'--prompt', '-p',
|
||||
default='cyberpunk skynet terminator skull a post impressionist oil painting with muted colors authored by Paul Cézanne, Paul Gauguin, Vincent van Gogh, Georges Seurat')
|
||||
@click.option('--guidance', '-g', default=10)
|
||||
@click.option('--step', '-s', default=26)
|
||||
@click.option('--width', '-w', default=1024)
|
||||
@click.option('--height', '-h', default=1024)
|
||||
@click.option('--seed', '-S', default=None)
|
||||
@click.option('--upscaler', '-U', default='x4')
|
||||
@click.option('--binary_data', '-b', default='')
|
||||
@click.option('--input', '-i', multiple=True)
|
||||
@click.option('--strength', '-Z', default=None)
|
||||
def enqueue(
|
||||
reward: str,
|
||||
jobs: int,
|
||||
model: str,
|
||||
prompt: str,
|
||||
guidance: float,
|
||||
step: int,
|
||||
**kwargs
|
||||
):
|
||||
import trio
|
||||
from leap.cleos import CLEOS
|
||||
|
||||
config = load_skynet_toml()
|
||||
logging.basicConfig(level='INFO')
|
||||
|
||||
key = load_key(config, 'skynet.user.key')
|
||||
account = load_key(config, 'skynet.user.account')
|
||||
permission = load_key(config, 'skynet.user.permission')
|
||||
node_url = load_key(config, 'skynet.node_url')
|
||||
|
||||
contract = load_key(config, 'skynet.contract')
|
||||
|
||||
cleos = CLEOS(None, None, url=node_url, remote=node_url)
|
||||
|
||||
binary = kwargs['binary_data']
|
||||
inputs = kwargs['input']
|
||||
if len(inputs) > 0:
|
||||
del kwargs['width']
|
||||
del kwargs['height']
|
||||
|
||||
del kwargs['input']
|
||||
|
||||
if not kwargs['strength']:
|
||||
if binary:
|
||||
raise ValueError('strength -Z param required if binary data passed')
|
||||
if len(inputs) > 0:
|
||||
raise ValueError('strength -Z param required if input data passed')
|
||||
|
||||
del kwargs['strength']
|
||||
|
||||
|
@ -139,29 +154,45 @@ def enqueue(
|
|||
seed = random.randint(0, 10e9)
|
||||
|
||||
_kwargs = kwargs.copy()
|
||||
_kwargs['seed'] = seed
|
||||
_kwargs['generator'] = seed
|
||||
del _kwargs['seed']
|
||||
|
||||
req = json.dumps({
|
||||
'method': 'diffuse',
|
||||
'params': _kwargs
|
||||
})
|
||||
request = ComputeRequest(
|
||||
method='diffuse',
|
||||
params=ParamsStruct(
|
||||
model=ModelParams(
|
||||
name=model,
|
||||
pipe_fqn='diffusers.DiffusionPipeline',
|
||||
setup={'variant': 'fp16'}
|
||||
),
|
||||
runtime_args=[prompt],
|
||||
runtime_kwargs={
|
||||
'guidance_scale': guidance,
|
||||
'num_inference_steps': step,
|
||||
**_kwargs
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
req = msgspec.json.encode(request)
|
||||
|
||||
actions.append({
|
||||
'account': 'telos.gpu',
|
||||
'account': contract,
|
||||
'name': 'enqueue',
|
||||
'data': {
|
||||
'user': Name(account),
|
||||
'request_body': req,
|
||||
'binary_data': binary,
|
||||
'reward': asset_from_str(reward),
|
||||
'min_verification': 1
|
||||
},
|
||||
'data': [
|
||||
Name(account),
|
||||
ListArgument(req, 'uint8'),
|
||||
ListArgument(inputs, 'string'),
|
||||
asset_from_str(reward),
|
||||
1
|
||||
],
|
||||
'authorization': [{
|
||||
'actor': account,
|
||||
'permission': permission
|
||||
}]
|
||||
})
|
||||
|
||||
# breakpoint()
|
||||
res = await cleos.a_push_actions(actions, key)
|
||||
print(res)
|
||||
|
||||
|
@ -181,13 +212,14 @@ def clean(
|
|||
account = load_key(config, 'skynet.user.account')
|
||||
permission = load_key(config, 'skynet.user.permission')
|
||||
node_url = load_key(config, 'skynet.node_url')
|
||||
contract = load_key(config, 'skynet.contract')
|
||||
|
||||
logging.basicConfig(level=loglevel)
|
||||
cleos = CLEOS(None, None, url=node_url, remote=node_url)
|
||||
trio.run(
|
||||
partial(
|
||||
cleos.a_push_action,
|
||||
'telos.gpu',
|
||||
contract,
|
||||
'clean',
|
||||
{},
|
||||
account, key, permission=permission
|
||||
|
@ -199,33 +231,26 @@ def queue():
|
|||
import requests
|
||||
config = load_skynet_toml()
|
||||
node_url = load_key(config, 'skynet.node_url')
|
||||
contract = load_key(config, 'skynet.contract')
|
||||
resp = requests.post(
|
||||
f'{node_url}/v1/chain/get_table_rows',
|
||||
json={
|
||||
'code': 'telos.gpu',
|
||||
'code': contract,
|
||||
'table': 'queue',
|
||||
'scope': 'telos.gpu',
|
||||
'scope': contract,
|
||||
'json': True
|
||||
}
|
||||
)
|
||||
print(json.dumps(resp.json(), indent=4))
|
||||
).json()
|
||||
|
||||
# process hex body
|
||||
results = []
|
||||
for row in resp['rows']:
|
||||
req = row.copy()
|
||||
req['body'] = json.loads(bytes.fromhex(req['body']).decode())
|
||||
results.append(req)
|
||||
|
||||
print(json.dumps(results, indent=4))
|
||||
|
||||
@skynet.command()
|
||||
@click.argument('request-id')
|
||||
def status(request_id: int):
|
||||
import requests
|
||||
config = load_skynet_toml()
|
||||
node_url = load_key(config, 'skynet.node_url')
|
||||
resp = requests.post(
|
||||
f'{node_url}/v1/chain/get_table_rows',
|
||||
json={
|
||||
'code': 'telos.gpu',
|
||||
'table': 'status',
|
||||
'scope': request_id,
|
||||
'json': True
|
||||
}
|
||||
)
|
||||
print(json.dumps(resp.json(), indent=4))
|
||||
|
||||
@skynet.command()
|
||||
@click.argument('request-id')
|
||||
|
@ -238,12 +263,13 @@ def dequeue(request_id: int):
|
|||
account = load_key(config, 'skynet.user.account')
|
||||
permission = load_key(config, 'skynet.user.permission')
|
||||
node_url = load_key(config, 'skynet.node_url')
|
||||
contract = load_key(config, 'skynet.contract')
|
||||
|
||||
cleos = CLEOS(None, None, url=node_url, remote=node_url)
|
||||
res = trio.run(
|
||||
partial(
|
||||
cleos.a_push_action,
|
||||
'telos.gpu',
|
||||
contract,
|
||||
'dequeue',
|
||||
{
|
||||
'user': Name(account),
|
||||
|
@ -256,33 +282,39 @@ def dequeue(request_id: int):
|
|||
|
||||
|
||||
@skynet.command()
|
||||
@click.option(
|
||||
'--token-contract', '-c', default='eosio.token')
|
||||
@click.option(
|
||||
'--token-symbol', '-S', default='4,GPU')
|
||||
@click.argument(
|
||||
'token-contract', required=True)
|
||||
@click.argument(
|
||||
'token-symbol', required=True)
|
||||
@click.argument(
|
||||
'nonce', required=True)
|
||||
def config(
|
||||
token_contract: str,
|
||||
token_symbol: str
|
||||
token_symbol: str,
|
||||
nonce: int
|
||||
):
|
||||
import trio
|
||||
from leap.cleos import CLEOS
|
||||
|
||||
logging.basicConfig(level='INFO')
|
||||
config = load_skynet_toml()
|
||||
|
||||
key = load_key(config, 'skynet.user.key')
|
||||
account = load_key(config, 'skynet.user.account')
|
||||
permission = load_key(config, 'skynet.user.permission')
|
||||
node_url = load_key(config, 'skynet.node_url')
|
||||
contract = load_key(config, 'skynet.contract')
|
||||
|
||||
cleos = CLEOS(None, None, url=node_url, remote=node_url)
|
||||
res = trio.run(
|
||||
partial(
|
||||
cleos.a_push_action,
|
||||
'telos.gpu',
|
||||
contract,
|
||||
'config',
|
||||
{
|
||||
'token_contract': token_contract,
|
||||
'token_symbol': token_symbol,
|
||||
'token_contract': Name(token_contract),
|
||||
'token_symbol': symbol_from_str(token_symbol),
|
||||
'nonce': int(nonce)
|
||||
},
|
||||
account, key, permission=permission
|
||||
)
|
||||
|
@ -302,16 +334,17 @@ def deposit(quantity: str):
|
|||
account = load_key(config, 'skynet.user.account')
|
||||
permission = load_key(config, 'skynet.user.permission')
|
||||
node_url = load_key(config, 'skynet.node_url')
|
||||
contract = load_key(config, 'skynet.contract')
|
||||
cleos = CLEOS(None, None, url=node_url, remote=node_url)
|
||||
|
||||
res = trio.run(
|
||||
partial(
|
||||
cleos.a_push_action,
|
||||
'telos.gpu',
|
||||
'eosio.token',
|
||||
'transfer',
|
||||
{
|
||||
'sender': Name(account),
|
||||
'recipient': Name('telos.gpu'),
|
||||
'recipient': Name(contract),
|
||||
'amount': asset_from_str(quantity),
|
||||
'memo': f'{account} transferred {quantity} to telos.gpu'
|
||||
},
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
from skynet.protocol import ModelParams
|
||||
|
||||
|
||||
VERSION = '0.1a12'
|
||||
|
||||
DOCKER_RUNTIME_CUDA = 'skynet:runtime-cuda'
|
||||
|
@ -167,7 +170,11 @@ DEFAULT_UPSCALER = None
|
|||
DEFAULT_CONFIG_PATH = 'skynet.toml'
|
||||
|
||||
DEFAULT_INITAL_MODELS = [
|
||||
'stabilityai/stable-diffusion-xl-base-1.0'
|
||||
ModelParams(
|
||||
name='stabilityai/stable-diffusion-xl-base-1.0',
|
||||
pipe_fqn='diffusers.DiffusionPipeline',
|
||||
setup={'variant': 'fp16'}
|
||||
)
|
||||
]
|
||||
|
||||
DATE_FORMAT = '%B the %dth %Y, %H:%M:%S'
|
||||
|
|
|
@ -0,0 +1,298 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
from copy import deepcopy
|
||||
import io
|
||||
import os
|
||||
import sys
|
||||
import random
|
||||
import logging
|
||||
|
||||
from typing import Any, Optional
|
||||
from pathlib import Path
|
||||
from importlib import import_module
|
||||
|
||||
import trio
|
||||
import asks
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from PIL import Image
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from diffusers import (
|
||||
DiffusionPipeline,
|
||||
EulerAncestralDiscreteScheduler
|
||||
)
|
||||
from realesrgan import RealESRGANer
|
||||
from huggingface_hub import login
|
||||
|
||||
from skynet.protocol import ModelParams
|
||||
|
||||
from .constants import MODELS
|
||||
|
||||
|
||||
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
||||
# return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||
return Image.fromarray(img)
|
||||
|
||||
|
||||
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
||||
# return cv2.cvtColor(numpy.array(img), cv2.COLOR_RGB2BGR)
|
||||
return np.asarray(img)
|
||||
|
||||
|
||||
def convert_from_bytes_to_img(raw: bytes) -> Image:
|
||||
return Image.open(io.BytesIO(raw))
|
||||
|
||||
|
||||
def convert_from_img_to_bytes(image: Image, fmt='PNG') -> bytes:
|
||||
byte_arr = io.BytesIO()
|
||||
image.save(byte_arr, format=fmt)
|
||||
return byte_arr.getvalue()
|
||||
|
||||
|
||||
def crop_image(image: Image, max_w: int, max_h: int) -> Image:
|
||||
w, h = image.size
|
||||
if w > max_w or h > max_h:
|
||||
image.thumbnail((max_w, max_h))
|
||||
|
||||
return image.convert('RGB')
|
||||
|
||||
|
||||
def pipeline_for(
|
||||
model: str,
|
||||
mem_fraction: float = 1.0,
|
||||
image: bool = False,
|
||||
cache_dir: str | None = None
|
||||
) -> DiffusionPipeline:
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
torch.cuda.empty_cache()
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# full determinism
|
||||
# https://huggingface.co/docs/diffusers/using-diffusers/reproducibility#deterministic-algorithms
|
||||
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
|
||||
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.use_deterministic_algorithms(True)
|
||||
|
||||
model_info = MODELS[model]
|
||||
|
||||
req_mem = model_info['mem']
|
||||
mem_gb = torch.cuda.mem_get_info()[1] / (10**9)
|
||||
mem_gb *= mem_fraction
|
||||
over_mem = mem_gb < req_mem
|
||||
if over_mem:
|
||||
logging.warn(f'model requires {req_mem} but card has {mem_gb}, model will run slower..')
|
||||
|
||||
shortname = model_info['short']
|
||||
|
||||
params = {
|
||||
'safety_checker': None,
|
||||
'torch_dtype': torch.float16,
|
||||
'cache_dir': cache_dir,
|
||||
'variant': 'fp16'
|
||||
}
|
||||
|
||||
match shortname:
|
||||
case 'stable':
|
||||
params['revision'] = 'fp16'
|
||||
|
||||
torch.cuda.set_per_process_memory_fraction(mem_fraction)
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
model, **params)
|
||||
|
||||
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
||||
pipe.scheduler.config)
|
||||
|
||||
pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
if over_mem:
|
||||
if not image:
|
||||
pipe.enable_vae_slicing()
|
||||
pipe.enable_vae_tiling()
|
||||
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
else:
|
||||
if sys.version_info[1] < 11:
|
||||
# torch.compile only supported on python < 3.11
|
||||
pipe.unet = torch.compile(
|
||||
pipe.unet, mode='reduce-overhead', fullgraph=True)
|
||||
|
||||
pipe = pipe.to('cuda')
|
||||
|
||||
return pipe
|
||||
|
||||
def pipeline_for_v2(
|
||||
model: ModelParams,
|
||||
mem_fraction: float = 1.0,
|
||||
cache_dir: str | None = None
|
||||
) -> Any:
|
||||
mod_name, class_name = model.pipe_fqn.rsplit('.', 1)
|
||||
mod = import_module(mod_name)
|
||||
pipe_class = getattr(mod, class_name)
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
torch.cuda.empty_cache()
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# full determinism
|
||||
# https://huggingface.co/docs/diffusers/using-diffusers/reproducibility#deterministic-algorithms
|
||||
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
|
||||
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.use_deterministic_algorithms(True)
|
||||
|
||||
model_info = MODELS[model.name]
|
||||
|
||||
req_mem = model_info['mem']
|
||||
mem_gb = torch.cuda.mem_get_info()[1] / (10**9)
|
||||
mem_gb *= mem_fraction
|
||||
over_mem = mem_gb < req_mem
|
||||
if over_mem:
|
||||
logging.warn(f'model requires {req_mem} but card has {mem_gb}, model will run slower..')
|
||||
|
||||
torch.cuda.set_per_process_memory_fraction(mem_fraction)
|
||||
|
||||
setup_params = deepcopy(model.setup)
|
||||
setup_params['safety_checker'] = None
|
||||
setup_params['torch_dtype'] = torch.float16
|
||||
setup_params['cache_dir'] = cache_dir
|
||||
|
||||
pipe = pipe_class.from_pretrained(model.name, **setup_params)
|
||||
|
||||
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
||||
pipe.scheduler.config)
|
||||
|
||||
pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
if over_mem:
|
||||
if 'Img' not in model.pipe_fqn:
|
||||
pipe.enable_vae_slicing()
|
||||
pipe.enable_vae_tiling()
|
||||
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
else:
|
||||
if sys.version_info[1] < 11:
|
||||
# torch.compile only supported on python < 3.11
|
||||
pipe.unet = torch.compile(
|
||||
pipe.unet, mode='reduce-overhead', fullgraph=True)
|
||||
|
||||
pipe = pipe.to('cuda')
|
||||
|
||||
return pipe
|
||||
|
||||
def txt2img(
|
||||
hf_token: str,
|
||||
model: str = 'prompthero/openjourney',
|
||||
prompt: str = 'a red old tractor in a sunny wheat field',
|
||||
output: str = 'output.png',
|
||||
width: int = 512, height: int = 512,
|
||||
guidance: float = 10,
|
||||
steps: int = 28,
|
||||
seed: Optional[int] = None
|
||||
):
|
||||
login(token=hf_token)
|
||||
pipe = pipeline_for(model)
|
||||
|
||||
seed = seed if seed else random.randint(0, 2 ** 64)
|
||||
prompt = prompt
|
||||
image = pipe(
|
||||
prompt,
|
||||
width=width,
|
||||
height=height,
|
||||
guidance_scale=guidance, num_inference_steps=steps,
|
||||
generator=torch.Generator("cuda").manual_seed(seed)
|
||||
).images[0]
|
||||
|
||||
image.save(output)
|
||||
|
||||
|
||||
def img2img(
|
||||
hf_token: str,
|
||||
model: str = 'prompthero/openjourney',
|
||||
prompt: str = 'a red old tractor in a sunny wheat field',
|
||||
img_path: str = 'input.png',
|
||||
output: str = 'output.png',
|
||||
strength: float = 1.0,
|
||||
guidance: float = 10,
|
||||
steps: int = 28,
|
||||
seed: Optional[int] = None
|
||||
):
|
||||
login(token=hf_token)
|
||||
pipe = pipeline_for(model, image=True)
|
||||
|
||||
with open(img_path, 'rb') as img_file:
|
||||
input_img = convert_from_bytes_and_crop(img_file.read(), 512, 512)
|
||||
|
||||
seed = seed if seed else random.randint(0, 2 ** 64)
|
||||
prompt = prompt
|
||||
image = pipe(
|
||||
prompt,
|
||||
image=input_img,
|
||||
strength=strength,
|
||||
guidance_scale=guidance, num_inference_steps=steps,
|
||||
generator=torch.Generator("cuda").manual_seed(seed)
|
||||
).images[0]
|
||||
|
||||
image.save(output)
|
||||
|
||||
|
||||
def init_upscaler(model_path: str = 'weights/RealESRGAN_x4plus.pth'):
|
||||
return RealESRGANer(
|
||||
scale=4,
|
||||
model_path=model_path,
|
||||
dni_weight=None,
|
||||
model=RRDBNet(
|
||||
num_in_ch=3,
|
||||
num_out_ch=3,
|
||||
num_feat=64,
|
||||
num_block=23,
|
||||
num_grow_ch=32,
|
||||
scale=4
|
||||
),
|
||||
half=True
|
||||
)
|
||||
|
||||
def upscale(
|
||||
img_path: str = 'input.png',
|
||||
output: str = 'output.png',
|
||||
model_path: str = 'weights/RealESRGAN_x4plus.pth'
|
||||
):
|
||||
input_img = Image.open(img_path).convert('RGB')
|
||||
|
||||
upscaler = init_upscaler(model_path=model_path)
|
||||
|
||||
up_img, _ = upscaler.enhance(
|
||||
convert_from_image_to_cv2(input_img), outscale=4)
|
||||
|
||||
image = convert_from_cv2_to_image(up_img)
|
||||
image.save(output)
|
||||
|
||||
|
||||
async def download_upscaler():
|
||||
print('downloading upscaler...')
|
||||
weights_path = Path('weights')
|
||||
weights_path.mkdir(exist_ok=True)
|
||||
upscaler_url = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
|
||||
save_path = weights_path / 'RealESRGAN_x4plus.pth'
|
||||
response = await asks.get(upscaler_url)
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
print('done')
|
||||
|
||||
def download_all_models(hf_token: str, hf_home: str):
|
||||
assert torch.cuda.is_available()
|
||||
|
||||
trio.run(download_upscaler)
|
||||
|
||||
login(token=hf_token)
|
||||
for model in MODELS:
|
||||
print(f'DOWNLOADING {model.upper()}')
|
||||
pipeline_for(model, cache_dir=hf_home)
|
|
@ -11,20 +11,22 @@ from skynet.dgpu.network import SkynetGPUConnector
|
|||
|
||||
|
||||
async def open_dgpu_node(config: dict):
|
||||
conn = SkynetGPUConnector({**config, **config['dgpu']})
|
||||
mm = SkynetMM(config['dgpu'])
|
||||
daemon = SkynetDGPUDaemon(mm, conn, config['dgpu'])
|
||||
config = {**config, **config['dgpu']}
|
||||
conn = SkynetGPUConnector(config)
|
||||
mm = SkynetMM(config)
|
||||
daemon = SkynetDGPUDaemon(mm, conn, config)
|
||||
|
||||
api = None
|
||||
if 'api_bind' in config['dgpu']:
|
||||
if 'api_bind' in config:
|
||||
api_conf = Config()
|
||||
api_conf.bind = [config['api_bind']]
|
||||
api = await daemon.generate_api()
|
||||
|
||||
async with trio.open_nursery() as n:
|
||||
n.start_soon(conn.data_updater_task)
|
||||
await n.start(conn.data_updater_task)
|
||||
|
||||
if api:
|
||||
n.start_soon(serve, api, api_conf)
|
||||
|
||||
await daemon.serve_forever()
|
||||
n.cancel_scope.cancel()
|
||||
|
|
|
@ -5,10 +5,9 @@
|
|||
import gc
|
||||
import logging
|
||||
|
||||
from hashlib import sha256
|
||||
from copy import deepcopy
|
||||
from typing import Any
|
||||
|
||||
from PIL import Image
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
import trio
|
||||
|
@ -16,53 +15,29 @@ import torch
|
|||
|
||||
from skynet.constants import DEFAULT_INITAL_MODELS, MODELS
|
||||
from skynet.dgpu.errors import DGPUComputeError, DGPUInferenceCancelled
|
||||
from skynet.protocol import ComputeRequest, ModelParams, ParamsStruct
|
||||
|
||||
from skynet.utils import crop_image, convert_from_cv2_to_image, convert_from_image_to_cv2, convert_from_img_to_bytes, init_upscaler, pipeline_for
|
||||
|
||||
|
||||
def prepare_params_for_diffuse(
|
||||
params: dict,
|
||||
inputs: list[tuple[Any, str]],
|
||||
):
|
||||
_params = {}
|
||||
|
||||
if len(inputs) > 1:
|
||||
raise DGPUComputeError('sorry binary_inputs > 1 not implemented yet')
|
||||
|
||||
if len(inputs) == 0:
|
||||
binary, input_type = inputs[0]
|
||||
|
||||
match input_type:
|
||||
case 'png':
|
||||
image = crop_image(
|
||||
binary, params['width'], params['height'])
|
||||
|
||||
_params['image'] = image
|
||||
_params['strength'] = float(params['strength'])
|
||||
|
||||
case _:
|
||||
raise DGPUComputeError(f'Unknown input_type {input_type}')
|
||||
|
||||
else:
|
||||
_params['width'] = int(params['width'])
|
||||
_params['height'] = int(params['height'])
|
||||
|
||||
return (
|
||||
params['prompt'],
|
||||
float(params['guidance']),
|
||||
int(params['step']),
|
||||
torch.manual_seed(int(params['seed'])),
|
||||
params['upscaler'] if 'upscaler' in params else None,
|
||||
_params
|
||||
from skynet.cuda_utils import (
|
||||
init_upscaler,
|
||||
pipeline_for_v2
|
||||
)
|
||||
|
||||
|
||||
def unpack_diffuse_params(params: ParamsStruct):
|
||||
kwargs = deepcopy(params.runtime_kwargs)
|
||||
|
||||
if 'generator' in kwargs:
|
||||
kwargs['generator'] = torch.manual_seed(int(kwargs['generator']))
|
||||
|
||||
return params.runtime_args, kwargs
|
||||
|
||||
|
||||
class SkynetMM:
|
||||
|
||||
def __init__(self, config: dict):
|
||||
self.upscaler = init_upscaler()
|
||||
self.initial_models = (
|
||||
config['initial_models']
|
||||
self.initial_models: list[ModelParams] = (
|
||||
[ModelParams(**model) for model in config['initial_models']]
|
||||
if 'initial_models' in config else DEFAULT_INITAL_MODELS
|
||||
)
|
||||
|
||||
|
@ -78,35 +53,28 @@ class SkynetMM:
|
|||
|
||||
self._models = {}
|
||||
for model in self.initial_models:
|
||||
self.load_model(model, False, force=True)
|
||||
self.load_model(model)
|
||||
|
||||
def log_debug_info(self):
|
||||
logging.info('memory summary:')
|
||||
logging.info('\n' + torch.cuda.memory_summary())
|
||||
|
||||
def is_model_loaded(self, model_name: str, image: bool):
|
||||
for model_key, model_data in self._models.items():
|
||||
if (model_key == model_name and
|
||||
model_data['image'] == image):
|
||||
return True
|
||||
|
||||
return False
|
||||
def is_model_loaded(self, model: ModelParams):
|
||||
return model.get_uid() in self._models
|
||||
|
||||
def load_model(
|
||||
self,
|
||||
model_name: str,
|
||||
image: bool,
|
||||
force=False
|
||||
model: ModelParams
|
||||
):
|
||||
logging.info(f'loading model {model_name}...')
|
||||
if force or len(self._models.keys()) == 0:
|
||||
pipe = pipeline_for(
|
||||
model_name, image=image, cache_dir=self.cache_dir)
|
||||
logging.info(f'loading model {model.name}...')
|
||||
if len(self._models.keys()) == 0:
|
||||
pipe = pipeline_for_v2(
|
||||
model, cache_dir=self.cache_dir)
|
||||
|
||||
self._models[model_name] = {
|
||||
self._models[model.get_uid()] = {
|
||||
'pipe': pipe,
|
||||
'generated': 0,
|
||||
'image': image
|
||||
'params': model,
|
||||
'generated': 0
|
||||
}
|
||||
|
||||
else:
|
||||
|
@ -119,42 +87,41 @@ class SkynetMM:
|
|||
|
||||
del self._models[least_used]
|
||||
|
||||
logging.info(f'swapping model {least_used} for {model_name}...')
|
||||
logging.info(f'swapping model {least_used} for {model.get_uid()}...')
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
pipe = pipeline_for(
|
||||
model_name, image=image, cache_dir=self.cache_dir)
|
||||
pipe = pipeline_for_v2(
|
||||
model, cache_dir=self.cache_dir)
|
||||
|
||||
self._models[model_name] = {
|
||||
self._models[model.get_uid()] = {
|
||||
'pipe': pipe,
|
||||
'generated': 0,
|
||||
'image': image
|
||||
'params': model,
|
||||
'generated': 0
|
||||
}
|
||||
|
||||
logging.info(f'loaded model {model_name}')
|
||||
logging.info(f'loaded model {model.name}')
|
||||
return pipe
|
||||
|
||||
def get_model(self, model_name: str, image: bool) -> DiffusionPipeline:
|
||||
if model_name not in MODELS:
|
||||
raise DGPUComputeError(f'Unknown model {model_name}')
|
||||
def get_model(self, model: ModelParams) -> DiffusionPipeline:
|
||||
if model.name not in MODELS:
|
||||
raise DGPUComputeError(f'Unknown model {model.name}')
|
||||
|
||||
if not self.is_model_loaded(model_name, image):
|
||||
pipe = self.load_model(model_name, image=image)
|
||||
if not self.is_model_loaded(model):
|
||||
pipe = self.load_model(model)
|
||||
|
||||
else:
|
||||
pipe = self._models[model_name]['pipe']
|
||||
pipe = self._models[model.get_uid()]['pipe']
|
||||
|
||||
return pipe
|
||||
|
||||
def compute_one(
|
||||
self,
|
||||
request_id: int,
|
||||
method: str,
|
||||
params: dict,
|
||||
request: ComputeRequest,
|
||||
inputs: list[tuple[Any, str]]
|
||||
):
|
||||
) -> list[tuple[bytes, str]]:
|
||||
def maybe_cancel_work(step, *args, **kwargs):
|
||||
if self._should_cancel:
|
||||
should_raise = trio.from_thread.run(self._should_cancel, request_id)
|
||||
|
@ -165,44 +132,24 @@ class SkynetMM:
|
|||
maybe_cancel_work(0)
|
||||
|
||||
output_type = 'png'
|
||||
if 'output_type' in params:
|
||||
output_type = params['output_type']
|
||||
if 'output_type' in request.params.runtime_kwargs:
|
||||
output_type = request.params.runtime_kwargs['output_type']
|
||||
|
||||
output = None
|
||||
output_hash = None
|
||||
outputs = None
|
||||
try:
|
||||
match method:
|
||||
match request.method:
|
||||
case 'diffuse':
|
||||
arguments = prepare_params_for_diffuse(params, inputs)
|
||||
prompt, guidance, step, seed, upscaler, extra_params = arguments
|
||||
model = self.get_model(params['model'], 'image' in extra_params)
|
||||
model = self.get_model(request.params.model)
|
||||
|
||||
output = model(
|
||||
prompt,
|
||||
guidance_scale=guidance,
|
||||
num_inference_steps=step,
|
||||
generator=seed,
|
||||
args, kwargs = unpack_diffuse_params(request.params)
|
||||
|
||||
outputs = model(
|
||||
*args, **kwargs,
|
||||
callback=maybe_cancel_work,
|
||||
callback_steps=1,
|
||||
**extra_params
|
||||
).images[0]
|
||||
callback_steps=1
|
||||
)
|
||||
|
||||
output_binary = b''
|
||||
match output_type:
|
||||
case 'png':
|
||||
if upscaler == 'x4':
|
||||
input_img = output.convert('RGB')
|
||||
up_img, _ = self.upscaler.enhance(
|
||||
convert_from_image_to_cv2(input_img), outscale=4)
|
||||
|
||||
output = convert_from_cv2_to_image(up_img)
|
||||
|
||||
output_binary = convert_from_img_to_bytes(output)
|
||||
|
||||
case _:
|
||||
raise DGPUComputeError(f'Unsupported output type: {output_type}')
|
||||
|
||||
output_hash = sha256(output_binary).hexdigest()
|
||||
output = outputs.images[0]
|
||||
|
||||
case _:
|
||||
raise DGPUComputeError('Unsupported compute method')
|
||||
|
@ -214,4 +161,4 @@ class SkynetMM:
|
|||
finally:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
return output_hash, output
|
||||
return [(output, output_type)]
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
import random
|
||||
import logging
|
||||
import traceback
|
||||
|
||||
from hashlib import sha256
|
||||
|
@ -19,6 +20,7 @@ from skynet.constants import MODELS, VERSION
|
|||
from skynet.dgpu.errors import *
|
||||
from skynet.dgpu.compute import SkynetMM
|
||||
from skynet.dgpu.network import SkynetGPUConnector
|
||||
from skynet.protocol import ComputeRequest, ModelParams, ParamsStruct, RequestRow
|
||||
|
||||
|
||||
def convert_reward_to_int(reward_str):
|
||||
|
@ -87,9 +89,12 @@ class SkynetDGPUDaemon:
|
|||
|
||||
async def should_cancel_work(self, request_id: int):
|
||||
self._benchmark.append(time.time())
|
||||
competitors = self.conn.get_competitors_for_request(request_id)
|
||||
if competitors == None:
|
||||
return True
|
||||
status = self.conn.get_status_for_request(request_id)
|
||||
competitors = [
|
||||
s.worker
|
||||
for s in status
|
||||
if s.worker != self.account
|
||||
]
|
||||
return bool(self.non_compete & set(competitors))
|
||||
|
||||
async def generate_api(self):
|
||||
|
@ -106,25 +111,37 @@ class SkynetDGPUDaemon:
|
|||
|
||||
return app
|
||||
|
||||
def find_best_requests(self) -> list[dict]:
|
||||
def find_best_requests(self) -> list[tuple[RequestRow, ComputeRequest]]:
|
||||
queue = self.conn.get_queue()
|
||||
|
||||
# for _ in range(3):
|
||||
# random.shuffle(queue)
|
||||
for _ in range(3):
|
||||
random.shuffle(queue)
|
||||
|
||||
# queue = sorted(
|
||||
# queue,
|
||||
# key=lambda req: convert_reward_to_int(req['reward']),
|
||||
# reverse=True
|
||||
# )
|
||||
queue = sorted(
|
||||
queue,
|
||||
key=lambda req: convert_reward_to_int(req.reward),
|
||||
reverse=True
|
||||
)
|
||||
|
||||
requests = []
|
||||
for req in queue:
|
||||
rid = req['nonce']
|
||||
rid = req.nonce
|
||||
|
||||
# parse request
|
||||
body = json.loads(req['body'])
|
||||
model = body['params']['model']
|
||||
try:
|
||||
req_json = json.loads(req.body)
|
||||
compute_request = ComputeRequest(**req_json)
|
||||
compute_request.params = ParamsStruct(**req_json['params'])
|
||||
compute_request.params.model = ModelParams(**req_json['params']['model'])
|
||||
model = compute_request.params.model.name
|
||||
|
||||
except TypeError as e:
|
||||
logging.warning(f'Couldn\'t parse request: {e}')
|
||||
continue
|
||||
|
||||
except json.JSONDecodeError as e:
|
||||
logging.warning(f'Couldn\'t parse request: {e}')
|
||||
continue
|
||||
|
||||
# if model not known
|
||||
if model not in MODELS:
|
||||
|
@ -140,7 +157,7 @@ class SkynetDGPUDaemon:
|
|||
if model in self.model_blacklist:
|
||||
continue
|
||||
|
||||
my_results = [res['id'] for res in self.conn.get_my_results()]
|
||||
my_results = [res.id for res in self.conn.get_my_results()]
|
||||
|
||||
# if this worker already on it
|
||||
if rid in my_results:
|
||||
|
@ -150,13 +167,17 @@ class SkynetDGPUDaemon:
|
|||
if status == None:
|
||||
continue
|
||||
|
||||
if self.non_compete & set(self.conn.get_competitors_for_request(rid)):
|
||||
if self.non_compete & set([
|
||||
s.worker
|
||||
for s in status
|
||||
if s.worker != self.account
|
||||
]):
|
||||
continue
|
||||
|
||||
if len(status) > self.max_concurrent:
|
||||
continue
|
||||
|
||||
requests.append(req)
|
||||
requests.append((req, compute_request))
|
||||
|
||||
return requests
|
||||
|
||||
|
@ -164,24 +185,26 @@ class SkynetDGPUDaemon:
|
|||
# check worker is registered
|
||||
me = self.conn.get_on_chain_worker_info(self.account)
|
||||
if not me:
|
||||
ec, out = await self.conn.register_worker()
|
||||
if ec != 0:
|
||||
res = await self.conn.register_worker()
|
||||
if 'error' in res:
|
||||
raise DGPUDaemonError(f'Couldn\'t register worker! {out}')
|
||||
|
||||
me = self.conn.get_on_chain_worker_info(self.account)
|
||||
if not me:
|
||||
raise DGPUDaemonError('Unknown error while registering')
|
||||
|
||||
# find if reported on chain gpus match local
|
||||
found_difference = False
|
||||
for i in range(self.mm.num_gpus):
|
||||
chain_gpu = me['cards'][i]
|
||||
chain_gpu = me.cards[i]
|
||||
|
||||
gpu = self.mm.gpus[i]
|
||||
gpu_v = f'{gpu.major}.{gpu.minor}'
|
||||
|
||||
found_difference = gpu.name != chain_gpu['card_name']
|
||||
found_difference = gpu_v != chain_gpu['version']
|
||||
found_difference = gpu.total_memory != chain_gpu['total_memory']
|
||||
found_difference = gpu.multi_processor_count != chain_gpu['mp_count']
|
||||
found_difference = gpu.name != chain_gpu.card_name
|
||||
found_difference = gpu_v != chain_gpu.version
|
||||
found_difference = gpu.total_memory != chain_gpu.total_memory
|
||||
found_difference = gpu.multi_processor_count != chain_gpu.mp_count
|
||||
if found_difference:
|
||||
break
|
||||
|
||||
|
@ -189,20 +212,24 @@ class SkynetDGPUDaemon:
|
|||
if found_difference:
|
||||
await self.conn.flush_cards()
|
||||
for i, gpu in enumerate(self.mm.gpus):
|
||||
ec, _ = await self.conn.add_card(
|
||||
res = await self.conn.add_card(
|
||||
gpu.name, f'{gpu.major}.{gpu.minor}',
|
||||
gpu.total_memory, gpu.multi_processor_count,
|
||||
'',
|
||||
is_online
|
||||
)
|
||||
if ec != 0:
|
||||
if 'error' in res:
|
||||
raise DGPUDaemonError(f'error while reporting card {i}')
|
||||
|
||||
return found_difference
|
||||
|
||||
async def all_gpu_set_online_flag(self, is_online: bool):
|
||||
for i, chain_gpu in enumerate(me['cards']):
|
||||
if chain_gpu['is_online'] != is_online:
|
||||
me = self.conn.get_on_chain_worker_info(self.account)
|
||||
if not me:
|
||||
raise DGPUDaemonError('Couldn\'t find worker info!')
|
||||
|
||||
for i, chain_gpu in enumerate(me.cards):
|
||||
if chain_gpu.is_online != is_online:
|
||||
await self.conn.toggle_card(i)
|
||||
|
||||
async def serve_forever(self):
|
||||
|
@ -219,23 +246,24 @@ class SkynetDGPUDaemon:
|
|||
requests = self.find_best_requests()
|
||||
|
||||
if len(requests) > 0:
|
||||
request = requests[0]
|
||||
rid = request['nonce']
|
||||
body = json.loads(request['body'])
|
||||
request, compute_request = requests[0]
|
||||
rid = request.nonce
|
||||
body = json.loads(request.body)
|
||||
logging.info(f'trying to process req: {rid}')
|
||||
|
||||
inputs = await self.conn.get_inputs(request['binary_inputs'])
|
||||
|
||||
hash_str = (
|
||||
str(request['nonce'])
|
||||
hash_buf = (
|
||||
str(request.nonce).encode()
|
||||
+
|
||||
request['body']
|
||||
request.body.encode()
|
||||
+
|
||||
''.join([_in for _in in request['binary_inputs']])
|
||||
b''.join([_in.encode() for _in in request.inputs])
|
||||
)
|
||||
logging.info(f'hashing: {hash_str}')
|
||||
request_hash = sha256(hash_str.encode('utf-8')).hexdigest()
|
||||
logging.info(f'hashing str of length {len(hash_buf)}')
|
||||
request_hash = sha256(hash_buf).hexdigest()
|
||||
|
||||
# TODO: validate request
|
||||
inputs = []
|
||||
if len(request.inputs) > 0:
|
||||
inputs = await self.conn.get_inputs(request.inputs)
|
||||
|
||||
# perform work
|
||||
logging.info(f'working on {body}')
|
||||
|
@ -247,19 +275,17 @@ class SkynetDGPUDaemon:
|
|||
else:
|
||||
try:
|
||||
output_type = 'png'
|
||||
if 'output_type' in body['params']:
|
||||
output_type = body['params']['output_type']
|
||||
if 'output_type' in compute_request.params.runtime_kwargs:
|
||||
output_type = compute_request.params.runtime_kwargs['output_type']
|
||||
|
||||
output = None
|
||||
output_hash = None
|
||||
outputs = []
|
||||
match self.backend:
|
||||
case 'sync-on-thread':
|
||||
self.mm._should_cancel = self.should_cancel_work
|
||||
output_hash, output = await trio.to_thread.run_sync(
|
||||
outputs = await trio.to_thread.run_sync(
|
||||
partial(
|
||||
self.mm.compute_one,
|
||||
rid,
|
||||
body['method'], body['params'],
|
||||
rid, compute_request,
|
||||
inputs=inputs
|
||||
)
|
||||
)
|
||||
|
@ -271,9 +297,9 @@ class SkynetDGPUDaemon:
|
|||
self._last_benchmark = self._benchmark
|
||||
self._benchmark = []
|
||||
|
||||
ipfs_hash = await self.conn.publish_on_ipfs(output, typ=output_type)
|
||||
outputs = await self.conn.publish_on_ipfs(outputs)
|
||||
|
||||
await self.conn.submit_work(rid, request_hash, output_hash, ipfs_hash)
|
||||
await self.conn.submit_work(rid, request_hash, outputs)
|
||||
|
||||
except BaseException as e:
|
||||
traceback.print_exc()
|
||||
|
|
|
@ -16,11 +16,18 @@ import anyio
|
|||
from PIL import Image, UnidentifiedImageError
|
||||
|
||||
from leap.cleos import CLEOS
|
||||
from leap.sugar import Checksum256, Name, asset_from_str
|
||||
from leap.sugar import (
|
||||
ListArgument,
|
||||
Checksum256,
|
||||
Name,
|
||||
asset_from_str
|
||||
)
|
||||
|
||||
from skynet.constants import DEFAULT_IPFS_DOMAIN
|
||||
|
||||
from skynet.ipfs import AsyncIPFSHTTP, get_ipfs_file
|
||||
from skynet.dgpu.errors import DGPUComputeError
|
||||
from skynet.protocol import CardStruct, ConfigRow, RequestRow, WorkerResultRow, WorkerRow, WorkerStatusStruct
|
||||
|
||||
|
||||
REQUEST_UPDATE_TIME = 3
|
||||
|
@ -93,66 +100,66 @@ class SkynetGPUConnector:
|
|||
else:
|
||||
return default
|
||||
|
||||
async def data_updater_task(self):
|
||||
async def data_updater_task(self, task_status=trio.TASK_STATUS_IGNORED):
|
||||
tasks = (
|
||||
(self._get_work_requests_last_hour, 'queue'),
|
||||
(self._find_my_results, 'my_results'),
|
||||
(self._get_workers, 'workers')
|
||||
)
|
||||
|
||||
while True:
|
||||
async def _update():
|
||||
async with trio.open_nursery() as n:
|
||||
for task in tasks:
|
||||
n.start_soon(self._cache_set, *task)
|
||||
|
||||
await trio.sleep(self._update_delta)
|
||||
await _update()
|
||||
|
||||
def get_queue(self):
|
||||
task_status.started()
|
||||
|
||||
while True:
|
||||
await trio.sleep(self._update_delta)
|
||||
await _update()
|
||||
|
||||
def get_queue(self) -> list[RequestRow]:
|
||||
return self._cache_get('queue', default=[])
|
||||
|
||||
def get_my_results(self):
|
||||
def get_my_results(self) -> list[WorkerResultRow]:
|
||||
return self._cache_get('my_results', default=[])
|
||||
|
||||
def get_workers(self):
|
||||
def get_workers(self) -> list[WorkerRow]:
|
||||
return self._cache_get('workers', default=[])
|
||||
|
||||
def get_status_for_request(self, request_id: int) -> list[dict] | None:
|
||||
request: dict | None = next((
|
||||
req
|
||||
def get_status_for_request(self, request_id: int) -> list[WorkerStatusStruct]:
|
||||
return next((
|
||||
[WorkerStatusStruct(**status) for status in req.status]
|
||||
for req in self.get_queue()
|
||||
if req['id'] == request_id), None)
|
||||
if req.nonce == request_id), [])
|
||||
|
||||
if request:
|
||||
return request['status']
|
||||
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_competitors_for_request(self, request_id: int) -> list[str] | None:
|
||||
status = self.get_status_for_request(request_id)
|
||||
if not status:
|
||||
return None
|
||||
|
||||
return [
|
||||
s['worker']
|
||||
for s in status
|
||||
if s['worker'] != self.account
|
||||
]
|
||||
|
||||
async def _get_work_requests_last_hour(self) -> list[dict]:
|
||||
logging.info('get_work_requests_last_hour')
|
||||
return await failable(
|
||||
async def _get_work_requests_last_hour(self) -> list[RequestRow]:
|
||||
logging.debug('get_work_requests_last_hour')
|
||||
result = []
|
||||
for row in (
|
||||
await failable(
|
||||
partial(
|
||||
self.cleos.aget_table,
|
||||
self.contract, self.contract, 'queue',
|
||||
index_position=2,
|
||||
order='asc',
|
||||
limit=1000
|
||||
key_type='i64',
|
||||
lower_bound=int(time.time()) - (60 * 60)
|
||||
), ret_fail=[])
|
||||
):
|
||||
row = RequestRow(**row)
|
||||
row.body = bytes.fromhex(row.body).decode()
|
||||
result.append(row)
|
||||
|
||||
async def _find_my_results(self):
|
||||
logging.info('find_my_results')
|
||||
return await failable(
|
||||
return result
|
||||
|
||||
async def _find_my_results(self) -> list[WorkerResultRow]:
|
||||
logging.debug('find_my_results')
|
||||
return [
|
||||
WorkerResultRow(**row)
|
||||
for row in (
|
||||
await failable(
|
||||
partial(
|
||||
self.cleos.aget_table,
|
||||
self.contract, self.contract, 'results',
|
||||
|
@ -162,30 +169,38 @@ class SkynetGPUConnector:
|
|||
upper_bound=self.account
|
||||
)
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
async def _get_workers(self) -> list[dict]:
|
||||
logging.info('get_workers')
|
||||
return await failable(
|
||||
async def _get_workers(self) -> list[WorkerRow]:
|
||||
logging.debug('get_workers')
|
||||
worker_rows = await failable(
|
||||
partial(
|
||||
self.cleos.aget_table,
|
||||
self.contract, self.contract, 'workers'
|
||||
)
|
||||
)
|
||||
result = []
|
||||
for row in worker_rows:
|
||||
row['cards'] = [CardStruct(**card) for card in row['cards']]
|
||||
result.append(WorkerRow(**row))
|
||||
|
||||
async def get_global_config(self):
|
||||
logging.info('get_global_config')
|
||||
return result
|
||||
|
||||
async def get_global_config(self) -> ConfigRow | None:
|
||||
logging.debug('get_global_config')
|
||||
rows = await failable(
|
||||
partial(
|
||||
self.cleos.aget_table,
|
||||
'telos.gpu', 'telos.gpu', 'config'))
|
||||
self.contract, self.contract, 'config'))
|
||||
|
||||
if rows:
|
||||
return rows[0]
|
||||
return ConfigRow(**rows[0])
|
||||
else:
|
||||
return None
|
||||
|
||||
async def get_worker_balance(self):
|
||||
logging.info('get_worker_balance')
|
||||
async def get_worker_balance(self) -> str | None:
|
||||
logging.debug('get_worker_balance')
|
||||
rows = await failable(
|
||||
partial(
|
||||
self.cleos.aget_table,
|
||||
|
@ -201,14 +216,14 @@ class SkynetGPUConnector:
|
|||
else:
|
||||
return None
|
||||
|
||||
def get_on_chain_worker_info(self, worker: str):
|
||||
def get_on_chain_worker_info(self, worker: str) -> WorkerRow | None:
|
||||
return next((
|
||||
w for w in self.get_workers()
|
||||
if w['account'] == w
|
||||
if w.account == worker
|
||||
), None)
|
||||
|
||||
async def register_worker(self):
|
||||
logging.info(f'registering worker')
|
||||
logging.debug(f'registering worker')
|
||||
return await failable(
|
||||
partial(
|
||||
self.cleos.a_push_action,
|
||||
|
@ -217,7 +232,9 @@ class SkynetGPUConnector:
|
|||
{
|
||||
'account': self.account,
|
||||
'url': self.worker_url
|
||||
}
|
||||
},
|
||||
self.account, self.key,
|
||||
permission=self.permission
|
||||
)
|
||||
)
|
||||
|
||||
|
@ -230,7 +247,7 @@ class SkynetGPUConnector:
|
|||
extra: str,
|
||||
is_online: bool
|
||||
):
|
||||
logging.info(f'adding card: {card_name} {version}')
|
||||
logging.debug(f'adding card: {card_name} {version}')
|
||||
return await failable(
|
||||
partial(
|
||||
self.cleos.a_push_action,
|
||||
|
@ -244,34 +261,40 @@ class SkynetGPUConnector:
|
|||
'mp_count': mp_count,
|
||||
'extra': extra,
|
||||
'is_online': is_online
|
||||
}
|
||||
},
|
||||
self.account, self.key,
|
||||
permission=self.permission
|
||||
)
|
||||
)
|
||||
|
||||
async def toggle_card(self, index: int):
|
||||
logging.info(f'toggle card {index}')
|
||||
logging.debug(f'toggle card {index}')
|
||||
return await failable(
|
||||
partial(
|
||||
self.cleos.a_push_action,
|
||||
self.contract,
|
||||
'togglecard',
|
||||
{'worker': self.account, 'index': index}
|
||||
{'worker': self.account, 'index': index},
|
||||
self.account, self.key,
|
||||
permission=self.permission
|
||||
)
|
||||
)
|
||||
|
||||
async def flush_cards(self):
|
||||
logging.info('flushing cards...')
|
||||
logging.debug('flushing cards...')
|
||||
return await failable(
|
||||
partial(
|
||||
self.cleos.a_push_action,
|
||||
self.contract,
|
||||
'flushcards',
|
||||
{'worker': self.account}
|
||||
{'worker': self.account},
|
||||
self.account, self.key,
|
||||
permission=self.permission
|
||||
)
|
||||
)
|
||||
|
||||
async def begin_work(self, request_id: int):
|
||||
logging.info('begin_work')
|
||||
logging.debug('begin_work')
|
||||
return await failable(
|
||||
partial(
|
||||
self.cleos.a_push_action,
|
||||
|
@ -288,7 +311,7 @@ class SkynetGPUConnector:
|
|||
)
|
||||
|
||||
async def cancel_work(self, request_id: int, reason: str):
|
||||
logging.info('cancel_work')
|
||||
logging.debug('cancel_work')
|
||||
return await failable(
|
||||
partial(
|
||||
self.cleos.a_push_action,
|
||||
|
@ -305,7 +328,7 @@ class SkynetGPUConnector:
|
|||
)
|
||||
|
||||
async def maybe_withdraw_all(self):
|
||||
logging.info('maybe_withdraw_all')
|
||||
logging.debug('maybe_withdraw_all')
|
||||
balance = await self.get_worker_balance()
|
||||
if not balance:
|
||||
return
|
||||
|
@ -330,10 +353,9 @@ class SkynetGPUConnector:
|
|||
self,
|
||||
request_id: int,
|
||||
request_hash: str,
|
||||
result_hash: str,
|
||||
ipfs_hash: str
|
||||
outputs: list[str]
|
||||
):
|
||||
logging.info('submit_work')
|
||||
logging.debug('submit_work')
|
||||
return await failable(
|
||||
partial(
|
||||
self.cleos.a_push_action,
|
||||
|
@ -343,8 +365,7 @@ class SkynetGPUConnector:
|
|||
'worker': self.account,
|
||||
'request_id': request_id,
|
||||
'request_hash': Checksum256(request_hash),
|
||||
'result_hash': Checksum256(result_hash),
|
||||
'ipfs_hash': ipfs_hash
|
||||
'outputs': ListArgument(outputs, 'string')
|
||||
},
|
||||
self.account, self.key,
|
||||
permission=self.permission
|
||||
|
@ -352,19 +373,9 @@ class SkynetGPUConnector:
|
|||
)
|
||||
|
||||
# IPFS helpers
|
||||
async def publish_on_ipfs(self, raw, typ: str = 'png'):
|
||||
async def publish_on_ipfs(self, outputs: list[tuple[bytes, str]]) -> list[str]:
|
||||
Path('ipfs-staging').mkdir(exist_ok=True)
|
||||
logging.info('publish_on_ipfs')
|
||||
|
||||
target_file = ''
|
||||
match typ:
|
||||
case 'png':
|
||||
raw: Image
|
||||
target_file = 'ipfs-staging/image.png'
|
||||
raw.save(target_file)
|
||||
|
||||
case _:
|
||||
raise ValueError(f'Unsupported output type: {typ}')
|
||||
logging.debug('publish_on_ipfs')
|
||||
|
||||
if self.ipfs_gateway_url:
|
||||
# check peer connections, reconnect to skynet gateway if not
|
||||
|
@ -373,12 +384,32 @@ class SkynetGPUConnector:
|
|||
if gateway_id not in [p['Peer'] for p in peers]:
|
||||
await self.ipfs_client.connect(self.ipfs_gateway_url)
|
||||
|
||||
file_info = await self.ipfs_client.add(Path(target_file))
|
||||
ipfs_outs = []
|
||||
async def _publish_one(target: str):
|
||||
file_info = await self.ipfs_client.add(Path(target))
|
||||
file_cid = file_info['Hash']
|
||||
|
||||
await self.ipfs_client.pin(file_cid)
|
||||
logging.debug(f'published {file_cid}.')
|
||||
|
||||
return file_cid
|
||||
ipfs_outs.append(file_cid)
|
||||
|
||||
async with trio.open_nursery() as n:
|
||||
i = 0
|
||||
for output, otype in outputs:
|
||||
target_file = ''
|
||||
match otype:
|
||||
case 'png':
|
||||
target_file = f'ipfs-staging/image-{i}.png'
|
||||
output.save(target_file)
|
||||
n.start_soon(_publish_one, target_file)
|
||||
|
||||
case _:
|
||||
raise ValueError(f'Unsupported output type: {otype}')
|
||||
|
||||
i += 1
|
||||
|
||||
return ipfs_outs
|
||||
|
||||
async def get_input_data(self, ipfs_hash: str) -> tuple[bytes, str]:
|
||||
results = {}
|
||||
|
@ -389,7 +420,7 @@ class SkynetGPUConnector:
|
|||
async with trio.open_nursery() as n:
|
||||
async def get_and_set_results(link: str):
|
||||
res = await get_ipfs_file(link, timeout=1)
|
||||
logging.info(f'got response from {link}')
|
||||
logging.debug(f'got response from {link}')
|
||||
if not res or res.status_code != 200:
|
||||
logging.warning(f'couldn\'t get ipfs binary data at {link}!')
|
||||
|
||||
|
|
|
@ -0,0 +1,83 @@
|
|||
from msgspec import Struct
|
||||
|
||||
from skynet.utils import hash_dict
|
||||
|
||||
|
||||
class ModelParams(Struct):
|
||||
name: str
|
||||
pipe_fqn: str
|
||||
setup: dict
|
||||
|
||||
def get_uid(self) -> str:
|
||||
return f'{self.pipe_fqn}:{self.name}-{hash_dict(self.setup)}'
|
||||
|
||||
|
||||
class ParamsStruct(Struct):
|
||||
model: ModelParams
|
||||
runtime_args: list
|
||||
runtime_kwargs: dict
|
||||
|
||||
|
||||
class ComputeRequest(Struct):
|
||||
method: str
|
||||
params: ParamsStruct
|
||||
|
||||
|
||||
# telos.gpu smart contract types
|
||||
|
||||
TimestampSec = int
|
||||
|
||||
|
||||
class ConfigRow(Struct):
|
||||
token_contract: str
|
||||
token_symbol: str
|
||||
nonce: int
|
||||
|
||||
|
||||
class AccountRow(Struct):
|
||||
user: str
|
||||
balance: str
|
||||
|
||||
|
||||
class CardStruct(Struct):
|
||||
card_name: str
|
||||
version: str
|
||||
total_memory: int
|
||||
mp_count: int
|
||||
extra: str
|
||||
is_online: bool
|
||||
|
||||
|
||||
class WorkerRow(Struct):
|
||||
account: str
|
||||
joined: TimestampSec
|
||||
left: TimestampSec
|
||||
url: str
|
||||
cards: list[CardStruct]
|
||||
|
||||
|
||||
class WorkerStatusStruct(Struct):
|
||||
worker: str
|
||||
status: str
|
||||
started: TimestampSec
|
||||
|
||||
|
||||
class RequestRow(Struct):
|
||||
nonce: int
|
||||
user: str
|
||||
reward: str
|
||||
min_verification: int
|
||||
body: str
|
||||
inputs: list[str]
|
||||
status: list[WorkerStatusStruct]
|
||||
timestamp: TimestampSec
|
||||
|
||||
|
||||
class WorkerResultRow(Struct):
|
||||
id: int
|
||||
request_id: int
|
||||
user: str
|
||||
worker: str
|
||||
result_hash: str
|
||||
ipfs_hash: str
|
||||
submited: TimestampSec
|
240
skynet/utils.py
240
skynet/utils.py
|
@ -1,238 +1,14 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
import io
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import random
|
||||
import logging
|
||||
|
||||
from typing import Optional
|
||||
from pathlib import Path
|
||||
import asks
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from PIL import Image
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from diffusers import (
|
||||
DiffusionPipeline,
|
||||
EulerAncestralDiscreteScheduler
|
||||
)
|
||||
from realesrgan import RealESRGANer
|
||||
from huggingface_hub import login
|
||||
import trio
|
||||
|
||||
from .constants import MODELS
|
||||
import json
|
||||
import hashlib
|
||||
|
||||
|
||||
def time_ms():
|
||||
def hash_dict(d) -> str:
|
||||
d_str = json.dumps(d, sort_keys=True)
|
||||
return hashlib.sha256(d_str.encode('utf-8')).hexdigest()
|
||||
|
||||
|
||||
def time_ms() -> int:
|
||||
return int(time.time() * 1000)
|
||||
|
||||
|
||||
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
|
||||
# return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||
return Image.fromarray(img)
|
||||
|
||||
|
||||
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
|
||||
# return cv2.cvtColor(numpy.array(img), cv2.COLOR_RGB2BGR)
|
||||
return np.asarray(img)
|
||||
|
||||
|
||||
def convert_from_bytes_to_img(raw: bytes) -> Image:
|
||||
return Image.open(io.BytesIO(raw))
|
||||
|
||||
|
||||
def convert_from_img_to_bytes(image: Image, fmt='PNG') -> bytes:
|
||||
byte_arr = io.BytesIO()
|
||||
image.save(byte_arr, format=fmt)
|
||||
return byte_arr.getvalue()
|
||||
|
||||
|
||||
def crop_image(image: Image, max_w: int, max_h: int) -> Image:
|
||||
w, h = image.size
|
||||
if w > max_w or h > max_h:
|
||||
image.thumbnail((max_w, max_h))
|
||||
|
||||
return image.convert('RGB')
|
||||
|
||||
|
||||
def pipeline_for(
|
||||
model: str,
|
||||
mem_fraction: float = 1.0,
|
||||
image: bool = False,
|
||||
cache_dir: str | None = None
|
||||
) -> DiffusionPipeline:
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
torch.cuda.empty_cache()
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# full determinism
|
||||
# https://huggingface.co/docs/diffusers/using-diffusers/reproducibility#deterministic-algorithms
|
||||
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
|
||||
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.use_deterministic_algorithms(True)
|
||||
|
||||
model_info = MODELS[model]
|
||||
|
||||
req_mem = model_info['mem']
|
||||
mem_gb = torch.cuda.mem_get_info()[1] / (10**9)
|
||||
mem_gb *= mem_fraction
|
||||
over_mem = mem_gb < req_mem
|
||||
if over_mem:
|
||||
logging.warn(f'model requires {req_mem} but card has {mem_gb}, model will run slower..')
|
||||
|
||||
shortname = model_info['short']
|
||||
|
||||
params = {
|
||||
'safety_checker': None,
|
||||
'torch_dtype': torch.float16,
|
||||
'cache_dir': cache_dir,
|
||||
'variant': 'fp16'
|
||||
}
|
||||
|
||||
match shortname:
|
||||
case 'stable':
|
||||
params['revision'] = 'fp16'
|
||||
|
||||
torch.cuda.set_per_process_memory_fraction(mem_fraction)
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
model, **params)
|
||||
|
||||
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
||||
pipe.scheduler.config)
|
||||
|
||||
pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
if over_mem:
|
||||
if not image:
|
||||
pipe.enable_vae_slicing()
|
||||
pipe.enable_vae_tiling()
|
||||
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
else:
|
||||
if sys.version_info[1] < 11:
|
||||
# torch.compile only supported on python < 3.11
|
||||
pipe.unet = torch.compile(
|
||||
pipe.unet, mode='reduce-overhead', fullgraph=True)
|
||||
|
||||
pipe = pipe.to('cuda')
|
||||
|
||||
return pipe
|
||||
|
||||
|
||||
def txt2img(
|
||||
hf_token: str,
|
||||
model: str = 'prompthero/openjourney',
|
||||
prompt: str = 'a red old tractor in a sunny wheat field',
|
||||
output: str = 'output.png',
|
||||
width: int = 512, height: int = 512,
|
||||
guidance: float = 10,
|
||||
steps: int = 28,
|
||||
seed: Optional[int] = None
|
||||
):
|
||||
login(token=hf_token)
|
||||
pipe = pipeline_for(model)
|
||||
|
||||
seed = seed if seed else random.randint(0, 2 ** 64)
|
||||
prompt = prompt
|
||||
image = pipe(
|
||||
prompt,
|
||||
width=width,
|
||||
height=height,
|
||||
guidance_scale=guidance, num_inference_steps=steps,
|
||||
generator=torch.Generator("cuda").manual_seed(seed)
|
||||
).images[0]
|
||||
|
||||
image.save(output)
|
||||
|
||||
|
||||
def img2img(
|
||||
hf_token: str,
|
||||
model: str = 'prompthero/openjourney',
|
||||
prompt: str = 'a red old tractor in a sunny wheat field',
|
||||
img_path: str = 'input.png',
|
||||
output: str = 'output.png',
|
||||
strength: float = 1.0,
|
||||
guidance: float = 10,
|
||||
steps: int = 28,
|
||||
seed: Optional[int] = None
|
||||
):
|
||||
login(token=hf_token)
|
||||
pipe = pipeline_for(model, image=True)
|
||||
|
||||
with open(img_path, 'rb') as img_file:
|
||||
input_img = convert_from_bytes_and_crop(img_file.read(), 512, 512)
|
||||
|
||||
seed = seed if seed else random.randint(0, 2 ** 64)
|
||||
prompt = prompt
|
||||
image = pipe(
|
||||
prompt,
|
||||
image=input_img,
|
||||
strength=strength,
|
||||
guidance_scale=guidance, num_inference_steps=steps,
|
||||
generator=torch.Generator("cuda").manual_seed(seed)
|
||||
).images[0]
|
||||
|
||||
image.save(output)
|
||||
|
||||
|
||||
def init_upscaler(model_path: str = 'weights/RealESRGAN_x4plus.pth'):
|
||||
return RealESRGANer(
|
||||
scale=4,
|
||||
model_path=model_path,
|
||||
dni_weight=None,
|
||||
model=RRDBNet(
|
||||
num_in_ch=3,
|
||||
num_out_ch=3,
|
||||
num_feat=64,
|
||||
num_block=23,
|
||||
num_grow_ch=32,
|
||||
scale=4
|
||||
),
|
||||
half=True
|
||||
)
|
||||
|
||||
def upscale(
|
||||
img_path: str = 'input.png',
|
||||
output: str = 'output.png',
|
||||
model_path: str = 'weights/RealESRGAN_x4plus.pth'
|
||||
):
|
||||
input_img = Image.open(img_path).convert('RGB')
|
||||
|
||||
upscaler = init_upscaler(model_path=model_path)
|
||||
|
||||
up_img, _ = upscaler.enhance(
|
||||
convert_from_image_to_cv2(input_img), outscale=4)
|
||||
|
||||
image = convert_from_cv2_to_image(up_img)
|
||||
image.save(output)
|
||||
|
||||
|
||||
async def download_upscaler():
|
||||
print('downloading upscaler...')
|
||||
weights_path = Path('weights')
|
||||
weights_path.mkdir(exist_ok=True)
|
||||
upscaler_url = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
|
||||
save_path = weights_path / 'RealESRGAN_x4plus.pth'
|
||||
response = await asks.get(upscaler_url)
|
||||
with open(save_path, 'wb') as f:
|
||||
f.write(response.content)
|
||||
print('done')
|
||||
|
||||
def download_all_models(hf_token: str, hf_home: str):
|
||||
assert torch.cuda.is_available()
|
||||
|
||||
trio.run(download_upscaler)
|
||||
|
||||
login(token=hf_token)
|
||||
for model in MODELS:
|
||||
print(f'DOWNLOADING {model.upper()}')
|
||||
pipeline_for(model, cache_dir=hf_home)
|
||||
|
|
Loading…
Reference in New Issue