piker/piker/ui/view_mode.py

829 lines
28 KiB
Python

# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Overlay (aka multi-chart) UX machinery.
'''
from __future__ import annotations
from math import (
isinf,
)
from typing import (
Any,
Literal,
TYPE_CHECKING,
)
import numpy as np
import pyqtgraph as pg
from ..data.types import Struct
from ..data._pathops import slice_from_time
from ..log import get_logger
from .._profile import Profiler
if TYPE_CHECKING:
from ._chart import ChartPlotWidget
from ._dataviz import Viz
from ._interaction import ChartView
log = get_logger(__name__)
class OverlayT(Struct):
'''
An overlay co-domain range transformer.
Used to translate and apply a range from one y-range
to another based on a returns logarithm:
R(ymn, ymx, yref) = (ymx - yref)/yref
which gives the log-scale multiplier, and
ymx_t = yref * (1 + R)
which gives the inverse to translate to the same value
in the target co-domain.
'''
viz: Viz | None = None
start_t: float | None = None
# % "range" computed from some ref value to the mn/mx
rng: float | None = None
in_view: np.ndarray | None = None
# pinned-minor curve modified mn and max for the major dispersion
# curve due to one series being shorter and the pin + scaling from
# that pin point causing the original range to have to increase.
y_val: float | None = None
def apply_rng(
self,
y_ref: float, # reference value for dispersion metric
) -> float:
return y_ref * (1 + self.rng)
def scalars_from_index(
self,
xref: float,
) -> tuple[float, float]:
pass
# y_ref: float, # reference value for dispersion metric
# mn: float, # min y in target log-lin range
# mx: float, # max y in target log-lin range
# offset: float, # y-offset to start log-scaling from
# ) -> tuple[float, float]:
# r_up = (mx - y_ref) / y_ref
# r_down = (mn - y_ref) / y_ref
# ymn = offset * (1 + r_down)
# ymx = offset * (1 + r_up)
# return ymn, ymx
def intersect_from_longer(
start_t_first: float,
in_view_first: np.ndarray,
start_t_second: float,
in_view_second: np.ndarray,
) -> np.ndarray:
tdiff = start_t_first - start_t_second
if tdiff == 0:
return False
i: int = 0
# first time series has an "earlier" first time stamp then the 2nd.
# aka 1st is "shorter" then the 2nd.
if tdiff > 0:
longer = in_view_second
find_t = start_t_first
i = 1
# second time series has an "earlier" first time stamp then the 1st.
# aka 2nd is "shorter" then the 1st.
elif tdiff < 0:
longer = in_view_first
find_t = start_t_second
i = 0
slc = slice_from_time(
arr=longer,
start_t=find_t,
stop_t=find_t,
)
return (
longer[slc.start],
find_t,
i,
)
def _maybe_calc_yrange(
viz: Viz,
yrange_kwargs: dict[Viz, dict[str, Any]],
profiler: Profiler,
chart_name: str,
) -> tuple[
slice,
dict,
] | None:
if not viz.render:
return
# pass in no array which will read and render from the last
# passed array (normally provided by the display loop.)
in_view, i_read_range, _ = viz.update_graphics()
if not in_view:
return
profiler(f'{viz.name}@{chart_name} `Viz.update_graphics()`')
# check if explicit yrange (kwargs) was passed in by the caller
yrange_kwargs = yrange_kwargs.get(viz) if yrange_kwargs else None
if yrange_kwargs is not None:
read_slc = slice(*i_read_range)
else:
out = viz.maxmin(i_read_range=i_read_range)
if out is None:
log.warning(f'No yrange provided for {viz.name}!?')
return
(
_, # ixrng,
read_slc,
yrange
) = out
profiler(f'{viz.name}@{chart_name} `Viz.maxmin()`')
yrange_kwargs = {'yrange': yrange}
return (
read_slc,
yrange_kwargs,
)
def overlay_viewlists(
active_viz: Viz,
plots: dict[str, ChartPlotWidget],
profiler: Profiler,
# public config ctls
do_linked_charts: bool = True,
do_overlay_scaling: bool = True,
yrange_kwargs: dict[
str,
tuple[float, float],
] | None = None,
overlay_technique: Literal[
'loglin_ref_to_curve',
'loglin_ref_to_first',
'mxmn',
'solo',
] = 'loglin_ref_to_curve',
# internal debug
debug_print: bool = False,
) -> None:
'''
Calculate and apply y-domain (axis y-range) multi-curve overlay adjustments
a set of ``plots`` based on the requested ``overlay_technique``.
'''
chart_name: str
chart: ChartPlotWidget
for chart_name, chart in plots.items():
# Common `PlotItem` maxmin table; presumes that some path
# graphics (and thus their backing data sets) are in the
# same co-domain and view box (since the were added
# a separate graphics objects to a common plot) and thus can
# be sorted as one set per plot.
mxmns_by_common_pi: dict[
pg.PlotItem,
tuple[float, float],
] = {}
# proportional group auto-scaling per overlay set.
# -> loop through overlays on each multi-chart widget
# and scale all y-ranges based on autoscale config.
# -> for any "group" overlay we want to dispersion normalize
# and scale minor charts onto the major chart: the chart
# with the most dispersion in the set.
# collect certain flows have grapics objects **in seperate
# plots/viewboxes** into groups and do a common calc to
# determine auto-ranging input for `._set_yrange()`.
# this is primarly used for our so called "log-linearized
# multi-plot" overlay technique.
overlay_table: dict[
float,
tuple[
ChartView,
Viz,
float, # y start
float, # y min
float, # y max
float, # y median
slice, # in-view array slice
np.ndarray, # in-view array
float, # returns up scalar
float, # return down scalar
],
] = {}
# ONLY auto-yrange the viz mapped to THIS view box
if not do_overlay_scaling:
viz = active_viz
if debug_print:
print(f'ONLY ranging THIS viz: {viz.name}')
out = _maybe_calc_yrange(
viz,
yrange_kwargs,
profiler,
chart_name,
)
if out is None:
continue
read_slc, yrange_kwargs = out
viz.plot.vb._set_yrange(**yrange_kwargs)
profiler(f'{viz.name}@{chart_name} single curve yrange')
# don't iterate overlays, just move to next chart
continue
# create a group overlay log-linearized y-range transform to
# track and eventually inverse transform all overlay curves
# to a common target max dispersion range.
dnt = OverlayT()
upt = OverlayT()
if debug_print:
print(
f'BEGIN UX GRAPHICS CYCLE: @{chart_name}\n'
+
'#'*100
+
'\n'
)
for name, viz in chart._vizs.items():
out = _maybe_calc_yrange(
viz,
yrange_kwargs,
profiler,
chart_name,
)
if out is None:
continue
read_slc, yrange_kwargs = out
yrange = yrange_kwargs['yrange']
pi = viz.plot
# handle multiple graphics-objs per viewbox cases
mxmn = mxmns_by_common_pi.get(pi)
if mxmn:
yrange = mxmns_by_common_pi[pi] = (
min(yrange[0], mxmn[0]),
max(yrange[1], mxmn[1]),
)
else:
mxmns_by_common_pi[pi] = yrange
profiler(f'{viz.name}@{chart_name} common pi sort')
# non-overlay group case
if (
not viz.is_ohlc
or overlay_technique == 'solo'
):
pi.vb._set_yrange(yrange=yrange)
profiler(
f'{viz.name}@{chart_name} simple std `._set_yrange()`'
)
continue
# handle overlay log-linearized group scaling cases
# TODO: a better predicate here, likely something
# to do with overlays and their settings..
# TODO: we probably eventually might want some other
# charts besides OHLC?
else:
ymn, ymx = yrange
# determine start datum in view
in_view = viz.vs.in_view
if not in_view.size:
log.warning(f'{viz.name} not in view?')
continue
row_start = in_view[0]
if viz.is_ohlc:
y_ref = row_start['open']
else:
y_ref = row_start[viz.name]
profiler(f'{viz.name}@{chart_name} MINOR curve median')
key = 'open' if viz.is_ohlc else viz.name
start_t = row_start['time']
# TODO: call `Viz.disp_from_range()` here!
# disp = viz.disp_from_range(yref=y_ref)
# if disp is None:
# print(f'{viz.name}: WTF NO DISP')
# continue
# returns scalars
r_up = (ymx - y_ref) / y_ref
r_down = (ymn - y_ref) / y_ref
msg = (
f'### {viz.name}@{chart_name} ###\n'
f'y_ref: {y_ref}\n'
f'down disp: {r_down}\n'
f'up disp: {r_up}\n'
)
profiler(msg)
if debug_print:
print(msg)
# track the "major" curve as the curve with most
# dispersion.
if (
dnt.rng is None
or (
r_down < dnt.rng
and r_down < 0
)
):
dnt.viz = viz
dnt.rng = r_down
dnt.in_view = in_view
dnt.start_t = in_view[0]['time']
dnt.y_val = ymn
msg = f'NEW DOWN: {viz.name}@{chart_name} r:{r_down}\n'
profiler(msg)
if debug_print:
print(msg)
else:
# minor in the down swing range so check that if
# we apply the current rng to the minor that it
# doesn't go outside the current range for the major
# otherwise we recompute the minor's range (when
# adjusted for it's intersect point to be the new
# major's range.
intersect = intersect_from_longer(
dnt.start_t,
dnt.in_view,
start_t,
in_view,
)
profiler(f'{viz.name}@{chart_name} intersect by t')
if intersect:
longer_in_view, _t, i = intersect
scaled_mn = dnt.apply_rng(y_ref)
if scaled_mn > ymn:
# after major curve scaling we detected
# the minor curve is still out of range
# so we need to adjust the major's range
# to include the new composed range.
y_maj_ref = longer_in_view[key]
new_major_ymn = y_maj_ref * (1 + r_down)
# rewrite the major range to the new
# minor-pinned-to-major range and mark
# the transform as "virtual".
msg = (
f'EXPAND DOWN bc {viz.name}@{chart_name}\n'
f'y_start epoch time @ {_t}:\n'
f'y_maj_ref @ {_t}: {y_maj_ref}\n'
f'R: {dnt.rng} -> {r_down}\n'
f'MN: {dnt.y_val} -> {new_major_ymn}\n'
)
dnt.rng = r_down
dnt.y_val = new_major_ymn
profiler(msg)
if debug_print:
print(msg)
# is the current up `OverlayT` not yet defined or
# the current `r_up` greater then the previous max.
if (
upt.rng is None
or (
r_up > upt.rng
and r_up > 0
)
):
upt.rng = r_up
upt.viz = viz
upt.in_view = in_view
upt.start_t = in_view[0]['time']
upt.y_val = ymx
msg = f'NEW UP: {viz.name}@{chart_name} r:{r_up}\n'
profiler(msg)
if debug_print:
print(msg)
else:
intersect = intersect_from_longer(
upt.start_t,
upt.in_view,
start_t,
in_view,
)
profiler(f'{viz.name}@{chart_name} intersect by t')
if intersect:
longer_in_view, _t, i = intersect
# after major curve scaling we detect if
# the minor curve is still out of range
# so we need to adjust the major's range
# to include the new composed range.
scaled_mx = upt.apply_rng(y_ref)
if scaled_mx < ymx:
y_maj_ref = longer_in_view[key]
new_major_ymx = y_maj_ref * (1 + r_up)
# rewrite the major range to the new
# minor-pinned-to-major range and mark
# the transform as "virtual".
msg = (
f'EXPAND UP bc {viz.name}@{chart_name}:\n'
f'y_maj_ref @ {_t}: {y_maj_ref}\n'
f'R: {upt.rng} -> {r_up}\n'
f'MX: {upt.y_val} -> {new_major_ymx}\n'
)
upt.rng = r_up
upt.y_val = new_major_ymx
profiler(msg)
print(msg)
disp = r_up - r_down
# register curves by a "full" dispersion metric for
# later sort order in the overlay (technique
# ) application loop below.
overlay_table[disp] = (
viz.plot.vb,
viz,
y_ref,
ymn,
ymx,
read_slc,
in_view,
r_up,
r_down,
)
profiler(f'{viz.name}@{chart_name} yrange scan complete')
# NOTE: if no there were no overlay charts
# detected/collected (could be either no group detected or
# chart with a single symbol, thus a single viz/overlay)
# then we ONLY set the mone chart's (viz) yrange and short
# circuit to the next chart in the linked charts loop. IOW
# there's no reason to go through the overlay dispersion
# scaling in the next loop below when only one curve is
# detected.
if (
not mxmns_by_common_pi
and len(overlay_table) < 2
):
if debug_print:
print(f'ONLY ranging major: {viz.name}')
out = _maybe_calc_yrange(
viz,
yrange_kwargs,
profiler,
chart_name,
)
if out is None:
continue
read_slc, yrange_kwargs = out
viz.plot.vb._set_yrange(**yrange_kwargs)
profiler(f'{viz.name}@{chart_name} single curve yrange')
# move to next chart in linked set since
# no overlay transforming is needed.
continue
elif (
mxmns_by_common_pi
# and not major_sigma_viz
and not overlay_table
):
# move to next chart in linked set since
# no overlay transforming is needed.
continue
msg = (
f'`Viz` curve first pass complete\n'
f'overlay_table: {overlay_table.keys()}\n'
)
profiler(msg)
if debug_print:
print(msg)
# if a minor curves scaling brings it "outside" the range of
# the major curve (in major curve co-domain terms) then we
# need to rescale the major to also include this range. The
# below placeholder denotes when this occurs.
# group_mxmn: None | tuple[float, float] = None
r_up_mx: float
r_dn_mn: float
mx_disp = max(overlay_table)
mx_entry = overlay_table[mx_disp]
(
mx_view, # viewbox
mx_viz, # viz
_, # y_ref
mx_ymn,
mx_ymx,
_, # read_slc
_, # in_view array
r_up_mx,
r_dn_mn,
) = mx_entry
mx_disp = r_up_mx - r_dn_mn
scaled: dict[
float,
tuple[Viz, float, float, float, float]
] = {}
# conduct "log-linearized multi-plot" scalings for all groups
# -> iterate all curves Ci in dispersion-measure sorted order
# going from smallest swing to largest.
for full_disp in reversed(overlay_table):
(
view,
viz,
y_start,
y_min,
y_max,
read_slc,
minor_in_view,
r_up,
r_dn,
) = overlay_table[full_disp]
key = 'open' if viz.is_ohlc else viz.name
if (
isinf(ymx)
or isinf(ymn)
):
log.warning(
f'BAD ymx/ymn: {(ymn, ymx)}'
)
continue
xref = minor_in_view[0]['time']
match overlay_technique:
# Pin this curve to the "major dispersion" (or other
# target) curve:
#
# - find the intersect datum and then scaling according
# to the returns log-lin tranform 'at that intersect
# reference data'.
# - if the pinning/log-returns-based transform scaling
# results in this minor/pinned curve being out of
# view, adjust the scalars to match **this** curve's
# y-range to stay in view and then backpropagate that
# scaling to all curves, including the major-target,
# which were previously scaled before.
case 'loglin_ref_to_curve':
if viz is not mx_viz:
# calculate y-range scalars from the earliest
# "intersect" datum with the target-major
# (dispersion) curve so as to "pin" the curves
# in the y-domain at that spot.
(
i_start,
y_ref_major,
r_major_up_here,
r_major_down_here,
) = mx_viz.scalars_from_index(xref)
ymn = y_start * (1 + r_major_down_here)
# if this curve's y-range is detected as **not
# being in view** after applying the
# target-major's transform, adjust the
# target-major curve's range to (log-linearly)
# include it (the extra missing range) by
# adjusting the y-mxmn to this new y-range and
# applying the inverse transform of the minor
# back on the target-major (and possibly any
# other previously-scaled-to-target/major, minor
# curves).
if ymn >= y_min:
ymn = y_min
r_dn_minor = (ymn - y_start) / y_start
# rescale major curve's y-max to include new
# range increase required by **this minor**.
mx_ymn = y_ref_major * (1 + r_dn_minor)
mx_viz.vs.yrange = mx_ymn, mx_viz.vs.yrange[1]
# rescale all already scaled curves to new
# increased range for this side as
# determined by ``y_min`` staying in view;
# re-set the `scaled: dict` entry to
# ensure that this minor curve will be
# entirely in view.
# TODO: re updating already-scaled minor curves
# - is there a faster way to do this by
# mutating state on some object instead?
for _view in scaled:
_viz, _yref, _ymn, _ymx, _xref = scaled[_view]
(
_,
_,
_,
r_major_down_here,
) = mx_viz.scalars_from_index(_xref)
new_ymn = _yref * (1 + r_major_down_here)
scaled[_view] = (
_viz, _yref, new_ymn, _ymx, _xref)
if debug_print:
print(
f'RESCALE {_viz.name} ymn -> {new_ymn}'
f'RESCALE MAJ ymn -> {mx_ymn}'
)
ymx = y_start * (1 + r_major_up_here)
# same as above but for minor being out-of-range
# on the upside.
if ymx <= y_max:
ymx = y_max
r_up_minor = (ymx - y_start) / y_start
mx_ymx = y_ref_major * (1 + r_up_minor)
mx_viz.vs.yrange = mx_viz.vs.yrange[0], mx_ymx
for _view in scaled:
_viz, _yref, _ymn, _ymx, _xref = scaled[_view]
(
_,
_,
r_major_up_here,
_,
) = mx_viz.scalars_from_index(_xref)
new_ymx = _yref * (1 + r_major_up_here)
scaled[_view] = (
_viz, _yref, _ymn, new_ymx, _xref)
if debug_print:
print(
f'RESCALE {_viz.name} ymn -> {new_ymx}'
)
if debug_print:
print(
f'Minor SCALARS {viz.name}:\n'
f'xref: {xref}\n'
f'dn: {r_major_down_here}\n'
f'up: {r_major_up_here}\n'
)
# register all overlays for a final pass where we
# apply all pinned-curve y-range transform scalings.
scaled[view] = (viz, y_start, ymn, ymx, xref)
# target/dispersion MAJOR case
else:
if debug_print:
print(
f'MAJOR SCALARS {viz.name}:\n'
f'dn: {r_dn_mn}\n'
f'up: {r_up_mx}\n'
)
# target/major curve's mxmn may have been
# reset by minor overlay steps above.
ymn = mx_ymn
ymx = mx_ymx
# Pin all curves by their first datum in view to all
# others such that each curve's earliest datum provides the
# reference point for returns vs. every other curve in
# view.
case 'loglin_ref_to_first':
ymn = dnt.apply_rng(y_start)
ymx = upt.apply_rng(y_start)
view._set_yrange(yrange=(ymn, ymx))
# Do not pin curves by log-linearizing their y-ranges,
# instead allow each curve to fully scale to the
# time-series in view's min and max y-values.
case 'mxmn':
view._set_yrange(yrange=(y_min, y_max))
case _:
raise RuntimeError(
f'overlay_technique is invalid `{overlay_technique}'
)
if scaled:
for (
view,
(viz, yref, ymn, ymx, xref)
) in scaled.items():
# NOTE XXX: we have to set each curve's range once (and
# ONLY ONCE) here since we're doing this entire routine
# inside of a single render cycle (and apparently calling
# `ViewBox.setYRange()` multiple times within one only takes
# the first call as serious...) XD
view._set_yrange(yrange=(ymn, ymx))
profiler(f'{viz.name}@{chart_name} log-SCALE minor')
if debug_print:
print(
'------------------------------\n'
f'LOGLIN SCALE CYCLE: {viz.name}@{chart_name}\n'
f'UP MAJOR C: {upt.viz.name} with disp: {upt.rng}\n'
f'DOWN MAJOR C: {dnt.viz.name} with disp: {dnt.rng}\n'
f'SIGMA MAJOR C: {mx_viz.name} -> {mx_disp}\n'
# f'disp: {disp}\n'
f'xref for MINOR: {xref}\n'
f'y_start: {y_start}\n'
f'y min: {y_min}\n'
f'y max: {y_max}\n'
f'T scaled ymn: {ymn}\n'
f'T scaled ymx: {ymx}\n'
'------------------------------\n'
)
# finally, scale major curve to possibly re-scaled/modified
# values
mx_view._set_yrange(yrange=(mx_ymn, mx_ymx))
if debug_print:
print(
f'END UX GRAPHICS CYCLE: @{chart_name}\n'
+
'#'*100
+
'\n'
)
profiler(f'<{chart_name}>.interact_graphics_cycle()')
if not do_linked_charts:
break
profiler.finish()