piker/piker/brokers/ib/ledger.py

530 lines
16 KiB
Python

# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Trade transaction accounting and normalization.
'''
from __future__ import annotations
from bisect import insort
from dataclasses import asdict
from decimal import Decimal
from functools import partial
from pprint import pformat
from typing import (
Any,
Callable,
TYPE_CHECKING,
)
from bidict import bidict
from pendulum import (
DateTime,
parse,
from_timestamp,
)
from ib_insync import (
Contract,
Commodity,
Fill,
Execution,
CommissionReport,
)
from piker.types import Struct
from piker.data import (
SymbologyCache,
)
from piker.accounting import (
Asset,
dec_digits,
digits_to_dec,
Transaction,
MktPair,
iter_by_dt,
)
from ._flex_reports import parse_flex_dt
from ._util import log
if TYPE_CHECKING:
from .api import (
Client,
MethodProxy,
)
tx_sort: Callable = partial(
iter_by_dt,
parsers={
'dateTime': parse_flex_dt,
'datetime': parse,
# XXX: for some some fucking 2022 and
# back options records.. f@#$ me..
'date': parse,
}
)
def norm_trade(
tid: str,
record: dict[str, Any],
# this is the dict that was returned from
# `Client.get_mkt_pairs()` and when running offline ledger
# processing from `.accounting`, this will be the table loaded
# into `SymbologyCache.pairs`.
pairs: dict[str, Struct],
symcache: SymbologyCache | None = None,
) -> Transaction | None:
conid: int = str(record.get('conId') or record['conid'])
bs_mktid: str = str(conid)
# NOTE: sometimes weird records (like BTTX?)
# have no field for this?
comms: float = -1 * (
record.get('commission')
or record.get('ibCommission')
or 0
)
if not comms:
log.warning(
'No commissions found for record?\n'
f'{pformat(record)}\n'
)
price: float = (
record.get('price')
or record.get('tradePrice')
)
if price is None:
log.warning(
'No `price` field found in record?\n'
'Skipping normalization..\n'
f'{pformat(record)}\n'
)
return None
# the api doesn't do the -/+ on the quantity for you but flex
# records do.. are you fucking serious ib...!?
size: float|int = (
record.get('quantity')
or record['shares']
) * {
'BOT': 1,
'SLD': -1,
}[record['side']]
symbol: str = record['symbol']
exch: str = (
record.get('listingExchange')
or record.get('primaryExchange')
or record['exchange']
)
# NOTE: remove null values since `tomlkit` can't serialize
# them to file.
if dnc := record.pop('deltaNeutralContract', None):
record['deltaNeutralContract'] = dnc
# likely an opts contract record from a flex report..
# TODO: no idea how to parse ^ the strike part from flex..
# (00010000 any, or 00007500 tsla, ..)
# we probably must do the contract lookup for this?
if (
' ' in symbol
or '--' in exch
):
underlying, _, tail = symbol.partition(' ')
exch: str = 'opt'
expiry: str = tail[:6]
# otype = tail[6]
# strike = tail[7:]
log.warning(
f'Skipping option contract -> NO SUPPORT YET!\n'
f'{symbol}\n'
)
return None
# timestamping is way different in API records
dtstr: str = record.get('datetime')
date: str = record.get('date')
flex_dtstr: str = record.get('dateTime')
if dtstr or date:
dt: DateTime = parse(dtstr or date)
elif flex_dtstr:
# probably a flex record with a wonky non-std timestamp..
dt: DateTime = parse_flex_dt(record['dateTime'])
# special handling of symbol extraction from
# flex records using some ad-hoc schema parsing.
asset_type: str = (
record.get('assetCategory')
or record.get('secType')
or 'STK'
)
if (expiry := (
record.get('lastTradeDateOrContractMonth')
or record.get('expiry')
)
):
expiry: str = str(expiry).strip(' ')
# NOTE: we directly use the (simple and usually short)
# date-string expiry token when packing the `MktPair`
# since we want the fqme to contain *that* token.
# It might make sense later to instead parse and then
# render different output str format(s) for this same
# purpose depending on asset-type-market down the road.
# Eg. for derivs we use the short token only for fqme
# but use the isoformat('T') for transactions and
# account file position entries?
# dt_str: str = pendulum.parse(expiry).isoformat('T')
# XXX: pretty much all legacy market assets have a fiat
# currency (denomination) determined by their venue.
currency: str = record['currency']
src = Asset(
name=currency.lower(),
atype='fiat',
tx_tick=Decimal('0.01'),
)
match asset_type:
case 'FUT':
# XXX (flex) ledger entries don't necessarily have any
# simple 3-char key.. sometimes the .symbol is some
# weird internal key that we probably don't want in the
# .fqme => we should probably just wrap `Contract` to
# this like we do other crypto$ backends XD
# NOTE: at least older FLEX records should have
# this field.. no idea about API entries..
local_symbol: str | None = record.get('localSymbol')
underlying_key: str = record.get('underlyingSymbol')
descr: str | None = record.get('description')
if (
not (
local_symbol
and symbol in local_symbol
)
and (
descr
and symbol not in descr
)
):
con_key, exp_str = descr.split(' ')
symbol: str = underlying_key or con_key
dst = Asset(
name=symbol.lower(),
atype='future',
tx_tick=Decimal('1'),
)
case 'STK':
dst = Asset(
name=symbol.lower(),
atype='stock',
tx_tick=Decimal('1'),
)
case 'CASH':
if currency not in symbol:
# likely a dict-casted `Forex` contract which
# has .symbol as the dst and .currency as the
# src.
name: str = symbol.lower()
else:
# likely a flex-report record which puts
# EUR.USD as the symbol field and just USD in
# the currency field.
name: str = symbol.lower().replace(f'.{src.name}', '')
dst = Asset(
name=name,
atype='fiat',
tx_tick=Decimal('0.01'),
)
case 'OPT':
dst = Asset(
name=symbol.lower(),
atype='option',
tx_tick=Decimal('1'),
# TODO: we should probably always cast to the
# `Contract` instance then dict-serialize that for
# the `.info` field!
# info=asdict(Option()),
)
case 'CMDTY':
from .symbols import _adhoc_symbol_map
con_kwargs, _ = _adhoc_symbol_map[symbol.upper()]
dst = Asset(
name=symbol.lower(),
atype='commodity',
tx_tick=Decimal('1'),
info=asdict(Commodity(**con_kwargs)),
)
# try to build out piker fqme from record.
# src: str = record['currency']
price_tick: Decimal = digits_to_dec(dec_digits(price))
# NOTE: can't serlialize `tomlkit.String` so cast to native
atype: str = str(dst.atype)
# if not (mkt := symcache.mktmaps.get(bs_mktid)):
mkt = MktPair(
bs_mktid=bs_mktid,
dst=dst,
price_tick=price_tick,
# NOTE: for "legacy" assets, volume is normally discreet, not
# a float, but we keep a digit in case the suitz decide
# to get crazy and change it; we'll be kinda ready
# schema-wise..
size_tick=Decimal('1'),
src=src, # XXX: normally always a fiat
_atype=atype,
venue=exch,
expiry=expiry,
broker='ib',
_fqme_without_src=(atype != 'fiat'),
)
fqme: str = mkt.fqme
# XXX: if passed in, we fill out the symcache ad-hoc in order
# to make downstream accounting work..
if symcache is not None:
orig_mkt: MktPair | None = symcache.mktmaps.get(bs_mktid)
if (
orig_mkt
and orig_mkt.fqme != mkt.fqme
):
log.warning(
# print(
f'Contracts with common `conId`: {bs_mktid} mismatch..\n'
f'{orig_mkt.fqme} -> {mkt.fqme}\n'
# 'with DIFF:\n'
# f'{mkt - orig_mkt}'
)
symcache.mktmaps[bs_mktid] = mkt
symcache.mktmaps[fqme] = mkt
symcache.assets[src.name] = src
symcache.assets[dst.name] = dst
# NOTE: for flex records the normal fields for defining an fqme
# sometimes won't be available so we rely on two approaches for
# the "reverse lookup" of piker style fqme keys:
# - when dealing with API trade records received from
# `IB.trades()` we do a contract lookup at he time of processing
# - when dealing with flex records, it is assumed the record
# is at least a day old and thus the TWS position reporting system
# should already have entries if the pps are still open, in
# which case, we can pull the fqme from that table (see
# `trades_dialogue()` above).
return Transaction(
fqme=fqme,
tid=tid,
size=size,
price=price,
cost=comms,
dt=dt,
expiry=expiry,
bs_mktid=str(conid),
)
def norm_trade_records(
ledger: dict[str, Any],
symcache: SymbologyCache | None = None,
) -> dict[str, Transaction]:
'''
Normalize (xml) flex-report or (recent) API trade records into
our ledger format with parsing for `MktPair` and `Asset`
extraction to fill in the `Transaction.sys: MktPair` field.
'''
records: list[Transaction] = []
for tid, record in ledger.items():
txn = norm_trade(
tid,
record,
# NOTE: currently no symcache support
pairs={},
symcache=symcache,
)
if txn is None:
continue
# inject txns sorted by datetime
insort(
records,
txn,
key=lambda t: t.dt
)
return {r.tid: r for r in records}
def api_trades_to_ledger_entries(
accounts: bidict[str, str],
fills: list[Fill],
) -> dict[str, dict]:
'''
Convert API execution objects entry objects into
flattened-``dict`` form, pretty much straight up without
modification except add a `pydatetime` field from the parsed
timestamp so that on write
'''
trades_by_account: dict[str, dict] = {}
for fill in fills:
# NOTE: for the schema, see the defn for `Fill` which is
# a `NamedTuple` subtype
fdict: dict = fill._asdict()
# flatten all (sub-)objects and convert to dicts.
# with values packed into one top level entry.
val: CommissionReport | Execution | Contract
txn_dict: dict[str, Any] = {}
for attr_name, val in fdict.items():
match attr_name:
# value is a `@dataclass` subtype
case 'contract' | 'execution' | 'commissionReport':
txn_dict.update(asdict(val))
case 'time':
# ib has wack ns timestamps, or is that us?
continue
# TODO: we can remove this case right since there's
# only 4 fields on a `Fill`?
case _:
txn_dict[attr_name] = val
tid = str(txn_dict['execId'])
dt = from_timestamp(txn_dict['time'])
txn_dict['datetime'] = str(dt)
acctid = accounts[txn_dict['acctNumber']]
# NOTE: only inserted (then later popped) for sorting below!
txn_dict['pydatetime'] = dt
if not tid:
# this is likely some kind of internal adjustment
# transaction, likely one of the following:
# - an expiry event that will show a "book trade" indicating
# some adjustment to cash balances: zeroing or itm settle.
# - a manual cash balance position adjustment likely done by
# the user from the accounts window in TWS where they can
# manually set the avg price and size:
# https://api.ibkr.com/lib/cstools/faq/web1/index.html#/tag/DTWS_ADJ_AVG_COST
log.warning(
'Skipping ID-less ledger txn_dict:\n'
f'{pformat(txn_dict)}'
)
continue
trades_by_account.setdefault(
acctid, {}
)[tid] = txn_dict
# TODO: maybe we should just bisect.insort() into a list of
# tuples and then return a dict of that?
# sort entries in output by python based datetime
for acctid in trades_by_account:
trades_by_account[acctid] = dict(sorted(
trades_by_account[acctid].items(),
key=lambda entry: entry[1].pop('pydatetime'),
))
return trades_by_account
async def update_ledger_from_api_trades(
fills: list[Fill],
client: Client | MethodProxy,
accounts_def_inv: bidict[str, str],
# NOTE: provided for ad-hoc insertions "as transactions are
# processed" -> see `norm_trade()` signature requirements.
symcache: SymbologyCache | None = None,
) -> tuple[
dict[str, Transaction],
dict[str, dict],
]:
# XXX; ERRGGG..
# pack in the "primary/listing exchange" value from a
# contract lookup since it seems this isn't available by
# default from the `.fills()` method endpoint...
fill: Fill
for fill in fills:
con: Contract = fill.contract
conid: str = con.conId
pexch: str | None = con.primaryExchange
if not pexch:
cons = await client.get_con(conid=conid)
if cons:
con = cons[0]
pexch = con.primaryExchange or con.exchange
else:
# for futes it seems like the primary is always empty?
pexch: str = con.exchange
# pack in the ``Contract.secType``
# entry['asset_type'] = condict['secType']
entries: dict[str, dict] = api_trades_to_ledger_entries(
accounts_def_inv,
fills,
)
# normalize recent session's trades to the `Transaction` type
trans_by_acct: dict[str, dict[str, Transaction]] = {}
for acctid, trades_by_id in entries.items():
# normalize to transaction form
trans_by_acct[acctid] = norm_trade_records(
trades_by_id,
symcache=symcache,
)
return trans_by_acct, entries