piker/piker/ui/_dataviz.py

1235 lines
34 KiB
Python

# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Data vizualization APIs
'''
from __future__ import annotations
from math import (
ceil,
floor,
)
from typing import (
Optional,
Literal,
TYPE_CHECKING,
)
import msgspec
import numpy as np
import pyqtgraph as pg
from PyQt5.QtCore import QLineF
from ..data._sharedmem import (
ShmArray,
)
from ..data.feed import Flume
from ..data._formatters import (
IncrementalFormatter,
OHLCBarsFmtr, # Plain OHLC renderer
OHLCBarsAsCurveFmtr, # OHLC converted to line
StepCurveFmtr, # "step" curve (like for vlm)
)
from ..data._pathops import (
slice_from_time,
)
from ._ohlc import (
BarItems,
)
from ._curve import (
Curve,
StepCurve,
FlattenedOHLC,
)
from ._render import Renderer
from ..log import get_logger
from .._profile import (
Profiler,
pg_profile_enabled,
ms_slower_then,
)
if TYPE_CHECKING:
from ._interaction import ChartView
from ._chart import ChartPlotWidget
from ._display import DisplayState
log = get_logger(__name__)
def render_baritems(
viz: Viz,
graphics: BarItems,
read: tuple[
int, int, np.ndarray,
int, int, np.ndarray,
],
profiler: Profiler,
**kwargs,
) -> None:
'''
Graphics management logic for a ``BarItems`` object.
Mostly just logic to determine when and how to downsample an OHLC
lines curve into a flattened line graphic and when to display one
graphic or the other.
TODO: this should likely be moved into some kind of better abstraction
layer, if not a `Renderer` then something just above it?
'''
bars = graphics
self = viz # TODO: make this a ``Viz`` method?
r = self._src_r
first_render: bool = False
# if no source data renderer exists create one.
if not r:
first_render = True
# OHLC bars path renderer
r = self._src_r = Renderer(
viz=self,
fmtr=OHLCBarsFmtr(
shm=viz.shm,
viz=viz,
),
)
ds_curve_r = Renderer(
viz=self,
fmtr=OHLCBarsAsCurveFmtr(
shm=viz.shm,
viz=viz,
),
)
curve = FlattenedOHLC(
name=f'{viz.name}_ds_ohlc',
color=bars._color,
)
viz.ds_graphics = curve
curve.hide()
self.plot.addItem(curve)
# baseline "line" downsampled OHLC curve that should
# kick on only when we reach a certain uppx threshold.
self._alt_r = (ds_curve_r, curve)
ds_r, curve = self._alt_r
# print(
# f'r: {r.fmtr.xy_slice}\n'
# f'ds_r: {ds_r.fmtr.xy_slice}\n'
# )
# do checks for whether or not we require downsampling:
# - if we're **not** downsampling then we simply want to
# render the bars graphics curve and update..
# - if instead we are in a downsamplig state then we to
x_gt = 6 * (self.index_step() or 1)
uppx = curve.x_uppx()
# print(f'BARS UPPX: {uppx}')
in_line = should_line = curve.isVisible()
if (
in_line
and uppx < x_gt
):
# print('FLIPPING TO BARS')
should_line = False
viz._in_ds = False
elif (
not in_line
and uppx >= x_gt
):
# print('FLIPPING TO LINE')
should_line = True
viz._in_ds = True
profiler(f'ds logic complete line={should_line}')
# do graphics updates
if should_line:
r = ds_r
graphics = curve
profiler('updated ds curve')
else:
graphics = bars
if first_render:
bars.show()
changed_to_line = False
if (
not in_line
and should_line
):
# change to line graphic
log.info(
f'downsampling to line graphic {self.name}'
)
bars.hide()
curve.show()
curve.update()
changed_to_line = True
elif (
in_line
and not should_line
):
# change to bars graphic
log.info(
f'showing bars graphic {self.name}\n'
f'first bars render?: {first_render}'
)
curve.hide()
bars.show()
bars.update()
# XXX: is this required?
viz._in_ds = should_line
should_redraw = (
changed_to_line
or not should_line
)
return (
graphics,
r,
should_redraw,
should_line,
)
_sample_rates: set[float] = {1, 60}
class Viz(msgspec.Struct): # , frozen=True):
'''
(Data) "Visualization" compound type which wraps a real-time
shm array stream with displayed graphics (curves, charts)
for high level access and control as well as efficient incremental
update.
The intention is for this type to eventually be capable of shm-passing
of incrementally updated graphics stream data between actors.
'''
name: str
plot: pg.PlotItem
_shm: ShmArray
flume: Flume
graphics: Curve | BarItems
# for tracking y-mn/mx for y-axis auto-ranging
yrange: tuple[float, float] = None
# in some cases a viz may want to change its
# graphical "type" or, "form" when downsampling, to
# start this is only ever an interpolation line.
ds_graphics: Optional[Curve] = None
is_ohlc: bool = False
render: bool = True # toggle for display loop
_index_field: Literal[
'index',
'time',
# TODO: idea is to re-index all time series to a common
# longest-len-int-index where we avoid gaps and instead
# graph on the 0 -> N domain of the array index super set.
# 'gapless',
] = 'time'
# downsampling state
_last_uppx: float = 0
_in_ds: bool = False
_index_step: float | None = None
# map from uppx -> (downsampled data, incremental graphics)
_src_r: Renderer | None = None
_alt_r: tuple[
Renderer,
pg.GraphicsItem
] | None = None
# cache of y-range values per x-range input.
_mxmns: dict[
tuple[int, int],
tuple[float, float],
] = {}
@property
def shm(self) -> ShmArray:
return self._shm
@property
def index_field(self) -> str:
return self._index_field
def index_step(
self,
reset: bool = False,
) -> float:
# attempt to dectect the best step size by scanning a sample of
# the source data.
if self._index_step is None:
index = self.shm.array[self.index_field]
isample = index[:16]
mxdiff: None | float = None
for step in np.diff(isample):
if step in _sample_rates:
if (
mxdiff is not None
and step != mxdiff
):
raise ValueError(
f'Multiple step sizes detected? {mxdiff}, {step}'
)
mxdiff = step
self._index_step = max(mxdiff, 1)
if (
mxdiff < 1
or 1 < mxdiff < 60
):
# TODO: remove this once we're sure the above scan loop
# is rock solid.
breakpoint()
return self._index_step
def maxmin(
self,
x_range: slice | tuple[int, int] | None = None,
i_read_range: tuple[int, int] | None = None,
use_caching: bool = True,
) -> tuple[float, float] | None:
'''
Compute the cached max and min y-range values for a given
x-range determined by ``lbar`` and ``rbar`` or ``None``
if no range can be determined (yet).
'''
name = self.name
profiler = Profiler(
msg=f'{name} -> `{str(self)}.maxmin()`',
disabled=not pg_profile_enabled(),
ms_threshold=4,
delayed=True,
)
shm = self.shm
if shm is None:
return None
do_print: bool = False
arr = shm.array
if i_read_range is not None:
read_slc = slice(*i_read_range)
index = arr[read_slc][self.index_field]
if not index.size:
return None
ixrng = (index[0], index[-1])
else:
if x_range is None:
(
l,
_,
lbar,
rbar,
_,
r,
) = self.datums_range()
profiler(f'{self.name} got bars range')
x_range = lbar, rbar
# TODO: hash the slice instead maybe?
# https://stackoverflow.com/a/29980872
lbar, rbar = ixrng = round(x_range[0]), round(x_range[1])
if use_caching:
cached_result = self._mxmns.get(ixrng)
if cached_result:
if do_print:
print(
f'{self.name} CACHED maxmin\n'
f'{ixrng} -> {cached_result}'
)
read_slc, mxmn = cached_result
return (
ixrng,
read_slc,
mxmn,
)
if i_read_range is None:
# get relative slice indexes into array
if self.index_field == 'time':
read_slc = slice_from_time(
arr,
start_t=lbar,
stop_t=rbar,
step=self.index_step(),
)
else:
ifirst = arr[0]['index']
read_slc = slice(
lbar - ifirst,
(rbar - ifirst) + 1
)
slice_view = arr[read_slc]
if not slice_view.size:
log.warning(
f'{self.name} no maxmin in view?\n'
f"{name} no mxmn for bars_range => {ixrng} !?"
)
return None
elif self.yrange:
mxmn = self.yrange
if do_print:
print(
f'{self.name} M4 maxmin:\n'
f'{ixrng} -> {mxmn}'
)
else:
if self.is_ohlc:
ylow = np.min(slice_view['low'])
yhigh = np.max(slice_view['high'])
else:
view = slice_view[self.name]
ylow = np.min(view)
yhigh = np.max(view)
mxmn = ylow, yhigh
if (
do_print
):
s = 3
print(
f'{self.name} MANUAL ohlc={self.is_ohlc} maxmin:\n'
f'{ixrng} -> {mxmn}\n'
f'read_slc: {read_slc}\n'
# f'abs_slc: {slice_view["index"]}\n'
f'first {s}:\n{slice_view[:s]}\n'
f'last {s}:\n{slice_view[-s:]}\n'
)
# cache result for input range
assert mxmn
self._mxmns[ixrng] = (read_slc, mxmn)
profiler(f'yrange mxmn cacheing: {x_range} -> {mxmn}')
return (
ixrng,
read_slc,
mxmn,
)
def view_range(self) -> tuple[int, int]:
'''
Return the start and stop x-indexes for the managed ``ViewBox``.
'''
vr = self.plot.viewRect()
return (
vr.left(),
vr.right(),
)
def bars_range(self) -> tuple[int, int, int, int]:
'''
Return a range tuple for the left-view, left-datum, right-datum
and right-view x-indices.
'''
l, start, datum_start, datum_stop, stop, r = self.datums_range()
return l, datum_start, datum_stop, r
def datums_range(
self,
view_range: None | tuple[float, float] = None,
index_field: str | None = None,
array: None | np.ndarray = None,
) -> tuple[
int, int, int, int, int, int
]:
'''
Return a range tuple for the datums present in view.
'''
l, r = view_range or self.view_range()
index_field: str = index_field or self.index_field
if index_field == 'index':
l, r = round(l), round(r)
if array is None:
array = self.shm.array
index = array[index_field]
first = floor(index[0])
last = ceil(index[-1])
# first and last datums in view determined by
# l / r view range.
leftmost = floor(l)
rightmost = ceil(r)
# invalid view state
if (
r < l
or l < 0
or r < 0
or (l > last and r > last)
):
leftmost = first
rightmost = last
else:
rightmost = max(
min(last, rightmost),
first,
)
leftmost = min(
max(first, leftmost),
last,
rightmost - 1,
)
assert leftmost < rightmost
return (
l, # left x-in-view
first, # first datum
leftmost,
rightmost,
last, # last_datum
r, # right-x-in-view
)
def read(
self,
array_field: Optional[str] = None,
index_field: str | None = None,
profiler: None | Profiler = None,
) -> tuple[
int, int, np.ndarray,
int, int, np.ndarray,
]:
'''
Read the underlying shm array buffer and
return the data plus indexes for the first
and last
which has been written to.
'''
index_field: str = index_field or self.index_field
vr = l, r = self.view_range()
# readable data
array = self.shm.array
if profiler:
profiler('self.shm.array READ')
(
l,
ifirst,
lbar,
rbar,
ilast,
r,
) = self.datums_range(
view_range=vr,
index_field=index_field,
array=array,
)
if profiler:
profiler('self.datums_range()')
abs_slc = slice(ifirst, ilast)
# TODO: support time slicing
if index_field == 'time':
read_slc = slice_from_time(
array,
start_t=lbar,
stop_t=rbar,
)
# TODO: maybe we should return this from the slicer call
# above?
in_view = array[read_slc]
if in_view.size:
abs_indx = in_view['index']
abs_slc = slice(
int(abs_indx[0]),
int(abs_indx[-1]),
)
if profiler:
profiler(
'`slice_from_time('
f'start_t={lbar}'
f'stop_t={rbar})'
)
# array-index slicing
# TODO: can we do time based indexing using arithmetic presuming
# a uniform time stamp step size?
else:
# get read-relative indices adjusting for master shm index.
lbar_i = max(l, ifirst) - ifirst
rbar_i = min(r, ilast) - ifirst
# NOTE: the slice here does NOT include the extra ``+ 1``
# BUT the ``in_view`` slice DOES..
read_slc = slice(lbar_i, rbar_i)
in_view = array[lbar_i: rbar_i + 1]
# in_view = array[lbar_i-1: rbar_i+1]
# XXX: same as ^
# to_draw = array[lbar - ifirst:(rbar - ifirst) + 1]
if profiler:
profiler('index arithmetic for slicing')
if array_field:
array = array[array_field]
return (
# abs indices + full data set
abs_slc.start,
abs_slc.stop,
array,
# relative (read) indices + in view data
read_slc.start,
read_slc.stop,
in_view,
)
def update_graphics(
self,
render: bool = True,
array_key: str | None = None,
profiler: Profiler | None = None,
do_append: bool = True,
**kwargs,
) -> pg.GraphicsObject:
'''
Read latest datums from shm and render to (incrementally)
render to graphics.
'''
profiler = Profiler(
msg=f'Viz.update_graphics() for {self.name}',
disabled=not pg_profile_enabled(),
ms_threshold=ms_slower_then,
# ms_threshold=4,
)
# shm read and slice to view
read = (
xfirst,
xlast,
src_array,
ivl,
ivr,
in_view,
) = self.read(profiler=profiler)
profiler('read src shm data')
graphics = self.graphics
if (
not in_view.size
or not render
):
# print('exiting early')
return (
(ivl, ivr),
graphics,
)
should_redraw: bool = False
ds_allowed: bool = True # guard for m4 activation
# TODO: probably specialize ``Renderer`` types instead of
# these logic checks?
# - put these blocks into a `.load_renderer()` meth?
# - consider a OHLCRenderer, StepCurveRenderer, Renderer?
r = self._src_r
if isinstance(graphics, BarItems):
# XXX: special case where we change out graphics
# to a line after a certain uppx threshold.
(
graphics,
r,
should_redraw,
ds_allowed, # in line mode?
) = render_baritems(
self,
graphics,
read,
profiler,
**kwargs,
)
elif not r:
if isinstance(graphics, StepCurve):
r = self._src_r = Renderer(
viz=self,
fmtr=StepCurveFmtr(
shm=self.shm,
viz=self,
),
)
else:
r = self._src_r
if not r:
# just using for ``.diff()`` atm..
r = self._src_r = Renderer(
viz=self,
fmtr=IncrementalFormatter(
shm=self.shm,
viz=self,
),
)
# ``Curve`` derivative case(s):
array_key = array_key or self.name
# ds update config
new_sample_rate: bool = False
should_ds: bool = r._in_ds
showing_src_data: bool = not r._in_ds
# downsampling incremental state checking
# check for and set std m4 downsample conditions
uppx = graphics.x_uppx()
uppx_diff = (uppx - self._last_uppx)
profiler(f'diffed uppx {uppx}')
if (
uppx > 1
and abs(uppx_diff) >= 1
and ds_allowed
):
log.debug(
f'{array_key} sampler change: {self._last_uppx} -> {uppx}'
)
self._last_uppx = uppx
new_sample_rate = True
showing_src_data = False
should_ds = True
should_redraw = True
# "back to source" case:
# this more or less skips use of the m4 downsampler
# inside ``Renderer.render()`` which results in a path
# drawn verbatim to match the xy source data.
elif (
uppx <= 2
and self._in_ds
):
# we should de-downsample back to our original
# source data so we clear our path data in prep
# to generate a new one from original source data.
new_sample_rate = True
should_ds = False
should_redraw = True
showing_src_data = True
# MAIN RENDER LOGIC:
# - determine in view data and redraw on range change
# - determine downsampling ops if needed
# - (incrementally) update ``QPainterPath``
out = r.render(
read,
array_key,
profiler,
uppx=uppx,
# TODO: better way to detect and pass this?
# if we want to eventually cache renderers for a given uppx
# we should probably use this as a key + state?
should_redraw=should_redraw,
new_sample_rate=new_sample_rate,
should_ds=should_ds,
showing_src_data=showing_src_data,
do_append=do_append,
)
if not out:
log.warning(f'{self.name} failed to render!?')
return (
(ivl, ivr),
graphics,
)
path, reset_cache = out
# XXX: SUPER UGGGHHH... without this we get stale cache
# graphics that "smear" across the view horizontally
# when panning and the first datum is out of view..
if (
reset_cache
):
# assign output paths to graphicis obj but
# after a coords-cache reset.
with graphics.reset_cache():
graphics.path = r.path
graphics.fast_path = r.fast_path
self.draw_last(
array_key=array_key,
last_read=read,
reset_cache=reset_cache,
)
else:
# assign output paths to graphicis obj
graphics.path = r.path
graphics.fast_path = r.fast_path
self.draw_last(
array_key=array_key,
last_read=read,
reset_cache=reset_cache,
)
# graphics.draw_last_datum(
# path,
# src_array,
# reset_cache,
# array_key,
# index_field=self.index_field,
# )
graphics.update()
profiler('.update()')
# TODO: does this actuallly help us in any way (prolly should
# look at the source / ask ogi). I think it avoid artifacts on
# wheel-scroll downsampling curve updates?
# TODO: is this ever better?
# graphics.prepareGeometryChange()
# profiler('.prepareGeometryChange()')
# track downsampled state
self._in_ds = r._in_ds
return (
(ivl, ivr),
graphics,
)
def draw_last(
self,
array_key: str | None = None,
last_read: tuple | None = None,
reset_cache: bool = False,
only_last_uppx: bool = False,
) -> None:
# shm read and slice to view
(
xfirst, xlast, src_array,
ivl, ivr, in_view,
) = last_read or self.read()
array_key = array_key or self.name
gfx = self.graphics
# the renderer is downsampling we choose
# to always try and update a single (interpolating)
# line segment that spans and tries to display
# the last uppx's worth of datums.
# we only care about the last pixel's
# worth of data since that's all the screen
# can represent on the last column where
# the most recent datum is being drawn.
uppx = ceil(self._last_uppx)
if (
(self._in_ds or only_last_uppx)
and uppx > 0
):
alt_renderer = self._alt_r
if alt_renderer:
renderer, gfx = alt_renderer
fmtr = renderer.fmtr
x = fmtr.x_1d
y = fmtr.y_1d
else:
renderer = self._src_r
fmtr = renderer.fmtr
x = fmtr.x_1d
y = fmtr.y_1d
if alt_renderer:
uppx *= fmtr.flat_index_ratio
y = y[-uppx:]
ymn, ymx = y.min(), y.max()
try:
iuppx = x[-uppx]
except IndexError:
# we're less then an x-px wide so just grab the start
# datum index.
iuppx = x[0]
gfx._last_line = QLineF(
iuppx, ymn,
x[-1], ymx,
)
# if self.is_ohlc:
# times = self.shm.array['time']
# time_step = times[-1] - times[-2]
# # if 'hist' in self.shm.token['shm_name']
# # if self.index_step() == 1:
# # breakpoint()
# print(
# f'updating DS curve {self.name}@{time_step}s\n'
# f'drawing uppx={uppx} mxmn line: {ymn}, {ymx}'
# )
else:
x, y = gfx.draw_last_datum(
gfx.path,
src_array,
reset_cache, # never reset path
array_key,
self.index_field,
)
# print(f'updating NOT DS curve {self.name}')
gfx.update()
def default_view(
self,
bars_from_y: int = int(616 * 3/8),
y_offset: int = 0, # in datums
do_ds: bool = True,
) -> None:
'''
Set the plot's viewbox to a "default" startup setting where
we try to show the underlying data range sanely.
'''
shm: ShmArray = self.shm
array: np.ndarray = shm.array
view: ChartView = self.plot.vb
(
vl,
first_datum,
datum_start,
datum_stop,
last_datum,
vr,
) = self.datums_range(array=array)
# invalid case: view is not ordered correctly
# return and expect caller to sort it out.
if (
vl > vr
):
log.warning(
'Skipping `.default_view()` viewbox not initialized..\n'
f'l -> r: {vl} -> {vr}\n'
f'datum_start -> datum_stop: {datum_start} -> {datum_stop}\n'
)
return
chartw: ChartPlotWidget = self.plot.getViewWidget()
index_field = self.index_field
step = self.index_step()
if index_field == 'time':
# transform l -> r view range values into
# data index domain to determine how view
# should be reset to better match data.
read_slc = slice_from_time(
array,
start_t=vl,
stop_t=vr,
step=step,
)
else:
read_slc = slice(0, datum_stop - datum_start + 1)
index_iv = array[index_field][read_slc]
uppx: float = self.graphics.x_uppx() or 1
# l->r distance in scene units, no larger then data span
data_diff = last_datum - first_datum
rl_diff = vr - vl
rescale_to_data: bool = False
# new_uppx: float = 1
if rl_diff > data_diff:
rescale_to_data = True
rl_diff = data_diff
new_uppx: float = data_diff / self.px_width()
# orient by offset from the y-axis including
# space to compensate for the L1 labels.
if not y_offset:
_, l1_offset = chartw.pre_l1_xs()
offset = l1_offset
if (
rescale_to_data
):
offset = (offset / uppx) * new_uppx
else:
offset = (y_offset * step) + uppx*step
# align right side of view to the rightmost datum + the selected
# offset from above.
r_reset = (self.graphics.x_last() or last_datum) + offset
# no data is in view so check for the only 2 sane cases:
# - entire view is LEFT of data
# - entire view is RIGHT of data
if index_iv.size == 0:
log.warning(f'No data in view for {vl} -> {vr}')
# 2 cases either the view is to the left or right of the
# data set.
if (
vl <= first_datum
and vr <= first_datum
):
l_reset = first_datum
elif (
vl >= last_datum
and vr >= last_datum
):
l_reset = r_reset - rl_diff
else:
raise RuntimeError(f'Unknown view state {vl} -> {vr}')
else:
# maintain the l->r view distance
l_reset = r_reset - rl_diff
# remove any custom user yrange setttings
if chartw._static_yrange == 'axis':
chartw._static_yrange = None
view.setXRange(
min=l_reset,
max=r_reset,
padding=0,
)
if do_ds:
# view.interaction_graphics_cycle()
view.maybe_downsample_graphics()
view._set_yrange(viz=self)
def incr_info(
self,
ds: DisplayState,
update_uppx: float = 16,
is_1m: bool = False,
) -> tuple:
'''
Return a slew of graphics related data-flow metrics to do with
incrementally updating a data view.
Output info includes,
----------------------
uppx: float
x-domain units-per-pixel.
liv: bool
telling if the "last datum" is in vie"last datum" is in
view.
do_px_step: bool
recent data append(s) are enough that the next physical
pixel-column should be used for drawing.
i_diff_t: float
the difference between the last globally recorded time stamp
aand the current one.
append_diff: int
diff between last recorded "append index" (the index at whic
`do_px_step` was last returned `True`) and the current index.
do_rt_update: bool
`True` only when the uppx is less then some threshold
defined by `update_uppx`.
should_tread: bool
determines the first step, globally across all callers, that
the a set of data views should be "treaded", shifted in the
x-domain such that the last datum in view is always in the
same spot in non-view/scene (aka GUI coord) terms.
'''
# get most recent right datum index in-view
l, start, datum_start, datum_stop, stop, r = self.datums_range()
lasts = self.shm.array[-1]
i_step = lasts['index'] # last index-specific step.
i_step_t = lasts['time'] # last time step.
# fqsn = self.flume.symbol.fqsn
# check if "last (is) in view" -> is a real-time update necessary?
if self.index_field == 'index':
liv = (r >= i_step)
else:
liv = (r >= i_step_t)
# compute the first available graphic obj's x-units-per-pixel
# TODO: make this not loop through all vizs each time!
uppx = self.plot.vb.x_uppx()
# NOTE: this used to be implemented in a dedicated
# "increment task": ``check_for_new_bars()`` but it doesn't
# make sense to do a whole task switch when we can just do
# this simple index-diff and all the fsp sub-curve graphics
# are diffed on each draw cycle anyway; so updates to the
# "curve" length is already automatic.
globalz = ds.globalz
varz = ds.hist_vars if is_1m else ds.vars
last_key = 'i_last_slow_t' if is_1m else 'i_last_t'
glast = globalz[last_key]
# calc datums diff since last global increment
i_diff_t: float = i_step_t - glast
# when the current step is now greater then the last we have
# read from the display state globals, we presume that the
# underlying source shm buffer has added a new sample and thus
# we should increment the global view a step (i.e. tread the
# view in place to keep the current datum at the same spot on
# screen).
should_tread: bool = False
if i_diff_t > 0:
globalz[last_key] = i_step_t
should_tread = True
# update the "last datum" (aka extending the vizs graphic with
# new data) only if the number of unit steps is >= the number of
# such unit steps per pixel (aka uppx). Iow, if the zoom level
# is such that a datum(s) update to graphics wouldn't span
# to a new pixel, we don't update yet.
i_last_append = varz['i_last_append']
append_diff: int = i_step - i_last_append
do_px_step = append_diff >= uppx
do_rt_update = (uppx < update_uppx)
if (
do_px_step
):
varz['i_last_append'] = i_step
# print(
# f'DOING APPEND => {fqsn}\n'
# f'i_step: {i_step}\n'
# f'i_step_t: {i_step_t}\n'
# f'glast: {glast}\n'
# f'last_append: {i_last_append}\n'
# f'r: {r}\n'
# '-----------------------------\n'
# f'uppx: {uppx}\n'
# f'liv: {liv}\n'
# f'do_px_step: {do_px_step}\n'
# f'i_diff_t: {i_diff_t}\n'
# f'do_rt_update: {do_rt_update}\n'
# f'append_diff: {append_diff}\n'
# f'should_tread: {should_tread}\n'
# )
varz['i_last'] = i_step
# TODO: pack this into a struct?
return (
uppx,
liv,
do_px_step,
i_diff_t,
append_diff,
do_rt_update,
should_tread,
)
def px_width(self) -> float:
'''
Return the width of the view box containing
this graphic in pixel units.
'''
vb = self.plot.vb
if not vb:
return 0
vl, vr = self.view_range()
return vb.mapViewToDevice(
QLineF(
vl, 0,
vr, 0,
)
).length()