piker/piker/ui/_curve.py

695 lines
20 KiB
Python

# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Fast, smooth, sexy curves.
"""
from typing import Optional
import numpy as np
import pyqtgraph as pg
from PyQt5 import QtGui, QtWidgets
from PyQt5.QtWidgets import QGraphicsItem
from PyQt5.QtCore import (
Qt,
QLineF,
QSizeF,
QRectF,
QPointF,
)
from .._profile import pg_profile_enabled, ms_slower_then
from ._style import hcolor
from ._compression import (
# ohlc_to_m4_line,
ds_m4,
)
from ..log import get_logger
log = get_logger(__name__)
def step_path_arrays_from_1d(
x: np.ndarray,
y: np.ndarray,
include_endpoints: bool = False,
) -> (np.ndarray, np.ndarray):
'''
Generate a "step mode" curve aligned with OHLC style bars
such that each segment spans each bar (aka "centered" style).
'''
y_out = y.copy()
x_out = x.copy()
x2 = np.empty(
# the data + 2 endpoints on either end for
# "termination of the path".
(len(x) + 1, 2),
# we want to align with OHLC or other sampling style
# bars likely so we need fractinal values
dtype=float,
)
x2[0] = x[0] - 0.5
x2[1] = x[0] + 0.5
x2[1:] = x[:, np.newaxis] + 0.5
# flatten to 1-d
x_out = x2.reshape(x2.size)
# we create a 1d with 2 extra indexes to
# hold the start and (current) end value for the steps
# on either end
y2 = np.empty((len(y), 2), dtype=y.dtype)
y2[:] = y[:, np.newaxis]
y_out = np.empty(
2*len(y) + 2,
dtype=y.dtype
)
# flatten and set 0 endpoints
y_out[1:-1] = y2.reshape(y2.size)
y_out[0] = 0
y_out[-1] = 0
if not include_endpoints:
return x_out[:-1], y_out[:-1]
else:
return x_out, y_out
_line_styles: dict[str, int] = {
'solid': Qt.PenStyle.SolidLine,
'dash': Qt.PenStyle.DashLine,
'dot': Qt.PenStyle.DotLine,
'dashdot': Qt.PenStyle.DashDotLine,
}
class FastAppendCurve(pg.GraphicsObject):
'''
A faster, append friendly version of ``pyqtgraph.PlotCurveItem``
built for real-time data updates.
The main difference is avoiding regeneration of the entire
historical path where possible and instead only updating the "new"
segment(s) via a ``numpy`` array diff calc. Further the "last"
graphic segment is drawn independently such that near-term (high
frequency) discrete-time-sampled style updates don't trigger a full
path redraw.
'''
def __init__(
self,
x: np.ndarray,
y: np.ndarray,
*args,
step_mode: bool = False,
color: str = 'default_lightest',
fill_color: Optional[str] = None,
style: str = 'solid',
name: Optional[str] = None,
use_fpath: bool = True,
**kwargs
) -> None:
# brutaaalll, see comments within..
self._y = self.yData = y
self._x = self.xData = x
self._name = name
self.path: Optional[QtGui.QPainterPath] = None
self.use_fpath = use_fpath
self.fast_path: Optional[QtGui.QPainterPath] = None
# TODO: we can probably just dispense with the parent since
# we're basically only using the pen setting now...
super().__init__(*args, **kwargs)
# self._xrange: tuple[int, int] = self.dataBounds(ax=0)
self._xrange: Optional[tuple[int, int]] = None
# self._last_draw = time.time()
self._in_ds: bool = False
self._last_uppx: float = 0
# all history of curve is drawn in single px thickness
pen = pg.mkPen(hcolor(color))
pen.setStyle(_line_styles[style])
if 'dash' in style:
pen.setDashPattern([8, 3])
self._pen = pen
# last segment is drawn in 2px thickness for emphasis
# self.last_step_pen = pg.mkPen(hcolor(color), width=2)
self.last_step_pen = pg.mkPen(pen, width=2)
self._last_line: Optional[QLineF] = None
self._last_step_rect: Optional[QRectF] = None
# flat-top style histogram-like discrete curve
self._step_mode: bool = step_mode
# self._fill = True
self._brush = pg.functions.mkBrush(hcolor(fill_color or color))
# TODO: one question still remaining is if this makes trasform
# interactions slower (such as zooming) and if so maybe if/when
# we implement a "history" mode for the view we disable this in
# that mode?
if step_mode:
# don't enable caching by default for the case where the
# only thing drawn is the "last" line segment which can
# have a weird artifact where it won't be fully drawn to its
# endpoint (something we saw on trade rate curves)
self.setCacheMode(
QGraphicsItem.DeviceCoordinateCache
)
self.update()
# TODO: probably stick this in a new parent
# type which will contain our own version of
# what ``PlotCurveItem`` had in terms of base
# functionality? A `FlowGraphic` maybe?
def x_uppx(self) -> int:
px_vecs = self.pixelVectors()[0]
if px_vecs:
xs_in_px = px_vecs.x()
return round(xs_in_px)
else:
return 0
def px_width(self) -> float:
vb = self.getViewBox()
if not vb:
return 0
vr = self.viewRect()
l, r = int(vr.left()), int(vr.right())
if not self._xrange:
return 0
start, stop = self._xrange
lbar = max(l, start)
rbar = min(r, stop)
return vb.mapViewToDevice(
QLineF(lbar, 0, rbar, 0)
).length()
def downsample(
self,
x,
y,
px_width,
uppx,
) -> tuple[np.ndarray, np.ndarray]:
# downsample whenever more then 1 pixels per datum can be shown.
# always refresh data bounds until we get diffing
# working properly, see above..
bins, x, y = ds_m4(
x,
y,
px_width=px_width,
uppx=uppx,
log_scale=bool(uppx)
)
x = np.broadcast_to(x[:, None], y.shape)
# x = (x + np.array([-0.43, 0, 0, 0.43])).flatten()
x = (x + np.array([-0.5, 0, 0, 0.5])).flatten()
y = y.flatten()
# presumably?
self._in_ds = True
return x, y
def update_from_array(
self,
# full array input history
x: np.ndarray,
y: np.ndarray,
# pre-sliced array data that's "in view"
x_iv: np.ndarray,
y_iv: np.ndarray,
view_range: Optional[tuple[int, int]] = None,
) -> QtGui.QPainterPath:
'''
Update curve from input 2-d data.
Compare with a cached "x-range" state and (pre/a)ppend based on
a length diff.
'''
profiler = pg.debug.Profiler(
msg=f'FastAppendCurve.update_from_array(): `{self._name}`',
disabled=not pg_profile_enabled(),
gt=ms_slower_then,
)
# flip_cache = False
if self._xrange:
istart, istop = self._xrange
else:
self._xrange = istart, istop = x[0], x[-1]
# print(f"xrange: {self._xrange}")
# XXX: lol brutal, the internals of `CurvePoint` (inherited by
# our `LineDot`) required ``.getData()`` to work..
self.xData = x
self.yData = y
self._x, self._y = x, y
if view_range:
profiler(f'view range slice {view_range}')
# downsampling incremental state checking
uppx = self.x_uppx()
px_width = self.px_width()
uppx_diff = (uppx - self._last_uppx)
should_ds = False
should_redraw = False
# if a view range is passed, plan to draw the
# source ouput that's "in view" of the chart.
if view_range and not self._in_ds:
# print(f'{self._name} vr: {view_range}')
# by default we only pull data up to the last (current) index
x_out, y_out = x_iv[:-1], y_iv[:-1]
# step mode: draw flat top discrete "step"
# over the index space for each datum.
if self._step_mode:
# TODO: numba this bish
x_out, y_out = step_path_arrays_from_1d(
x_out,
y_out
)
profiler('generated step arrays')
should_redraw = True
profiler('sliced in-view array history')
# x_last = x_iv[-1]
# y_last = y_iv[-1]
self._last_vr = view_range
# self.disable_cache()
# flip_cache = True
else:
self._xrange = x[0], x[-1]
x_last = x[-1]
y_last = y[-1]
# check for downsampling conditions
if (
# std m4 downsample conditions
uppx_diff >= 2
or uppx_diff <= -2
or self._step_mode and abs(uppx_diff) >= 2
):
log.info(
f'{self._name} sampler change: {self._last_uppx} -> {uppx}'
)
self._last_uppx = uppx
should_ds = {'px_width': px_width, 'uppx': uppx}
elif (
uppx <= 2
and self._in_ds
):
# we should de-downsample back to our original
# source data so we clear our path data in prep
# to generate a new one from original source data.
should_redraw = True
should_ds = False
# compute the length diffs between the first/last index entry in
# the input data and the last indexes we have on record from the
# last time we updated the curve index.
prepend_length = int(istart - x[0])
append_length = int(x[-1] - istop)
# no_path_yet = self.path is None
if (
self.path is None
or should_redraw
or should_ds
or prepend_length > 0
):
if (
not view_range
or self._in_ds
):
# by default we only pull data up to the last (current) index
x_out, y_out = x[:-1], y[:-1]
# step mode: draw flat top discrete "step"
# over the index space for each datum.
if self._step_mode:
x_out, y_out = step_path_arrays_from_1d(
x_out,
y_out,
)
# TODO: numba this bish
profiler('generated step arrays')
if should_redraw:
profiler('path reversion to non-ds')
if self.path:
self.path.clear()
if self.fast_path:
self.fast_path.clear()
if should_redraw and not should_ds:
if self._in_ds:
log.info(f'DEDOWN -> {self._name}')
self._in_ds = False
elif should_ds:
x_out, y_out = self.downsample(
x_out,
y_out,
**should_ds,
)
profiler(f'FULL PATH downsample redraw={should_ds}')
self._in_ds = True
self.path = pg.functions.arrayToQPath(
x_out,
y_out,
connect='all',
finiteCheck=False,
path=self.path,
)
profiler('generated fresh path')
# profiler(f'DRAW PATH IN VIEW -> {self._name}')
# reserve mem allocs see:
# - https://doc.qt.io/qt-5/qpainterpath.html#reserve
# - https://doc.qt.io/qt-5/qpainterpath.html#capacity
# - https://doc.qt.io/qt-5/qpainterpath.html#clear
# XXX: right now this is based on had hoc checks on a
# hidpi 3840x2160 4k monitor but we should optimize for
# the target display(s) on the sys.
# if no_path_yet:
# self.path.reserve(int(500e3))
# TODO: get this piecewise prepend working - right now it's
# giving heck on vwap...
# elif prepend_length:
# breakpoint()
# prepend_path = pg.functions.arrayToQPath(
# x[0:prepend_length],
# y[0:prepend_length],
# connect='all'
# )
# # swap prepend path in "front"
# old_path = self.path
# self.path = prepend_path
# # self.path.moveTo(new_x[0], new_y[0])
# self.path.connectPath(old_path)
elif (
append_length > 0
and not view_range
):
new_x = x[-append_length - 2:-1]
new_y = y[-append_length - 2:-1]
if self._step_mode:
new_x, new_y = step_path_arrays_from_1d(
new_x,
new_y,
)
# [1:] since we don't need the vertical line normally at
# the beginning of the step curve taking the first (x,
# y) poing down to the x-axis **because** this is an
# appended path graphic.
new_x = new_x[1:]
new_y = new_y[1:]
profiler('diffed append arrays')
if should_ds:
new_x, new_y = self.downsample(
new_x,
new_y,
**should_ds,
)
profiler(f'fast path downsample redraw={should_ds}')
append_path = pg.functions.arrayToQPath(
new_x,
new_y,
connect='all',
finiteCheck=False,
path=self.fast_path,
)
if self.use_fpath:
# an attempt at trying to make append-updates faster..
if self.fast_path is None:
self.fast_path = append_path
self.fast_path.reserve(int(6e3))
else:
self.fast_path.connectPath(append_path)
size = self.fast_path.capacity()
profiler(f'connected fast path w size: {size}')
# print(f"append_path br: {append_path.boundingRect()}")
# self.path.moveTo(new_x[0], new_y[0])
# path.connectPath(append_path)
# XXX: lol this causes a hang..
# self.path = self.path.simplified()
else:
size = self.path.capacity()
profiler(f'connected history path w size: {size}')
self.path.connectPath(append_path)
# other merging ideas:
# https://stackoverflow.com/questions/8936225/how-to-merge-qpainterpaths
# path.addPath(append_path)
# path.closeSubpath()
# TODO: try out new work from `pyqtgraph` main which
# should repair horrid perf:
# https://github.com/pyqtgraph/pyqtgraph/pull/2032
# ok, nope still horrible XD
# if self._fill:
# # XXX: super slow set "union" op
# self.path = self.path.united(append_path).simplified()
# self.disable_cache()
# flip_cache = True
# draw the "current" step graphic segment so it lines up with
# the "middle" of the current (OHLC) sample.
if self._step_mode:
self._last_line = QLineF(
x_last - 0.5, 0,
x_last + 0.5, 0,
)
self._last_step_rect = QRectF(
x_last - 0.5, 0,
x_last + 0.5, y_last
)
# print(
# f"path br: {self.path.boundingRect()}",
# f"fast path br: {self.fast_path.boundingRect()}",
# f"last rect br: {self._last_step_rect}",
# )
else:
self._last_line = QLineF(
x[-2], y[-2],
x[-1], y_last
)
profiler('draw last segment')
# trigger redraw of path
# do update before reverting to cache mode
# self.prepareGeometryChange()
self.update()
profiler('.update()')
# if flip_cache:
# # XXX: seems to be needed to avoid artifacts (see above).
# self.setCacheMode(QGraphicsItem.DeviceCoordinateCache)
# XXX: lol brutal, the internals of `CurvePoint` (inherited by
# our `LineDot`) required ``.getData()`` to work..
def getData(self):
return self._x, self._y
# TODO: drop the above after ``Cursor`` re-work
def get_arrays(self) -> tuple[np.ndarray, np.ndarray]:
return self._x, self._y
def clear(self):
'''
Clear internal graphics making object ready for full re-draw.
'''
# NOTE: original code from ``pg.PlotCurveItem``
self.xData = None
self.yData = None
# XXX: previously, if not trying to leverage `.reserve()` allocs
# then you might as well create a new one..
# self.path = None
# path reservation aware non-mem de-alloc cleaning
if self.path:
self.path.clear()
if self.fast_path:
# self.fast_path.clear()
self.fast_path = None
# self.disable_cache()
# self.setCacheMode(QGraphicsItem.DeviceCoordinateCache)
def disable_cache(self) -> None:
'''
Disable the use of the pixel coordinate cache and trigger a geo event.
'''
# XXX: pretty annoying but, without this there's little
# artefacts on the append updates to the curve...
self.setCacheMode(QtWidgets.QGraphicsItem.NoCache)
self.prepareGeometryChange()
def boundingRect(self):
'''
Compute and then cache our rect.
'''
if self.path is None:
return QtGui.QPainterPath().boundingRect()
else:
# dynamically override this method after initial
# path is created to avoid requiring the above None check
self.boundingRect = self._path_br
return self._path_br()
def _path_br(self):
'''
Post init ``.boundingRect()```.
'''
hb = self.path.controlPointRect()
hb_size = hb.size()
fp = self.fast_path
if fp:
fhb = fp.controlPointRect()
hb_size = fhb.size() + hb_size
# print(f'hb_size: {hb_size}')
w = hb_size.width() + 1
h = hb_size.height() + 1
br = QRectF(
# top left
QPointF(hb.topLeft()),
# total size
QSizeF(w, h)
)
# print(f'bounding rect: {br}')
return br
def paint(
self,
p: QtGui.QPainter,
opt: QtWidgets.QStyleOptionGraphicsItem,
w: QtWidgets.QWidget
) -> None:
profiler = pg.debug.Profiler(
msg=f'FastAppendCurve.paint(): `{self._name}`',
disabled=not pg_profile_enabled(),
gt=ms_slower_then,
)
if (
self._step_mode
and self._last_step_rect
):
brush = self._brush
# p.drawLines(*tuple(filter(bool, self._last_step_lines)))
# p.drawRect(self._last_step_rect)
p.fillRect(self._last_step_rect, brush)
profiler('.fillRect()')
if self._last_line:
p.setPen(self.last_step_pen)
p.drawLine(self._last_line)
profiler('.drawLine()')
p.setPen(self._pen)
path = self.path
if path:
p.drawPath(path)
profiler('.drawPath(path)')
fp = self.fast_path
if fp:
p.drawPath(fp)
profiler('.drawPath(fast_path)')
# TODO: try out new work from `pyqtgraph` main which should
# repair horrid perf (pretty sure i did and it was still
# horrible?):
# https://github.com/pyqtgraph/pyqtgraph/pull/2032
# if self._fill:
# brush = self.opts['brush']
# p.fillPath(self.path, brush)