# piker: trading gear for hackers # Copyright (C) Tyler Goodlet (in stewardship for pikers) # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . ''' Personal/Private position parsing, calculating, summarizing in a way that doesn't try to cuk most humans who prefer to not lose their moneys.. (looking at you `ib` and dirt-bird friends) ''' from contextlib import contextmanager as cm from pprint import pformat import os from os import path from math import copysign import re import time from typing import ( Any, Iterator, Optional, Union, ) import pendulum from pendulum import datetime, now import tomli import toml from . import config from .brokers import get_brokermod from .clearing._messages import BrokerdPosition, Status from .data._source import Symbol from .log import get_logger from .data.types import Struct log = get_logger(__name__) @cm def open_trade_ledger( broker: str, account: str, ) -> str: ''' Indempotently create and read in a trade log file from the ``/ledgers/`` directory. Files are named per broker account of the form ``_.toml``. The ``accountname`` here is the name as defined in the user's ``brokers.toml`` config. ''' ldir = path.join(config._config_dir, 'ledgers') if not path.isdir(ldir): os.makedirs(ldir) fname = f'trades_{broker}_{account}.toml' tradesfile = path.join(ldir, fname) if not path.isfile(tradesfile): log.info( f'Creating new local trades ledger: {tradesfile}' ) with open(tradesfile, 'w') as cf: pass # touch with open(tradesfile, 'rb') as cf: start = time.time() ledger = tomli.load(cf) print(f'Ledger load took {time.time() - start}s') cpy = ledger.copy() try: yield cpy finally: if cpy != ledger: # TODO: show diff output? # https://stackoverflow.com/questions/12956957/print-diff-of-python-dictionaries print(f'Updating ledger for {tradesfile}:\n') ledger.update(cpy) # we write on close the mutated ledger data with open(tradesfile, 'w') as cf: toml.dump(ledger, cf) class Transaction(Struct, frozen=True): # TODO: should this be ``.to`` (see below)? fqsn: str tid: Union[str, int] # unique transaction id size: float price: float cost: float # commisions or other additional costs dt: datetime expiry: Optional[datetime] = None # optional key normally derived from the broker # backend which ensures the instrument-symbol this record # is for is truly unique. bsuid: Optional[Union[str, int]] = None # optional fqsn for the source "asset"/money symbol? # from: Optional[str] = None def iter_by_dt( clears: dict[str, Any], ) -> Iterator[tuple[str, dict]]: ''' Iterate entries of a ``clears: dict`` table sorted by entry recorded datetime presumably set at the ``'dt'`` field in each entry. ''' for tid, data in sorted( list(clears.items()), key=lambda item: item[1]['dt'], ): yield tid, data class Position(Struct): ''' Basic pp (personal/piker position) model with attached clearing transaction history. ''' symbol: Symbol # can be +ve or -ve for long/short size: float # "breakeven price" above or below which pnl moves above and below # zero for the entirety of the current "trade state". ppu: float # unique backend symbol id bsuid: str split_ratio: Optional[int] = None # ordered record of known constituent trade messages clears: dict[ Union[str, int, Status], # trade id dict[str, Any], # transaction history summaries ] = {} first_clear_dt: Optional[datetime] = None expiry: Optional[datetime] = None def to_dict(self) -> dict: return { f: getattr(self, f) for f in self.__struct_fields__ } def to_pretoml(self) -> tuple[str, dict]: ''' Prep this position's data contents for export to toml including re-structuring of the ``.clears`` table to an array of inline-subtables for better ``pps.toml`` compactness. ''' d = self.to_dict() clears = d.pop('clears') expiry = d.pop('expiry') if self.split_ratio is None: d.pop('split_ratio') # should be obvious from clears/event table d.pop('first_clear_dt') # TODO: we need to figure out how to have one top level # listing venue here even when the backend isn't providing # it via the trades ledger.. # drop symbol obj in serialized form s = d.pop('symbol') fqsn = s.front_fqsn() if self.expiry is None: d.pop('expiry', None) elif expiry: d['expiry'] = str(expiry) toml_clears_list = [] # reverse sort so latest clears are at top of section? for tid, data in iter_by_dt(clears): inline_table = toml.TomlDecoder().get_empty_inline_table() # serialize datetime to parsable `str` inline_table['dt'] = str(data['dt']) # insert optional clear fields in column order for k in ['ppu', 'accum_size']: val = data.get(k) if val: inline_table[k] = val # insert required fields for k in ['price', 'size', 'cost']: inline_table[k] = data[k] inline_table['tid'] = tid toml_clears_list.append(inline_table) d['clears'] = toml_clears_list return fqsn, d def ensure_state(self) -> None: ''' Audit either the `.size` and `.ppu` local instance vars against the clears table calculations and return the calc-ed values if they differ and log warnings to console. ''' clears = list(self.clears.values()) self.first_clear_dt = min(list(entry['dt'] for entry in clears)) last_clear = clears[-1] csize = self.calc_size() accum = last_clear['accum_size'] if not self.expired(): if ( csize != accum and csize != round(accum * self.split_ratio or 1) ): raise ValueError(f'Size mismatch: {csize}') else: assert csize == 0, 'Contract is expired but non-zero size?' if self.size != csize: log.warning( 'Position state mismatch:\n' f'{self.size} => {csize}' ) self.size = csize cppu = self.calc_ppu() ppu = last_clear['ppu'] if ( cppu != ppu and self.split_ratio is not None # handle any split info entered (for now) manually by user and cppu != (ppu / self.split_ratio) ): raise ValueError(f'PPU mismatch: {cppu}') if self.ppu != cppu: log.warning( 'Position state mismatch:\n' f'{self.ppu} => {cppu}' ) self.ppu = cppu def update_from_msg( self, msg: BrokerdPosition, ) -> None: # XXX: better place to do this? symbol = self.symbol lot_size_digits = symbol.lot_size_digits ppu, size = ( round( msg['avg_price'], ndigits=symbol.tick_size_digits ), round( msg['size'], ndigits=lot_size_digits ), ) self.ppu = ppu self.size = size @property def dsize(self) -> float: ''' The "dollar" size of the pp, normally in trading (fiat) unit terms. ''' return self.ppu * self.size # TODO: idea: "real LIFO" dynamic positioning. # - when a trade takes place where the pnl for # the (set of) trade(s) is below the breakeven price # it may be that the trader took a +ve pnl on a short(er) # term trade in the same account. # - in this case we could recalc the be price to # be reverted back to it's prior value before the nearest term # trade was opened.? # def lifo_price() -> float: # ... def iter_clears(self) -> Iterator[tuple[str, dict]]: ''' Iterate the internally managed ``.clears: dict`` table in datetime-stamped order. ''' return iter_by_dt(self.clears) def calc_ppu( self, # include transaction cost in breakeven price # and presume the worst case of the same cost # to exit this transaction (even though in reality # it will be dynamic based on exit stratetgy). cost_scalar: float = 2, ) -> float: ''' Compute the "price-per-unit" price for the given non-zero sized rolling position. The recurrence relation which computes this (exponential) mean per new clear which **increases** the accumulative postiion size is: ppu[-1] = ( ppu[-2] * accum_size[-2] + ppu[-1] * size ) / accum_size[-1] where `cost_basis` for the current step is simply the price * size of the most recent clearing transaction. ''' asize_h: list[float] = [] # historical accumulative size ppu_h: list[float] = [] # historical price-per-unit tid: str entry: dict[str, Any] for (tid, entry) in self.iter_clears(): clear_size = entry['size'] clear_price = entry['price'] last_accum_size = asize_h[-1] if asize_h else 0 accum_size = last_accum_size + clear_size accum_sign = copysign(1, accum_size) sign_change: bool = False if accum_size == 0: ppu_h.append(0) asize_h.append(0) continue if accum_size == 0: ppu_h.append(0) asize_h.append(0) continue # test if the pp somehow went "passed" a net zero size state # resulting in a change of the "sign" of the size (+ve for # long, -ve for short). sign_change = ( copysign(1, last_accum_size) + accum_sign == 0 and last_accum_size != 0 ) # since we passed the net-zero-size state the new size # after sum should be the remaining size the new # "direction" (aka, long vs. short) for this clear. if sign_change: clear_size = accum_size abs_diff = abs(accum_size) asize_h.append(0) ppu_h.append(0) else: # old size minus the new size gives us size diff with # +ve -> increase in pp size # -ve -> decrease in pp size abs_diff = abs(accum_size) - abs(last_accum_size) # XXX: LIFO breakeven price update. only an increaze in size # of the position contributes the breakeven price, # a decrease does not (i.e. the position is being made # smaller). # abs_clear_size = abs(clear_size) abs_new_size = abs(accum_size) if abs_diff > 0: cost_basis = ( # cost basis for this clear clear_price * abs(clear_size) + # transaction cost accum_sign * cost_scalar * entry['cost'] ) if asize_h: size_last = abs(asize_h[-1]) cb_last = ppu_h[-1] * size_last ppu = (cost_basis + cb_last) / abs_new_size else: ppu = cost_basis / abs_new_size ppu_h.append(ppu) asize_h.append(accum_size) else: # on "exit" clears from a given direction, # only the size changes not the price-per-unit # need to be updated since the ppu remains constant # and gets weighted by the new size. asize_h.append(accum_size) ppu_h.append(ppu_h[-1]) final_ppu = ppu_h[-1] if ppu_h else 0 # handle any split info entered (for now) manually by user if self.split_ratio is not None: final_ppu /= self.split_ratio return final_ppu def expired(self) -> bool: ''' Predicate which checks if the contract/instrument is past its expiry. ''' return bool(self.expiry) and self.expiry < now() def calc_size(self) -> float: ''' Calculate the unit size of this position in the destination asset using the clears/trade event table; zero if expired. ''' size: float = 0 # time-expired pps (normally derivatives) are "closed" # and have a zero size. if self.expired(): return 0 for tid, entry in self.clears.items(): size += entry['size'] if self.split_ratio is not None: size = round(size * self.split_ratio) return size def minimize_clears( self, ) -> dict[str, dict]: ''' Minimize the position's clears entries by removing all transactions before the last net zero size to avoid unecessary history irrelevant to the current pp state. ''' size: float = 0 clears_since_zero: list[tuple(str, dict)] = [] # TODO: we might just want to always do this when iterating # a ledger? keep a state of the last net-zero and only do the # full iterate when no state was stashed? # scan for the last "net zero" position by iterating # transactions until the next net-zero size, rinse, repeat. for tid, clear in self.clears.items(): size += clear['size'] clears_since_zero.append((tid, clear)) if size == 0: clears_since_zero.clear() self.clears = dict(clears_since_zero) return self.clears def add_clear( self, t: Transaction, ) -> dict: ''' Update clearing table and populate rolling ppu and accumulative size in both the clears entry and local attrs state. ''' clear = self.clears[t.tid] = { 'cost': t.cost, 'price': t.price, 'size': t.size, 'dt': t.dt, } # TODO: compute these incrementally instead # of re-looping through each time resulting in O(n**2) # behaviour..? # NOTE: we compute these **after** adding the entry in order to # make the recurrence relation math work inside # ``.calc_size()``. self.size = clear['accum_size'] = self.calc_size() self.ppu = clear['ppu'] = self.calc_ppu() return clear def sugest_split(self) -> float: ... class PpTable(Struct): brokername: str acctid: str pps: dict[str, Position] conf: Optional[dict] = {} def update_from_trans( self, trans: dict[str, Transaction], cost_scalar: float = 2, ) -> dict[str, Position]: pps = self.pps updated: dict[str, Position] = {} # lifo update all pps from records for tid, t in trans.items(): pp = pps.setdefault( t.bsuid, # if no existing pp, allocate fresh one. Position( Symbol.from_fqsn( t.fqsn, info={}, ), size=0.0, ppu=0.0, bsuid=t.bsuid, expiry=t.expiry, ) ) clears = pp.clears if clears: first_clear_dt = pp.first_clear_dt # don't do updates for ledger records we already have # included in the current pps state. if ( t.tid in clears or first_clear_dt and t.dt < first_clear_dt ): # NOTE: likely you'll see repeats of the same # ``Transaction`` passed in here if/when you are restarting # a ``brokerd.ib`` where the API will re-report trades from # the current session, so we need to make sure we don't # "double count" these in pp calculations. continue # update clearing table pp.add_clear(t) updated[t.bsuid] = pp # minimize clears tables and update sizing. for bsuid, pp in updated.items(): pp.ensure_state() return updated def dump_active( self, ) -> tuple[ dict[str, Position], dict[str, Position] ]: ''' Iterate all tabulated positions, render active positions to a ``dict`` format amenable to serialization (via TOML) and drop from state (``.pps``) as well as return in a ``dict`` all ``Position``s which have recently closed. ''' # NOTE: newly closed position are also important to report/return # since a consumer, like an order mode UI ;), might want to react # based on the closure (for example removing the breakeven line # and clearing the entry from any lists/monitors). closed_pp_objs: dict[str, Position] = {} open_pp_objs: dict[str, Position] = {} pp_objs = self.pps for bsuid in list(pp_objs): pp = pp_objs[bsuid] # XXX: debug hook for size mismatches # qqqbsuid = 320227571 # if bsuid == qqqbsuid: # breakpoint() pp.ensure_state() if ( # "net-zero" is a "closed" position pp.size == 0 # time-expired pps (normally derivatives) are "closed" or (pp.expiry and pp.expiry < now()) ): # for expired cases pp.size = 0 # NOTE: we DO NOT pop the pp here since it can still be # used to check for duplicate clears that may come in as # new transaction from some backend API and need to be # ignored; the closed positions won't be written to the # ``pps.toml`` since ``pp_active_entries`` above is what's # written. closed_pp_objs[bsuid] = pp else: open_pp_objs[bsuid] = pp return open_pp_objs, closed_pp_objs def to_toml( self, ) -> dict[str, Any]: active, closed = self.dump_active() # ONLY dict-serialize all active positions; those that are closed # we don't store in the ``pps.toml``. to_toml_dict = {} for bsuid, pos in active.items(): # keep the minimal amount of clears that make up this # position since the last net-zero state. pos.minimize_clears() pos.ensure_state() # serialize to pre-toml form fqsn, asdict = pos.to_pretoml() log.info(f'Updating active pp: {fqsn}') # XXX: ugh, it's cuz we push the section under # the broker name.. maybe we need to rethink this? brokerless_key = fqsn.removeprefix(f'{self.brokername}.') to_toml_dict[brokerless_key] = asdict return to_toml_dict def write_config(self) -> None: ''' Write the current position table to the user's ``pps.toml``. ''' # TODO: show diff output? # https://stackoverflow.com/questions/12956957/print-diff-of-python-dictionaries print(f'Updating ``pps.toml`` for {path}:\n') # active, closed_pp_objs = table.dump_active() pp_entries = self.to_toml() self.conf[self.brokername][self.acctid] = pp_entries # TODO: why tf haven't they already done this for inline # tables smh.. enc = PpsEncoder(preserve=True) # table_bs_type = type(toml.TomlDecoder().get_empty_inline_table()) enc.dump_funcs[ toml.decoder.InlineTableDict ] = enc.dump_inline_table config.write( self.conf, 'pps', encoder=enc, ) def load_pps_from_ledger( brokername: str, acctname: str, # post normalization filter on ledger entries to be processed filter_by: Optional[list[dict]] = None, ) -> tuple[ dict[str, Transaction], dict[str, Position], ]: ''' Open a ledger file by broker name and account and read in and process any trade records into our normalized ``Transaction`` form and then update the equivalent ``Pptable`` and deliver the two bsuid-mapped dict-sets of the transactions and pps. ''' with ( open_trade_ledger(brokername, acctname) as ledger, open_pps(brokername, acctname) as table, ): if not ledger: # null case, no ledger file with content return {} mod = get_brokermod(brokername) src_records: dict[str, Transaction] = mod.norm_trade_records(ledger) if filter_by: records = {} bsuids = set(filter_by) for tid, r in src_records.items(): if r.bsuid in bsuids: records[tid] = r else: records = src_records updated = table.update_from_trans(records) return records, updated # TODO: instead see if we can hack tomli and tomli-w to do the same: # - https://github.com/hukkin/tomli # - https://github.com/hukkin/tomli-w class PpsEncoder(toml.TomlEncoder): ''' Special "styled" encoder that makes a ``pps.toml`` redable and compact by putting `.clears` tables inline and everything else flat-ish. ''' separator = ',' def dump_list(self, v): ''' Dump an inline list with a newline after every element and with consideration for denoted inline table types. ''' retval = "[\n" for u in v: if isinstance(u, toml.decoder.InlineTableDict): out = self.dump_inline_table(u) else: out = str(self.dump_value(u)) retval += " " + out + "," + "\n" retval += "]" return retval def dump_inline_table(self, section): """Preserve inline table in its compact syntax instead of expanding into subsection. https://github.com/toml-lang/toml#user-content-inline-table """ val_list = [] for k, v in section.items(): # if isinstance(v, toml.decoder.InlineTableDict): if isinstance(v, dict): val = self.dump_inline_table(v) else: val = str(self.dump_value(v)) val_list.append(k + " = " + val) retval = "{ " + ", ".join(val_list) + " }" return retval def dump_sections(self, o, sup): retstr = "" if sup != "" and sup[-1] != ".": sup += '.' retdict = self._dict() arraystr = "" for section in o: qsection = str(section) value = o[section] if not re.match(r'^[A-Za-z0-9_-]+$', section): qsection = toml.encoder._dump_str(section) # arrayoftables = False if ( self.preserve and isinstance(value, toml.decoder.InlineTableDict) ): retstr += ( qsection + " = " + self.dump_inline_table(o[section]) + '\n' # only on the final terminating left brace ) # XXX: this code i'm pretty sure is just blatantly bad # and/or wrong.. # if isinstance(o[section], list): # for a in o[section]: # if isinstance(a, dict): # arrayoftables = True # if arrayoftables: # for a in o[section]: # arraytabstr = "\n" # arraystr += "[[" + sup + qsection + "]]\n" # s, d = self.dump_sections(a, sup + qsection) # if s: # if s[0] == "[": # arraytabstr += s # else: # arraystr += s # while d: # newd = self._dict() # for dsec in d: # s1, d1 = self.dump_sections(d[dsec], sup + # qsection + "." + # dsec) # if s1: # arraytabstr += ("[" + sup + qsection + # "." + dsec + "]\n") # arraytabstr += s1 # for s1 in d1: # newd[dsec + "." + s1] = d1[s1] # d = newd # arraystr += arraytabstr elif isinstance(value, dict): retdict[qsection] = o[section] elif o[section] is not None: retstr += ( qsection + " = " + str(self.dump_value(o[section])) ) # if not isinstance(value, dict): if not isinstance(value, toml.decoder.InlineTableDict): # inline tables should not contain newlines: # https://toml.io/en/v1.0.0#inline-table retstr += '\n' else: raise ValueError(value) retstr += arraystr return (retstr, retdict) @cm def open_pps( brokername: str, acctid: str, write_on_exit: bool = True, ) -> PpTable: ''' Read out broker-specific position entries from incremental update file: ``pps.toml``. ''' conf, path = config.load('pps') brokersection = conf.setdefault(brokername, {}) pps = brokersection.setdefault(acctid, {}) # TODO: ideally we can pass in an existing # pps state to this right? such that we # don't have to do a ledger reload all the # time.. a couple ideas I can think of, # - mirror this in some client side actor which # does the actual ledger updates (say the paper # engine proc if we decide to always spawn it?), # - do diffs against updates from the ledger writer # actor and the in-mem state here? pp_objs = {} table = PpTable( brokername, acctid, pp_objs, conf=conf, ) # unmarshal/load ``pps.toml`` config entries into object form # and update `PpTable` obj entries. for fqsn, entry in pps.items(): bsuid = entry['bsuid'] # convert clears sub-tables (only in this form # for toml re-presentation) back into a master table. clears_list = entry['clears'] # index clears entries in "object" form by tid in a top # level dict instead of a list (as is presented in our # ``pps.toml``). clears = pp_objs.setdefault(bsuid, {}) # TODO: should be make a ``Struct`` for clear/event entries? # convert "clear events table" from the toml config (list of # a dicts) and load it into object form for use in position # processing of new clear events. trans: list[Transaction] = [] for clears_table in clears_list: tid = clears_table.pop('tid') dtstr = clears_table['dt'] dt = pendulum.parse(dtstr) clears_table['dt'] = dt trans.append(Transaction( fqsn=bsuid, bsuid=bsuid, tid=tid, size=clears_table['size'], price=clears_table['price'], cost=clears_table['cost'], dt=dt, )) clears[tid] = clears_table size = entry['size'] # TODO: remove but, handle old field name for now ppu = entry.get('ppu', entry.get('be_price', 0)) split_ratio = entry.get('split_ratio') expiry = entry.get('expiry') if expiry: expiry = pendulum.parse(expiry) pp = pp_objs[bsuid] = Position( Symbol.from_fqsn(fqsn, info={}), size=size, ppu=ppu, split_ratio=split_ratio, expiry=expiry, bsuid=entry['bsuid'], ) # XXX: super critical, we need to be sure to include # all pps.toml clears to avoid reusing clears that were # already included in the current incremental update # state, since today's records may have already been # processed! for t in trans: pp.add_clear(t) # audit entries loaded from toml pp.ensure_state() try: yield table finally: if write_on_exit: table.write_config() if __name__ == '__main__': import sys args = sys.argv assert len(args) > 1, 'Specifiy account(s) from `brokers.toml`' args = args[1:] for acctid in args: broker, name = acctid.split('.') trans, updated_pps = load_pps_from_ledger(broker, name) print( f'Processing transactions into pps for {broker}:{acctid}\n' f'{pformat(trans)}\n\n' f'{pformat(updated_pps)}' )