Open interest storage #42
|
@ -2,6 +2,8 @@
|
|||
from decimal import (
|
||||
Decimal,
|
||||
)
|
||||
import numpy as np
|
||||
import polars as pl
|
||||
import trio
|
||||
import tractor
|
||||
from datetime import datetime
|
||||
|
@ -10,6 +12,7 @@ from piker.brokers.deribit.api import (
|
|||
get_client,
|
||||
maybe_open_oi_feed,
|
||||
)
|
||||
from piker.storage import open_storage_client, StorageClient
|
||||
import sys
|
||||
import pyqtgraph as pg
|
||||
from PyQt6 import QtCore
|
||||
|
@ -163,6 +166,34 @@ async def max_pain_daemon(
|
|||
{option_type: open_interest}
|
||||
)
|
||||
|
||||
# Define the structured dtype
|
||||
dtype = np.dtype([
|
||||
('time', int),
|
||||
('oi', float),
|
||||
('oi_calc', float),
|
||||
])
|
||||
async def write_open_interest_on_file(msg: tuple, client: StorageClient):
|
||||
if 'oi' == msg[0]:
|
||||
nonlocal expiry_date
|
||||
timestamp = msg[1]['timestamp']
|
||||
strike_price = msg[1]["strike_price"]
|
||||
option_type = msg[1]['option_type'].lower()
|
||||
col_sym_key = f'btc-{expiry_date.lower()}-{strike_price}-{option_type}'
|
||||
|
||||
# Create the numpy array with sample data
|
||||
data = np.array([
|
||||
(
|
||||
int(timestamp),
|
||||
float(msg[1]['open_interest']),
|
||||
np.nan,
|
||||
),
|
||||
], dtype=dtype)
|
||||
|
||||
path = await client.write_oi(
|
||||
col_sym_key,
|
||||
data,
|
||||
)
|
||||
|
||||
def get_max_pain(
|
||||
oi_by_strikes: dict[str, dict[str, Decimal]]
|
||||
) -> dict[str, str | Decimal]:
|
||||
|
@ -188,9 +219,13 @@ async def max_pain_daemon(
|
|||
'max_pain': max_pain,
|
||||
}
|
||||
|
||||
async with maybe_open_oi_feed(
|
||||
instruments,
|
||||
) as oi_feed:
|
||||
async with (
|
||||
open_storage_client() as (_, storage),
|
||||
|
||||
maybe_open_oi_feed(
|
||||
instruments,
|
||||
) as oi_feed,
|
||||
):
|
||||
# Initialize QApplication
|
||||
app = QApplication(sys.argv)
|
||||
|
||||
|
@ -203,9 +238,21 @@ async def max_pain_daemon(
|
|||
|
||||
async for msg in oi_feed:
|
||||
|
||||
# In memory oi_by_strikes dict, all message are filtered here
|
||||
# and the dict is updated with the open interest data
|
||||
update_oi_by_strikes(msg)
|
||||
|
||||
# Write on file using storage client
|
||||
await write_open_interest_on_file(msg, storage)
|
||||
|
||||
# Max pain calcs, before start we must gather all the open interest for
|
||||
# all the strike prices and option types available for a expiration date
|
||||
if check_if_complete(oi_by_strikes):
|
||||
if 'oi' == msg[0]:
|
||||
# Here we must read for the filesystem all the latest open interest value for
|
||||
# each instrument for that specific expiration date, that means look up for the
|
||||
# last update got the instrument btc-{expity_date}-*oi1s.parquet (1s because is
|
||||
# hardcoded to something, sorry.)
|
||||
timestamp = msg[1]['timestamp']
|
||||
max_pain = get_max_pain(oi_by_strikes)
|
||||
intrinsic_values = get_total_intrinsic_values(oi_by_strikes)
|
||||
|
|
|
@ -138,6 +138,16 @@ class StorageClient(
|
|||
) -> None:
|
||||
...
|
||||
|
||||
async def write_oi(
|
||||
self,
|
||||
fqme: str,
|
||||
oi: np.ndarray,
|
||||
append_and_duplicate: bool = True,
|
||||
limit: int = int(800e3),
|
||||
|
||||
) -> None:
|
||||
...
|
||||
|
||||
|
||||
class TimeseriesNotFound(Exception):
|
||||
'''
|
||||
|
|
|
@ -111,6 +111,24 @@ def mk_ohlcv_shm_keyed_filepath(
|
|||
return path
|
||||
|
||||
|
||||
def mk_oi_shm_keyed_filepath(
|
||||
fqme: str,
|
||||
period: float | int,
|
||||
datadir: Path,
|
||||
|
||||
) -> Path:
|
||||
|
||||
if period < 1.:
|
||||
raise ValueError('Sample period should be >= 1.!?')
|
||||
|
||||
path: Path = (
|
||||
datadir
|
||||
/
|
||||
f'{fqme}.oi{int(period)}s.parquet'
|
||||
)
|
||||
return path
|
||||
|
||||
|
||||
def unpack_fqme_from_parquet_filepath(path: Path) -> str:
|
||||
|
||||
filename: str = str(path.name)
|
||||
|
@ -172,7 +190,11 @@ class NativeStorageClient:
|
|||
|
||||
key: str = path.name.rstrip('.parquet')
|
||||
fqme, _, descr = key.rpartition('.')
|
||||
prefix, _, suffix = descr.partition('ohlcv')
|
||||
if 'ohlcv' in descr:
|
||||
prefix, _, suffix = descr.partition('ohlcv')
|
||||
elif 'oi' in descr:
|
||||
prefix, _, suffix = descr.partition('oi')
|
||||
|
||||
period: int = int(suffix.strip('s'))
|
||||
|
||||
# cache description data
|
||||
|
@ -369,6 +391,61 @@ class NativeStorageClient:
|
|||
timeframe,
|
||||
)
|
||||
|
||||
def _write_oi(
|
||||
self,
|
||||
fqme: str,
|
||||
oi: np.ndarray,
|
||||
|
||||
) -> Path:
|
||||
'''
|
||||
Sync version of the public interface meth, since we don't
|
||||
currently actually need or support an async impl.
|
||||
|
||||
'''
|
||||
path: Path = mk_oi_shm_keyed_filepath(
|
||||
fqme=fqme,
|
||||
period=1,
|
||||
datadir=self._datadir,
|
||||
)
|
||||
if isinstance(oi, np.ndarray):
|
||||
new_df: pl.DataFrame = tsp.np2pl(oi)
|
||||
else:
|
||||
new_df = oi
|
||||
|
||||
if path.exists():
|
||||
old_df = pl.read_parquet(path)
|
||||
df = pl.concat([old_df, new_df])
|
||||
else:
|
||||
df = new_df
|
||||
|
||||
start = time.time()
|
||||
df.write_parquet(path)
|
||||
delay: float = round(
|
||||
time.time() - start,
|
||||
ndigits=6,
|
||||
)
|
||||
log.info(
|
||||
f'parquet write took {delay} secs\n'
|
||||
f'file path: {path}'
|
||||
)
|
||||
return path
|
||||
|
||||
async def write_oi(
|
||||
self,
|
||||
fqme: str,
|
||||
oi: np.ndarray,
|
||||
|
||||
) -> Path:
|
||||
'''
|
||||
Write input oi time series for fqme and sampling period
|
||||
to (local) disk.
|
||||
|
||||
'''
|
||||
return self._write_oi(
|
||||
fqme,
|
||||
oi,
|
||||
)
|
||||
|
||||
async def delete_ts(
|
||||
self,
|
||||
key: str,
|
||||
|
|
Loading…
Reference in New Issue