Compare commits

..

15 Commits

Author SHA1 Message Date
Tyler Goodlet 084385e808 Add `.ui` and `.dev` deps groups via `poetry` Bo
Since we eventually want to allow users to minimally deploy `pikerd`
service-tree (aka distributed cross host) installs, we need to offer
a "headless" deps group. Really this is just the core dep set minus Qt
and some aux search related libs (for now).

The new `.dev` group is for adding hacking and testing tools including
`xonsh` since that will eventually be our REPL of choice more then
likely B)

Oh, and fix the namespace path (was a typo) for the `ledger` CLI and
of course bump the lock file.
2023-08-30 16:54:48 -04:00
Tyler Goodlet bb9ca8636c TOSQUASH 2e6b1330f375c310ad: adding .dev / .ui groups 2023-08-30 16:45:30 -04:00
Tyler Goodlet 93e8c9853a Pin tomlkit as a path dep for now 2023-08-30 16:42:42 -04:00
Tyler Goodlet 555f4a69e8 Factor prefer wheels deps into new `ahot_overrides`
Makes it easier to pass the overrides to multiple p2n functions (like
hopefully `.mkPoetryEnv`). Also, add some commented attempts at using
`mkPoetryEnv` and todo list for "why", remove the `poetry` CLI main
point from the pyproject.toml, bump the poetry lock file.
2023-08-30 16:42:42 -04:00
Tyler Goodlet e6ecbb7892 MVP get us working fully on nixos
NB: for now this is linking to a presumed local clone of the
`poetry2nix` repo since part of fixing what was adjusted here needs to
be patched upstream, which means hackin on the p2n repo in tandem B)

Since there's some dependency build issues we need
to tweak the following to get baseline `nix develop` working:
- drop `python-levenshtein` (required by `fuzzywuzzy[speedup]`) for now
  since the overlay and/or wheel install needs to be properly figured
  out.
- build `pyqt5` from src for the moment (since `preferWheel` doesn't
  seem to be workin?) despite it taking forever XD
- add in the `flake.lock` file.
2023-08-30 16:42:42 -04:00
Tyler Goodlet 1430d37c95 MVP get us working fully on nixos
NB: for now this is linking to a presumed local clone of the
`poetry2nix` repo since part of fixing what was adjusted here needs to
be patched upstream, which means hackin on the p2n repo in tandem B)

Since there's some dependency build issues we need
to tweak the following to get baseline `nix develop` working:
- drop `python-levenshtein` (required by `fuzzywuzzy[speedup]`) for now
  since the overlay and/or wheel install needs to be properly figured
  out.
- build `pyqt5` from src for the moment (since `preferWheel` doesn't
  seem to be workin?) despite it taking forever XD
- add in the `flake.lock` file.
2023-08-30 16:42:40 -04:00
Tyler Goodlet 19a6f5c25c Drop `marketstore` mod import from CLIs loader
Means commenting out the `data.cli.ingest()` as it will be deleted in
the up coming #486 anyway.
2023-08-30 16:41:43 -04:00
Tyler Goodlet 7d84b5a3e5 Bump `msgspect`, `polars` versions and add CLI script eps 2023-08-30 16:39:05 -04:00
Tyler Goodlet db0433423c Bump `msgspec`, `polars` versions and add CLI script eps 2023-08-30 16:38:59 -04:00
Guillermo Rodriguez 757b209f88
Merge pull request #531 from di1ara/brokers-toml-fix
add tests for brokers.toml file
2023-07-20 15:11:09 -03:00
di1ara 9c470846a6 added the error name 2023-07-20 13:45:50 -04:00
di1ara 5fd0e5020f changed the function name and added a doc string explaining 2023-07-20 13:38:33 -04:00
di1ara 390faeef46 deleted the comment and white spaces 2023-07-19 15:09:32 -04:00
di1ara 41ee931bc6 add tests for brokers.toml file 2023-07-17 20:02:52 -04:00
ebisu4 a12b008a15
Merge pull request #525 from pikers/msgspec_struct_updates
`msgspec` struct derivative updates
2023-06-27 20:00:09 +02:00
144 changed files with 9109 additions and 22593 deletions

View File

@ -1,161 +1,235 @@
piker
-----
trading gear for hackers
trading gear for hackers.
|gh_actions|
.. |gh_actions| image:: https://img.shields.io/endpoint.svg?url=https%3A%2F%2Factions-badge.atrox.dev%2Fpikers%2Fpiker%2Fbadge&style=popout-square
:target: https://actions-badge.atrox.dev/piker/pikers/goto
``piker`` is a broker agnostic, next-gen FOSS toolset and runtime for
real-time computational trading targeted at `hardcore Linux users
<comp_trader>`_ .
``piker`` is a broker agnostic, next-gen FOSS toolset for real-time
computational trading targeted at `hardcore Linux users <comp_trader>`_ .
we use much bleeding edge tech including (but not limited to):
we use as much bleeding edge tech as possible including (but not limited to):
- latest python for glue_
- uv_ for packaging and distribution
- trio_ & tractor_ for our distributed `structured concurrency`_ runtime
- Qt_ for pristine low latency UIs
- pyqtgraph_ (which we've extended) for real-time charting and graphics
- ``polars`` ``numpy`` and ``numba`` for redic `fast numerics`_
- `apache arrow and parquet`_ for time-series storage
- trio_ for `structured concurrency`_
- tractor_ for distributed, multi-core, real-time streaming
- marketstore_ for historical and real-time tick data persistence and sharing
- techtonicdb_ for L2 book storage
- Qt_ for pristine high performance UIs
- pyqtgraph_ for real-time charting
- ``numpy`` and ``numba`` for `fast numerics`_
potential projects we might integrate with soon,
- (already prototyped in ) techtonicdb_ for L2 book storage
.. _comp_trader: https://jfaleiro.wordpress.com/2019/10/09/computational-trader/
.. _glue: https://numpy.org/doc/stable/user/c-info.python-as-glue.html#using-python-as-glue
.. _uv: https://docs.astral.sh/uv/
.. |travis| image:: https://img.shields.io/travis/pikers/piker/master.svg
:target: https://travis-ci.org/pikers/piker
.. _trio: https://github.com/python-trio/trio
.. _tractor: https://github.com/goodboy/tractor
.. _structured concurrency: https://trio.discourse.group/
.. _marketstore: https://github.com/alpacahq/marketstore
.. _techtonicdb: https://github.com/0b01/tectonicdb
.. _Qt: https://www.qt.io/
.. _pyqtgraph: https://github.com/pyqtgraph/pyqtgraph
.. _apache arrow and parquet: https://arrow.apache.org/faq/
.. _glue: https://numpy.org/doc/stable/user/c-info.python-as-glue.html#using-python-as-glue
.. _fast numerics: https://zerowithdot.com/python-numpy-and-pandas-performance/
.. _techtonicdb: https://github.com/0b01/tectonicdb
.. _comp_trader: https://jfaleiro.wordpress.com/2019/10/09/computational-trader/
focus and feats:
focus and features:
*******************
- 100% federated: your code, your hardware, your data feeds, your broker fills.
- zero web: low latency, native software that doesn't try to re-invent the OS
- maximal **privacy**: prevent brokers and mms from knowing your
planz; smack their spreads with dark volume.
- zero clutter: modal, context oriented UIs that echew minimalism, reduce
thought noise and encourage un-emotion.
- first class parallelism: built from the ground up on next-gen structured concurrency
primitives.
- traders first: broker/exchange/asset-class agnostic
- systems grounded: real-time financial signal processing that will
make any queuing or DSP eng juice their shorts.
- non-tina UX: sleek, powerful keyboard driven interaction with expected use in tiling wms
- data collaboration: every process and protocol is multi-host scalable.
- fight club ready: zero interest in adoption by suits; no corporate friendly license, ever.
fitting with these tenets, we're always open to new framework suggestions and ideas.
building the best looking, most reliable, keyboard friendly trading
platform is the dream; join the cause.
install
*******
``piker`` is currently under heavy pre-alpha development and as such
should be cloned from this repo and hacked on directly.
for a development install::
git clone git@github.com:pikers/piker.git
cd piker
virtualenv env
source ./env/bin/activate
pip install -r requirements.txt -e .
install for nixos
*****************
for users of `NixOS` we offer a development shell envoirment that can be
loaded with::
nix-shell develop.nix
this will setup the required python environment to run piker, make sure to
run::
pip install -r requirements.txt -e .
once after loading the shell
install for tinas
*****************
for windows peeps you can start by installing all the prerequisite software:
- install git with all default settings - https://git-scm.com/download/win
- install anaconda all default settings - https://www.anaconda.com/products/individual
- install microsoft build tools (check the box for Desktop development for C++, you might be able to uncheck some optional downloads) - https://visualstudio.microsoft.com/visual-cpp-build-tools/
- install visual studio code default settings - https://code.visualstudio.com/download
then, `crack a conda shell`_ and run the following commands::
mkdir code # create code directory
cd code # change directory to code
git clone https://github.com/pikers/piker.git # downloads piker installation package from github
cd piker # change directory to piker
conda create -n pikonda # creates conda environment named pikonda
conda activate pikonda # activates pikonda
conda install -c conda-forge python-levenshtein # in case it is not already installed
conda install pip # may already be installed
pip # will show if pip is installed
pip install -e . -r requirements.txt # install piker in editable mode
test Piker to see if it is working::
piker -b binance chart btcusdt.binance # formatting for loading a chart
piker -b kraken -b binance chart xbtusdt.kraken
piker -b kraken -b binance -b ib chart qqq.nasdaq.ib
piker -b ib chart tsla.nasdaq.ib
potential error::
FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\user\\AppData\\Roaming\\piker\\brokers.toml'
solution:
- navigate to file directory above (may be different on your machine, location should be listed in the error code)
- copy and paste file from 'C:\\Users\\user\\code\\data/brokers.toml' or create a blank file using notepad at the location above
Visual Studio Code setup:
- now that piker is installed we can set up vscode as the default terminal for running piker and editing the code
- open Visual Studio Code
- file --> Add Folder to Workspace --> C:\Users\user\code\piker (adds piker directory where all piker files are located)
- file --> Save Workspace As --> save it wherever you want and call it whatever you want, this is going to be your default workspace for running and editing piker code
- ctrl + shift + p --> start typing Python: Select Interpetter --> when the option comes up select it --> Select at the workspace level --> select the one that shows ('pikonda')
- change the default terminal to cmd.exe instead of powershell (default)
- now when you create a new terminal VScode should automatically activate you conda env so that piker can be run as the first command after a new terminal is created
also, try out fancyzones as part of powertoyz for a decent tiling windows manager to manage all the cool new software you are going to be running.
.. _conda installed: https://
.. _C++ build toolz: https://
.. _crack a conda shell: https://
.. _vscode: https://
.. link to the tina guide
.. _setup a coolio tiled wm console: https://
provider support
****************
fitting with these tenets, we're always open to new
framework/lib/service interop suggestions and ideas!
for live data feeds the in-progress set of supported brokers is:
- **100% federated**:
your code, your hardware, your data feeds, your broker fills.
- IB_ via ``ib_insync``, also see our `container docs`_
- binance_ and kraken_ for crypto over their public websocket API
- questrade_ (ish) which comes with effectively free L1
- **zero web**:
low latency as a prime objective, native UIs and modern IPC
protocols without trying to re-invent the "OS-as-an-app"..
coming soon...
- **maximal privacy**:
prevent brokers and mms from knowing your planz; smack their
spreads with dark volume from a VPN tunnel.
- webull_ via the reverse engineered public API
- yahoo via yliveticker_
- **zero clutter**:
modal, context oriented UIs that echew minimalism, reduce thought
noise and encourage un-emotion.
if you want your broker supported and they have an API let us know.
- **first class parallelism**:
built from the ground up on a next-gen structured concurrency
supervision sys.
- **traders first**:
broker/exchange/venue/asset-class/money-sys agnostic
- **systems grounded**:
real-time financial signal processing (fsp) that will make any
queuing or DSP eng juice their shorts.
- **non-tina UX**:
sleek, powerful keyboard driven interaction with expected use in
tiling wms (or maybe even a DDE).
- **data collab at scale**:
every actor-process and protocol is multi-host aware.
- **fight club ready**:
zero interest in adoption by suits; no corporate friendly license,
ever.
building the hottest looking, fastest, most reliable, keyboard
friendly FOSS trading platform is the dream; join the cause.
.. _IB: https://interactivebrokers.github.io/tws-api/index.html
.. _container docs: https://github.com/pikers/piker/tree/master/dockering/ib
.. _questrade: https://www.questrade.com/api/documentation
.. _kraken: https://www.kraken.com/features/api#public-market-data
.. _binance: https://github.com/pikers/piker/pull/182
.. _webull: https://github.com/tedchou12/webull
.. _yliveticker: https://github.com/yahoofinancelive/yliveticker
.. _coinbase: https://docs.pro.coinbase.com/#websocket-feed
a sane install with `uv`
************************
bc why install with `python` when you can faster with `rust` ::
check out our charts
********************
bet you weren't expecting this from the foss::
uv lock
piker -l info -b kraken -b binance chart btcusdt.binance --pdb
hacky install on nixos
**********************
``NixOS`` is our core devs' distro of choice for which we offer
a stringently defined development shell envoirment that can be loaded with::
this runs the main chart (currently with 1m sampled OHLC) in in debug
mode and you can practice paper trading using the following
micro-manual:
nix-shell default.nix
``order_mode`` (
edge triggered activation by any of the following keys,
``mouse-click`` on y-level to submit at that price
):
- ``f``/ ``ctl-f`` to stage buy
- ``d``/ ``ctl-d`` to stage sell
- ``a`` to stage alert
start a chart
*************
run a realtime OHLCV chart stand-alone::
``search_mode`` (
``ctl-l`` or ``ctl-space`` to open,
``ctl-c`` or ``ctl-space`` to close
) :
piker -l info chart btcusdt.spot.binance xmrusdt.spot.kraken
this runs a chart UI (with 1m sampled OHLCV) and shows 2 spot markets from 2 diff cexes
overlayed on the same graph. Use of `piker` without first starting
a daemon (`pikerd` - see below) means there is an implicit spawning of the
multi-actor-runtime (implemented as a `tractor` app).
For additional subsystem feats available through our chart UI see the
various sub-readmes:
- order control using a mouse-n-keyboard UX B)
- cross venue market-pair (what most call "symbol") search, select, overlay Bo
- financial-signal-processing (`piker.fsp`) write-n-reload to sub-chart BO
- src-asset derivatives scan for anal, like the infamous "max pain" XO
- begin typing to have symbol search automatically lookup
symbols from all loaded backend (broker) providers
- arrow keys and mouse click to navigate selection
- vi-like ``ctl-[hjkl]`` for navigation
spawn a daemon standalone
*************************
we call the root actor-process the ``pikerd``. it can be (and is
recommended normally to be) started separately from the ``piker
chart`` program::
you can also configure your position allocation limits from the
sidepane.
run in distributed mode
***********************
start the service manager and data feed daemon in the background and
connect to it::
pikerd -l info --pdb
the daemon does nothing until a ``piker``-client (like ``piker
chart``) connects and requests some particular sub-system. for
a connecting chart ``pikerd`` will spawn and manage at least,
- a data-feed daemon: ``datad`` which does all the work of comms with
the backend provider (in this case the ``binance`` cex).
- a paper-trading engine instance, ``paperboi.binance``, (if no live
account has been configured) which allows for auto/manual order
control against the live quote stream.
connect your chart::
*using* an actor-service (aka micro-daemon) manager which dynamically
supervises various sub-subsystems-as-services throughout the ``piker``
runtime-stack.
piker -l info -b kraken -b binance chart xmrusdt.binance --pdb
now you can (implicitly) connect your chart::
piker chart btcusdt.spot.binance
since ``pikerd`` was started separately you can now enjoy a persistent
real-time data stream tied to the daemon-tree's lifetime. i.e. the next
time you spawn a chart it will obviously not only load much faster
(since the underlying ``datad.binance`` is left running with its
in-memory IPC data structures) but also the data-feed and any order
mgmt states should be persistent until you finally cancel ``pikerd``.
enjoy persistent real-time data feeds tied to daemon lifetime. the next
time you spawn a chart it will load much faster since the data feed has
been cached and is now always running live in the background until you
kill ``pikerd``.
if anyone asks you what this project is about
*********************************************
you don't talk about it; just use it.
you don't talk about it.
how do i get involved?
@ -165,15 +239,6 @@ enter the matrix.
how come there ain't that many docs
***********************************
i mean we want/need them but building the core right has been higher
prio then marketting (and likely will stay that way Bp).
soo, suck it up bc,
- no one is trying to sell you on anything
- learning the code base is prolly way more valuable
- the UI/UXs are intended to be "intuitive" for any hacker..
we obviously need tonz help so if you want to start somewhere and
can't necessarily write "advanced" concurrent python/rust code, this
helping document literally anything might be the place for you!
suck it up, learn the code; no one is trying to sell you on anything.
also, we need lotsa help so if you want to start somewhere and can't
necessarily write serious code, this might be the place for you!

View File

@ -1,18 +1,10 @@
################
# ---- CEXY ----
################
[binance]
accounts.paper = 'paper'
accounts.usdtm = 'futes'
futes.use_testnet = false
futes.api_key = ''
futes.api_secret = ''
accounts.spot = 'spot'
spot.use_testnet = false
spot.api_key = ''
spot.api_secret = ''
[questrade]
refresh_token = ''
access_token = ''
api_server = 'https://api06.iq.questrade.com/'
expires_in = 1800
token_type = 'Bearer'
expires_at = 1616095326.355846
[deribit]
@ -32,18 +24,6 @@ key_secret = ''
key_passphrase = ''
################
# -- BROKERZ ---
################
[questrade]
refresh_token = ''
access_token = ''
api_server = 'https://api06.iq.questrade.com/'
expires_in = 1800
token_type = 'Bearer'
expires_at = 1616095326.355846
[ib]
hosts = [
'127.0.0.1',

View File

@ -1,134 +0,0 @@
with (import <nixpkgs> {});
let
glibStorePath = lib.getLib glib;
zlibStorePath = lib.getLib zlib;
zstdStorePath = lib.getLib zstd;
dbusStorePath = lib.getLib dbus;
libGLStorePath = lib.getLib libGL;
freetypeStorePath = lib.getLib freetype;
qt6baseStorePath = lib.getLib qt6.qtbase;
fontconfigStorePath = lib.getLib fontconfig;
libxkbcommonStorePath = lib.getLib libxkbcommon;
xcbutilcursorStorePath = lib.getLib xcb-util-cursor;
qtpyStorePath = lib.getLib python312Packages.qtpy;
pyqt6StorePath = lib.getLib python312Packages.pyqt6;
pyqt6SipStorePath = lib.getLib python312Packages.pyqt6-sip;
rapidfuzzStorePath = lib.getLib python312Packages.rapidfuzz;
qdarkstyleStorePath = lib.getLib python312Packages.qdarkstyle;
xorgLibX11StorePath = lib.getLib xorg.libX11;
xorgLibxcbStorePath = lib.getLib xorg.libxcb;
xorgxcbutilwmStorePath = lib.getLib xorg.xcbutilwm;
xorgxcbutilimageStorePath = lib.getLib xorg.xcbutilimage;
xorgxcbutilerrorsStorePath = lib.getLib xorg.xcbutilerrors;
xorgxcbutilkeysymsStorePath = lib.getLib xorg.xcbutilkeysyms;
xorgxcbutilrenderutilStorePath = lib.getLib xorg.xcbutilrenderutil;
in
stdenv.mkDerivation {
name = "piker-qt6-uv";
buildInputs = [
# System requirements.
glib
zlib
dbus
zstd
libGL
freetype
qt6.qtbase
libgcc.lib
fontconfig
libxkbcommon
# Xorg requirements
xcb-util-cursor
xorg.libxcb
xorg.libX11
xorg.xcbutilwm
xorg.xcbutilimage
xorg.xcbutilerrors
xorg.xcbutilkeysyms
xorg.xcbutilrenderutil
# Python requirements.
python312Full
python312Packages.uv
python312Packages.qdarkstyle
python312Packages.rapidfuzz
python312Packages.pyqt6
python312Packages.qtpy
];
src = null;
shellHook = ''
set -e
# Set the Qt plugin path
# export QT_DEBUG_PLUGINS=1
QTBASE_PATH="${qt6baseStorePath}/lib"
QT_PLUGIN_PATH="$QTBASE_PATH/qt-6/plugins"
QT_QPA_PLATFORM_PLUGIN_PATH="$QT_PLUGIN_PATH/platforms"
LIB_GCC_PATH="${libgcc.lib}/lib"
GLIB_PATH="${glibStorePath}/lib"
ZSTD_PATH="${zstdStorePath}/lib"
ZLIB_PATH="${zlibStorePath}/lib"
DBUS_PATH="${dbusStorePath}/lib"
LIBGL_PATH="${libGLStorePath}/lib"
FREETYPE_PATH="${freetypeStorePath}/lib"
FONTCONFIG_PATH="${fontconfigStorePath}/lib"
LIB_XKB_COMMON_PATH="${libxkbcommonStorePath}/lib"
XCB_UTIL_CURSOR_PATH="${xcbutilcursorStorePath}/lib"
XORG_LIB_X11_PATH="${xorgLibX11StorePath}/lib"
XORG_LIB_XCB_PATH="${xorgLibxcbStorePath}/lib"
XORG_XCB_UTIL_IMAGE_PATH="${xorgxcbutilimageStorePath}/lib"
XORG_XCB_UTIL_WM_PATH="${xorgxcbutilwmStorePath}/lib"
XORG_XCB_UTIL_RENDER_UTIL_PATH="${xorgxcbutilrenderutilStorePath}/lib"
XORG_XCB_UTIL_KEYSYMS_PATH="${xorgxcbutilkeysymsStorePath}/lib"
XORG_XCB_UTIL_ERRORS_PATH="${xorgxcbutilerrorsStorePath}/lib"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$QTBASE_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$QT_PLUGIN_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$QT_QPA_PLATFORM_PLUGIN_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$LIB_GCC_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$DBUS_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$GLIB_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$ZLIB_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$ZSTD_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$LIBGL_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$FONTCONFIG_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$FREETYPE_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$LIB_XKB_COMMON_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XCB_UTIL_CURSOR_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XORG_LIB_X11_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XORG_LIB_XCB_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XORG_XCB_UTIL_IMAGE_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XORG_XCB_UTIL_WM_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XORG_XCB_UTIL_RENDER_UTIL_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XORG_XCB_UTIL_KEYSYMS_PATH"
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$XORG_XCB_UTIL_ERRORS_PATH"
export LD_LIBRARY_PATH
RPDFUZZ_PATH="${rapidfuzzStorePath}/lib/python3.12/site-packages"
QDRKSTYLE_PATH="${qdarkstyleStorePath}/lib/python3.12/site-packages"
QTPY_PATH="${qtpyStorePath}/lib/python3.12/site-packages"
PYQT6_PATH="${pyqt6StorePath}/lib/python3.12/site-packages"
PYQT6_SIP_PATH="${pyqt6SipStorePath}/lib/python3.12/site-packages"
PATCH="$PATCH:$RPDFUZZ_PATH"
PATCH="$PATCH:$QDRKSTYLE_PATH"
PATCH="$PATCH:$QTPY_PATH"
PATCH="$PATCH:$PYQT6_PATH"
PATCH="$PATCH:$PYQT6_SIP_PATH"
export PATCH
# Install deps
uv lock
'';
}

View File

@ -1,34 +1,18 @@
with (import <nixpkgs> {});
with python310Packages;
stdenv.mkDerivation {
name = "poetry-env";
name = "pip-env";
buildInputs = [
# System requirements.
readline
# TODO: hacky non-poetry install stuff we need to get rid of!!
poetry
# virtualenv
# setuptools
# pip
# Python requirements (enough to get a virtualenv going).
python311Full
# obviously, and see below for hacked linking
python311Packages.pyqt5
python311Packages.pyqt5_sip
# python311Packages.qtpy
# numerics deps
python311Packages.levenshtein
python311Packages.fastparquet
python311Packages.polars
python310Full
virtualenv
setuptools
pyqt5
pip
];
# environment.sessionVariables = {
# LD_LIBRARY_PATH = "${pkgs.stdenv.cc.cc.lib}/lib";
# };
src = null;
shellHook = ''
# Allow the use of wheels.
@ -36,12 +20,13 @@ stdenv.mkDerivation {
# Augment the dynamic linker path
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${R}/lib/R/lib:${readline}/lib
export QT_QPA_PLATFORM_PLUGIN_PATH="${qt5.qtbase.bin}/lib/qt-${qt5.qtbase.version}/plugins";
if [ ! -d ".venv" ]; then
poetry install --with uis
if [ ! -d "venv" ]; then
virtualenv venv
fi
poetry shell
source venv/bin/activate
'';
}

View File

@ -19,9 +19,8 @@ services:
# other image tags available:
# https://github.com/waytrade/ib-gateway-docker#supported-tags
# image: waytrade/ib-gateway:1012.2i
image: ghcr.io/gnzsnz/ib-gateway:latest
# image: waytrade/ib-gateway:981.3j
image: waytrade/ib-gateway:1012.2i
restart: 'no' # restart on boot whenev there's a crash or user clicsk
network_mode: 'host'

View File

@ -117,57 +117,9 @@ SecondFactorDevice=
# If you use the IBKR Mobile app for second factor authentication,
# and you fail to complete the process before the time limit imposed
# by IBKR, this setting tells IBC whether to automatically restart
# the login sequence, giving you another opportunity to complete
# second factor authentication.
#
# Permitted values are 'yes' and 'no'.
#
# If this setting is not present or has no value, then the value
# of the deprecated ExitAfterSecondFactorAuthenticationTimeout is
# used instead. If this also has no value, then this setting defaults
# to 'no'.
#
# NB: you must be using IBC v3.14.0 or later to use this setting:
# earlier versions ignore it.
ReloginAfterSecondFactorAuthenticationTimeout=
# This setting is only relevant if
# ReloginAfterSecondFactorAuthenticationTimeout is set to 'yes',
# or if ExitAfterSecondFactorAuthenticationTimeout is set to 'yes'.
#
# It controls how long (in seconds) IBC waits for login to complete
# after the user acknowledges the second factor authentication
# alert at the IBKR Mobile app. If login has not completed after
# this time, IBC terminates.
# The default value is 60.
SecondFactorAuthenticationExitInterval=
# This setting specifies the timeout for second factor authentication
# imposed by IB. The value is in seconds. You should not change this
# setting unless you have reason to believe that IB has changed the
# timeout. The default value is 180.
SecondFactorAuthenticationTimeout=180
# DEPRECATED SETTING
# ------------------
#
# ExitAfterSecondFactorAuthenticationTimeout - THIS SETTING WILL BE
# REMOVED IN A FUTURE RELEASE. For IBC version 3.14.0 and later, see
# the notes for ReloginAfterSecondFactorAuthenticationTimeout above.
#
# For IBC versions earlier than 3.14.0: If you use the IBKR Mobile
# app for second factor authentication, and you fail to complete the
# process before the time limit imposed by IBKR, you can use this
# setting to tell IBC to exit: arrangements can then be made to
# automatically restart IBC in order to initiate the login sequence
# afresh. Otherwise, manual intervention at TWS's
# by IBKR, you can use this setting to tell IBC to exit: arrangements
# can then be made to automatically restart IBC in order to initiate
# the login sequence afresh. Otherwise, manual intervention at TWS's
# Second Factor Authentication dialog is needed to complete the
# login.
#
@ -180,18 +132,29 @@ SecondFactorAuthenticationTimeout=180
ExitAfterSecondFactorAuthenticationTimeout=no
# This setting is only relevant if
# ExitAfterSecondFactorAuthenticationTimeout is set to 'yes'.
#
# It controls how long (in seconds) IBC waits for login to complete
# after the user acknowledges the second factor authentication
# alert at the IBKR Mobile app. If login has not completed after
# this time, IBC terminates.
# The default value is 40.
SecondFactorAuthenticationExitInterval=
# Trading Mode
# ------------
#
# This indicates whether the live account or the paper trading
# account corresponding to the supplied credentials is to be used.
# The allowed values are 'live' (the default) and 'paper'.
#
# If this is set to 'live', then the credentials for the live
# account must be supplied. If it is set to 'paper', then either
# the live or the paper-trading credentials may be supplied.
# TWS 955 introduced a new Trading Mode combo box on its login
# dialog. This indicates whether the live account or the paper
# trading account corresponding to the supplied credentials is
# to be used. The allowed values are 'live' (the default) and
# 'paper'. For earlier versions of TWS this setting has no
# effect.
TradingMode=paper
TradingMode=
# Paper-trading Account Warning
@ -225,7 +188,7 @@ AcceptNonBrokerageAccountWarning=yes
#
# The default value is 60.
LoginDialogDisplayTimeout=60
LoginDialogDisplayTimeout=20
@ -254,15 +217,7 @@ LoginDialogDisplayTimeout=60
# but they are acceptable.
#
# The default is the current working directory when IBC is
# started, unless the TWS_SETTINGS_PATH setting in the relevant
# start script is set.
#
# If both this setting and TWS_SETTINGS_PATH are set, then this
# setting takes priority. Note that if they have different values,
# auto-restart will not work.
#
# NB: this setting is now DEPRECATED. You should use the
# TWS_SETTINGS_PATH setting in the relevant start script.
# started.
IbDir=/root/Jts
@ -329,32 +284,15 @@ ExistingSessionDetectedAction=primary
# Override TWS API Port Number
# ----------------------------
#
# If OverrideTwsApiPort is set to an integer, IBC changes the
# 'Socket port' in TWS's API configuration to that number shortly
# after startup (but note that for the FIX Gateway, this setting is
# actually stored in jts.ini rather than the Gateway's settings
# file). Leaving the setting blank will make no change to
# the current setting. This setting is only intended for use in
# certain specialized situations where the port number needs to
# be set dynamically at run-time, and for the FIX Gateway: most
# non-FIX users will never need it, so don't use it unless you know
# you need it.
OverrideTwsApiPort=4000
# Override TWS Master Client ID
# -----------------------------
#
# If OverrideTwsMasterClientID is set to an integer, IBC changes the
# 'Master Client ID' value in TWS's API configuration to that
# value shortly after startup. Leaving the setting blank will make
# no change to the current setting. This setting is only intended
# for use in certain specialized situations where the value needs to
# If OverrideTwsApiPort is set to an integer, IBC changes the
# 'Socket port' in TWS's API configuration to that number shortly
# after startup. Leaving the setting blank will make no change to
# the current setting. This setting is only intended for use in
# certain specialized situations where the port number needs to
# be set dynamically at run-time: most users will never need it,
# so don't use it unless you know you need it.
OverrideTwsMasterClientID=
; OverrideTwsApiPort=4002
# Read-only Login
@ -364,13 +302,11 @@ OverrideTwsMasterClientID=
# account security programme, the user will not be asked to perform
# the second factor authentication action, and login to TWS will
# occur automatically in read-only mode: in this mode, placing or
# managing orders is not allowed.
#
# If set to 'no', and the user is enrolled in IB's account security
# programme, the second factor authentication process is handled
# according to the Second Factor Authentication Settings described
# elsewhere in this file.
#
# managing orders is not allowed. If set to 'no', and the user is
# enrolled in IB's account security programme, the user must perform
# the relevant second factor authentication action to complete the
# login.
# If the user is not enrolled in IB's account security programme,
# this setting is ignored. The default is 'no'.
@ -390,44 +326,7 @@ ReadOnlyLogin=no
# set the relevant checkbox (this only needs to be done once) and
# not provide a value for this setting.
ReadOnlyApi=
# API Precautions
# ---------------
#
# These settings relate to the corresponding 'Precautions' checkboxes in the
# API section of the Global Configuration dialog.
#
# For all of these, the accepted values are:
# - 'yes' sets the checkbox
# - 'no' clears the checkbox
# - if not set, the existing TWS/Gateway configuration is unchanged
#
# NB: thess settings are really only supplied for the benefit of new TWS
# or Gateway instances that are being automatically installed and
# started without user intervention, or where user settings are not preserved
# between sessions (eg some Docker containers). Where a user is involved, they
# should use the Global Configuration to set the relevant checkboxes and not
# provide values for these settings.
BypassOrderPrecautions=
BypassBondWarning=
BypassNegativeYieldToWorstConfirmation=
BypassCalledBondWarning=
BypassSameActionPairTradeWarning=
BypassPriceBasedVolatilityRiskWarning=
BypassUSStocksMarketDataInSharesWarning=
BypassRedirectOrderWarning=
BypassNoOverfillProtectionPrecaution=
ReadOnlyApi=no
# Market data size for US stocks - lots or shares
@ -482,145 +381,54 @@ AcceptBidAskLastSizeDisplayUpdateNotification=accept
SendMarketDataInLotsForUSstocks=
# Trusted API Client IPs
# ----------------------
#
# NB: THIS SETTING IS ONLY RELEVANT FOR THE GATEWAY, AND ONLY WHEN FIX=yes.
# In all other cases it is ignored.
#
# This is a list of IP addresses separated by commas. API clients with IP
# addresses in this list are able to connect to the API without Gateway
# generating the 'Incoming connection' popup.
#
# Note that 127.0.0.1 is always permitted to connect, so do not include it
# in this setting.
TrustedTwsApiClientIPs=
# Reset Order ID Sequence
# -----------------------
#
# The setting resets the order id sequence for orders submitted via the API, so
# that the next invocation of the `NextValidId` API callback will return the
# value 1. The reset occurs when TWS starts.
#
# Note that order ids are reset for all API clients, except those that have
# outstanding (ie incomplete) orders: their order id sequence carries on as
# before.
#
# Valid values are 'yes', 'true', 'false' and 'no'. The default is 'no'.
ResetOrderIdsAtStart=
# This setting specifies IBC's action when TWS displays the dialog asking for
# confirmation of a request to reset the API order id sequence.
#
# Note that the Gateway never displays this dialog, so this setting is ignored
# for a Gateway session.
#
# Valid values consist of two strings separated by a solidus '/'. The first
# value specifies the action to take when the order id reset request resulted
# from setting ResetOrderIdsAtStart=yes. The second specifies the action to
# take when the order id reset request is a result of the user clicking the
# 'Reset API order ID sequence' button in the API configuration. Each value
# must be one of the following:
#
# 'confirm'
# order ids will be reset
#
# 'reject'
# order ids will not be reset
#
# 'ignore'
# IBC will ignore the dialog. The user must take action.
#
# The default setting is ignore/ignore
# Examples:
#
# 'confirm/reject' - confirm order id reset only if ResetOrderIdsAtStart=yes
# and reject any user-initiated requests
#
# 'ignore/confirm' - user must decide what to do if ResetOrderIdsAtStart=yes
# and confirm user-initiated requests
#
# 'reject/ignore' - reject order id reset if ResetOrderIdsAtStart=yes but
# allow user to handle user-initiated requests
ConfirmOrderIdReset=
# =============================================================================
# 4. TWS Auto-Logoff and Auto-Restart
# 4. TWS Auto-Closedown
# =============================================================================
#
# TWS and Gateway insist on being restarted every day. Two alternative
# automatic options are offered:
# IMPORTANT NOTE: Starting with TWS 974, this setting no longer
# works properly, because IB have changed the way TWS handles its
# autologoff mechanism.
#
# - Auto-Logoff: at a specified time, TWS shuts down tidily, without
# restarting.
# You should now configure the TWS autologoff time to something
# convenient for you, and restart IBC each day.
#
# - Auto-Restart: at a specified time, TWS shuts down and then restarts
# without the user having to re-autheticate.
#
# The normal way to configure the time at which this happens is via the Lock
# and Exit section of the Configuration dialog. Once this time has been
# configured in this way, the setting persists until the user changes it again.
#
# However, there are situations where there is no user available to do this
# configuration, or where there is no persistent storage (for example some
# Docker images). In such cases, the auto-restart or auto-logoff time can be
# set whenever IBC starts with the settings below.
#
# The value, if specified, must be a time in HH:MM AM/PM format, for example
# 08:00 AM or 10:00 PM. Note that there must be a single space between the
# two parts of this value; also that midnight is "12:00 AM" and midday is
# "12:00 PM".
#
# If no value is specified for either setting, the currently configured
# settings will apply. If a value is supplied for one setting, the other
# setting is cleared. If values are supplied for both settings, only the
# auto-restart time is set, and the auto-logoff time is cleared.
#
# Note that for a normal TWS/Gateway installation with persistent storage
# (for example on a desktop computer) the value will be persisted as if the
# user had set it via the configuration dialog.
#
# If you choose to auto-restart, you should take note of the considerations
# described at the link below. Note that where this information mentions
# 'manual authentication', restarting IBC will do the job (IBKR does not
# recognise the existence of IBC in its docuemntation).
#
# https://www.interactivebrokers.com/en/software/tws/twsguide.htm#usersguidebook/configuretws/auto_restart_info.htm
#
# If you use the "RESTART" command via the IBC command server, and IBC is
# running any version of the Gateway (or a version of TWS earlier than 1018),
# note that this will set the Auto-Restart time in Gateway/TWS's configuration
# dialog to the time at which the restart actually happens (which may be up to
# a minute after the RESTART command is issued). To prevent future auto-
# restarts at this time, you must make sure you have set AutoLogoffTime or
# AutoRestartTime to your desired value before running IBC. NB: this does not
# apply to TWS from version 1018 onwards.
# Alternatively, discontinue use of IBC and use the auto-relogin
# mechanism within TWS 974 and later versions (note that the
# auto-relogin mechanism provided by IB is not available if you
# use IBC).
AutoLogoffTime=
# Set to yes or no (lower case).
#
# yes means allow TWS to shut down automatically at its
# specified shutdown time, which is set via the TWS
# configuration menu.
#
# no means TWS never shuts down automatically.
#
# NB: IB recommends that you do not keep TWS running
# continuously. If you set this setting to 'no', you may
# experience incorrect TWS operation.
#
# NB: the default for this setting is 'no'. Since this will
# only work properly with TWS versions earlier than 974, you
# should explicitly set this to 'yes' for version 974 and later.
IbAutoClosedown=yes
AutoRestartTime=
# =============================================================================
# 5. TWS Tidy Closedown Time
# =============================================================================
#
# Specifies a time at which TWS will close down tidily, with no restart.
# NB: starting with TWS 974 this is no longer a useful option
# because both TWS and Gateway now have the same auto-logoff
# mechanism, and IBC can no longer avoid this.
#
# There is little reason to use this setting. It is similar to AutoLogoffTime,
# but can include a day-of-the-week, whereas AutoLogoffTime and AutoRestartTime
# apply every day. So for example you could use ClosedownAt in conjunction with
# AutoRestartTime to shut down TWS on Friday evenings after the markets
# close, without it running on Saturday as well.
# Note that giving this setting a value does not change TWS's
# auto-logoff in any way: any setting will be additional to the
# TWS auto-logoff.
#
# To tell IBC to tidily close TWS at a specified time every
# day, set this value to <hh:mm>, for example:
@ -679,7 +487,7 @@ AcceptIncomingConnectionAction=reject
# no means the dialog remains on display and must be
# handled by the user.
AllowBlindTrading=no
AllowBlindTrading=yes
# Save Settings on a Schedule
@ -722,26 +530,6 @@ AllowBlindTrading=no
SaveTwsSettingsAt=
# Confirm Crypto Currency Orders Automatically
# --------------------------------------------
#
# When you place an order for a cryptocurrency contract, a dialog is displayed
# asking you to confirm that you want to place the order, and notifying you
# that you are placing an order to trade cryptocurrency with Paxos, a New York
# limited trust company, and not at Interactive Brokers.
#
# transmit means that the order will be placed automatically, and the
# dialog will then be closed
#
# cancel means that the order will not be placed, and the dialog will
# then be closed
#
# manual means that IBC will take no action and the user must deal
# with the dialog
ConfirmCryptoCurrencyOrders=transmit
# =============================================================================
# 7. Settings Specific to Indian Versions of TWS
@ -778,17 +566,13 @@ DismissNSEComplianceNotice=yes
#
# The port number that IBC listens on for commands
# such as "STOP". DO NOT set this to the port number
# used for TWS API connections.
#
# The convention is to use 7462 for this port,
# but it must be set to a different value from any other
# IBC instance that might run at the same time.
#
# The default value is 0, which tells IBC not to start
# the command server
# used for TWS API connections. There is no good reason
# to change this setting unless the port is used by
# some other application (typically another instance of
# IBC). The default value is 0, which tells IBC not to
# start the command server
#CommandServerPort=7462
CommandServerPort=0
# Permitted Command Sources
@ -799,19 +583,19 @@ CommandServerPort=0
# IBC. Commands can always be sent from the
# same host as IBC is running on.
ControlFrom=
ControlFrom=127.0.0.1
# Address for Receiving Commands
# ------------------------------
#
# Specifies the IP address on which the Command Server
# is to listen. For a multi-homed host, this can be used
# is so listen. For a multi-homed host, this can be used
# to specify that connection requests are only to be
# accepted on the specified address. The default is to
# accept connection requests on all local addresses.
BindAddress=
BindAddress=127.0.0.1
# Command Prompt
@ -837,7 +621,7 @@ CommandPrompt=
# information is sent. The default is that such information
# is not sent.
SuppressInfoMessages=yes
SuppressInfoMessages=no
@ -867,10 +651,10 @@ SuppressInfoMessages=yes
# The LogStructureScope setting indicates which windows are
# eligible for structure logging:
#
# - (default value) if set to 'known', only windows that
# IBC recognizes are eligible - these are windows that
# IBC has some interest in monitoring, usually to take
# some action on the user's behalf;
# - if set to 'known', only windows that IBC recognizes
# are eligible - these are windows that IBC has some
# interest in monitoring, usually to take some action
# on the user's behalf;
#
# - if set to 'unknown', only windows that IBC does not
# recognize are eligible. Most windows displayed by
@ -883,8 +667,9 @@ SuppressInfoMessages=yes
# - if set to 'all', then every window displayed by TWS
# is eligible.
#
# The default value is 'known'.
LogStructureScope=known
LogStructureScope=all
# When to Log Window Structure
@ -897,15 +682,13 @@ LogStructureScope=known
# structure of an eligible window the first time it
# is encountered;
#
# - if set to 'openclose', the structure is logged every
# time an eligible window is opened or closed;
#
# - if set to 'activate', the structure is logged every
# time an eligible window is made active;
#
# - (default value) if set to 'never' or 'no' or 'false',
# structure information is never logged.
# - if set to 'never' or 'no' or 'false', structure
# information is never logged.
#
# The default value is 'never'.
LogStructureWhen=never
@ -925,3 +708,4 @@ LogStructureWhen=never
#LogComponents=

View File

@ -1,91 +0,0 @@
### NOTE this is likely out of date given it was written some
(years) time ago by a user that has since not really partaken in
contributing since.
install for tinas
*****************
for windows peeps you can start by installing all the prerequisite software:
- install git with all default settings - https://git-scm.com/download/win
- install anaconda all default settings - https://www.anaconda.com/products/individual
- install microsoft build tools (check the box for Desktop development for C++, you might be able to uncheck some optional downloads) - https://visualstudio.microsoft.com/visual-cpp-build-tools/
- install visual studio code default settings - https://code.visualstudio.com/download
then, `crack a conda shell`_ and run the following commands::
mkdir code # create code directory
cd code # change directory to code
git clone https://github.com/pikers/piker.git # downloads piker installation package from github
cd piker # change directory to piker
conda create -n pikonda # creates conda environment named pikonda
conda activate pikonda # activates pikonda
conda install -c conda-forge python-levenshtein # in case it is not already installed
conda install pip # may already be installed
pip # will show if pip is installed
pip install -e . -r requirements.txt # install piker in editable mode
test Piker to see if it is working::
piker -b binance chart btcusdt.binance # formatting for loading a chart
piker -b kraken -b binance chart xbtusdt.kraken
piker -b kraken -b binance -b ib chart qqq.nasdaq.ib
piker -b ib chart tsla.nasdaq.ib
potential error::
FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\user\\AppData\\Roaming\\piker\\brokers.toml'
solution:
- navigate to file directory above (may be different on your machine, location should be listed in the error code)
- copy and paste file from 'C:\\Users\\user\\code\\data/brokers.toml' or create a blank file using notepad at the location above
Visual Studio Code setup:
- now that piker is installed we can set up vscode as the default terminal for running piker and editing the code
- open Visual Studio Code
- file --> Add Folder to Workspace --> C:\Users\user\code\piker (adds piker directory where all piker files are located)
- file --> Save Workspace As --> save it wherever you want and call it whatever you want, this is going to be your default workspace for running and editing piker code
- ctrl + shift + p --> start typing Python: Select Interpetter --> when the option comes up select it --> Select at the workspace level --> select the one that shows ('pikonda')
- change the default terminal to cmd.exe instead of powershell (default)
- now when you create a new terminal VScode should automatically activate you conda env so that piker can be run as the first command after a new terminal is created
also, try out fancyzones as part of powertoyz for a decent tiling windows manager to manage all the cool new software you are going to be running.
.. _conda installed: https://
.. _C++ build toolz: https://
.. _crack a conda shell: https://
.. _vscode: https://
.. link to the tina guide
.. _setup a coolio tiled wm console: https://
provider support
****************
for live data feeds the in-progress set of supported brokers is:
- IB_ via ``ib_insync``, also see our `container docs`_
- binance_ and kraken_ for crypto over their public websocket API
- questrade_ (ish) which comes with effectively free L1
coming soon...
- webull_ via the reverse engineered public API
- yahoo via yliveticker_
if you want your broker supported and they have an API let us know.
.. _IB: https://interactivebrokers.github.io/tws-api/index.html
.. _container docs: https://github.com/pikers/piker/tree/master/dockering/ib
.. _questrade: https://www.questrade.com/api/documentation
.. _kraken: https://www.kraken.com/features/api#public-market-data
.. _binance: https://github.com/pikers/piker/pull/182
.. _webull: https://github.com/tedchou12/webull
.. _yliveticker: https://github.com/yahoofinancelive/yliveticker
.. _coinbase: https://docs.pro.coinbase.com/#websocket-feed

View File

@ -1,263 +0,0 @@
# from pprint import pformat
from functools import partial
from decimal import Decimal
from typing import Callable
import tractor
import trio
from uuid import uuid4
from piker.service import maybe_open_pikerd
from piker.accounting import dec_digits
from piker.clearing import (
open_ems,
OrderClient,
)
# TODO: we should probably expose these top level in this subsys?
from piker.clearing._messages import (
Order,
Status,
BrokerdPosition,
)
from piker.data import (
iterticks,
Flume,
open_feed,
Feed,
# ShmArray,
)
# TODO: handle other statuses:
# - fills, errors, and position tracking
async def wait_for_order_status(
trades_stream: tractor.MsgStream,
oid: str,
expect_status: str,
) -> tuple[
list[Status],
list[BrokerdPosition],
]:
'''
Wait for a specific order status for a given dialog, return msg flow
up to that msg and any position update msgs in a tuple.
'''
# Wait for position message before moving on to verify flow(s)
# for the multi-order position entry/exit.
status_msgs: list[Status] = []
pp_msgs: list[BrokerdPosition] = []
async for msg in trades_stream:
match msg:
case {'name': 'position'}:
ppmsg = BrokerdPosition(**msg)
pp_msgs.append(ppmsg)
case {
'name': 'status',
}:
msg = Status(**msg)
status_msgs.append(msg)
# if we get the status we expect then return all
# collected msgs from the brokerd dialog up to the
# exected msg B)
if (
msg.resp == expect_status
and msg.oid == oid
):
return status_msgs, pp_msgs
async def bot_main():
'''
Boot the piker runtime, open an ems connection, submit
and process orders statuses in real-time.
'''
ll: str = 'info'
# open an order ctl client, live data feed, trio nursery for
# spawning an order trailer task
client: OrderClient
trades_stream: tractor.MsgStream
feed: Feed
accounts: list[str]
fqme: str = 'btcusdt.usdtm.perp.binance'
async with (
# TODO: do this implicitly inside `open_ems()` ep below?
# init and sync actor-service runtime
maybe_open_pikerd(
loglevel=ll,
debug_mode=True,
),
open_ems(
fqme,
mode='paper', # {'live', 'paper'}
# mode='live', # for real-brokerd submissions
loglevel=ll,
) as (
client, # OrderClient
trades_stream, # tractor.MsgStream startup_pps,
_, # positions
accounts,
_, # dialogs
),
open_feed(
fqmes=[fqme],
loglevel=ll,
# TODO: if you want to throttle via downsampling
# how many tick updates your feed received on
# quote streams B)
# tick_throttle=10,
) as feed,
trio.open_nursery() as tn,
):
assert accounts
print(f'Loaded binance accounts: {accounts}')
flume: Flume = feed.flumes[fqme]
min_tick = Decimal(flume.mkt.price_tick)
min_tick_digits: int = dec_digits(min_tick)
price_round: Callable = partial(
round,
ndigits=min_tick_digits,
)
quote_stream: trio.abc.ReceiveChannel = feed.streams['binance']
# always keep live limit 0.003% below last
# clearing price
clear_margin: float = 0.9997
async def trailer(
order: Order,
):
# ref shm OHLCV array history, if you want
# s_shm: ShmArray = flume.rt_shm
# m_shm: ShmArray = flume.hist_shm
# NOTE: if you wanted to frame ticks by type like the
# the quote throttler does.. and this is probably
# faster in terms of getting the latest tick type
# embedded value of interest?
# from piker.data._sampling import frame_ticks
async for quotes in quote_stream:
for fqme, quote in quotes.items():
# print(
# f'{quote["symbol"]} -> {quote["ticks"]}\n'
# f'last 1s OHLC:\n{s_shm.array[-1]}\n'
# f'last 1m OHLC:\n{m_shm.array[-1]}\n'
# )
for tick in iterticks(
quote,
reverse=True,
# types=('trade', 'dark_trade'), # defaults
):
await client.update(
uuid=order.oid,
price=price_round(
clear_margin
*
tick['price']
),
)
msgs, pps = await wait_for_order_status(
trades_stream,
order.oid,
'open'
)
# if multiple clears per quote just
# skip to the next quote?
break
# get first live quote to be sure we submit the initial
# live buy limit low enough that it doesn't clear due to
# a stale initial price from the data feed layer!
first_ask_price: float | None = None
async for quotes in quote_stream:
for fqme, quote in quotes.items():
# print(quote['symbol'])
for tick in iterticks(quote, types=('ask')):
first_ask_price: float = tick['price']
break
if first_ask_price:
break
# setup order dialog via first msg
price: float = price_round(
clear_margin
*
first_ask_price,
)
# compute a 1k USD sized pos
size: float = round(1e3/price, ndigits=3)
order = Order(
# docs on how this all works, bc even i'm not entirely
# clear XD. also we probably want to figure out how to
# offer both the paper engine running and the brokerd
# order ctl tasks with the ems choosing which stream to
# route msgs on given the account value!
account='paper', # use built-in paper clearing engine and .accounting
# account='binance.usdtm', # for live binance futes
oid=str(uuid4()),
exec_mode='live', # {'dark', 'live', 'alert'}
action='buy', # TODO: remove this from our schema?
size=size,
symbol=fqme,
price=price,
brokers=['binance'],
)
await client.send(order)
msgs, pps = await wait_for_order_status(
trades_stream,
order.oid,
'open',
)
assert not pps
assert msgs[-1].oid == order.oid
# start "trailer task" which tracks rt quote stream
tn.start_soon(trailer, order)
try:
# wait for ctl-c from user..
await trio.sleep_forever()
except KeyboardInterrupt:
# cancel the open order
await client.cancel(order.oid)
msgs, pps = await wait_for_order_status(
trades_stream,
order.oid,
'canceled'
)
raise
if __name__ == '__main__':
trio.run(bot_main)

View File

@ -6,11 +6,6 @@
# - then manually ensuring all deps are converted over:
# - add this file to the repo and commit it
# -
# GROKin tips:
# - CLI eps are (ostensibly) added via an `entry_points.txt`:
# - https://packaging.python.org/en/latest/specifications/entry-points/#file-format
# - https://github.com/nix-community/poetry2nix/blob/master/editable.nix#L49
{
description = "piker: trading gear for hackers (pkged with poetry2nix)";
@ -106,7 +101,7 @@
# won't be needed - thanks @k900:
# https://github.com/nix-community/poetry2nix/pull/1257
pyqt5 = prev.pyqt5.override {
# withWebkit = false;
withWebkit = false;
preferWheel = true;
};
@ -129,52 +124,55 @@
# WHY!? -> output-attrs that `nix develop` scans for:
# https://nixos.org/manual/nix/stable/command-ref/new-cli/nix3-develop.html#flake-output-attributes
in
rec {
packages = {
# piker = poetry2nix.legacyPackages.x86_64-linux.mkPoetryEditablePackage {
# editablePackageSources = { piker = ./piker; };
in {
packages = {
# piker = poetry2nix.legacyPackages.x86_64-linux.mkPoetryEditablePackage {
# editablePackageSources = { piker = ./piker; };
piker = p2npkgs.mkPoetryApplication {
projectDir = projectDir;
piker = p2npkgs.mkPoetryApplication {
projectDir = projectDir;
# SEE ABOVE for auto-genned input set, override
# buncha deps with extras.. like `setuptools` mostly.
# TODO: maybe propose a patch to p2n to show that you
# can even do this in the edgecases docs?
overrides = ahot_overrides;
# SEE ABOVE for auto-genned input set, override
# buncha deps with extras.. like `setuptools` mostly.
# TODO: maybe propose a patch to p2n to show that you
# can even do this in the edgecases docs?
overrides = ahot_overrides;
# XXX: won't work on llvmlite..
# preferWheels = true;
# XXX: won't work on llvmlite..
# preferWheels = true;
};
};
};
# devShells.default = pkgs.mkShell {
# projectDir = projectDir;
# python = "python3.10";
# overrides = ahot_overrides;
# inputsFrom = [ self.packages.x86_64-linux.piker ];
# packages = packages;
# # packages = [ poetry2nix.packages.${system}.poetry ];
# };
devShells.default = pkgs.mkShell {
# packages = [ poetry2nix.packages.${system}.poetry ];
packages = [ poetry2nix.packages.x86_64-linux.poetry ];
inputsFrom = [ self.packages.x86_64-linux.piker ];
# TODO: grok the difference here..
# - avoid re-cloning git repos on every develop entry..
# - ideally allow hacking on the src code of some deps
# (tractor, pyqtgraph, tomlkit, etc.) WITHOUT having to
# re-install them every time a change is made.
# - boot a usable xonsh inside the poetry virtualenv when
# defined via a custom entry point?
devShells.default = p2npkgs.mkPoetryEnv {
# env = p2npkgs.mkPoetryEnv {
projectDir = projectDir;
python = pkgs.python310;
overrides = ahot_overrides;
editablePackageSources = packages;
# piker = "./";
# tractor = "../tractor/";
# }; # wut?
};
}
# TODO: boot xonsh inside the poetry virtualenv when
# defined via a custom entry point?
# NOTE XXX: apparently DON'T do these..?
# shellHook = "poetry run xonsh";
# shellHook = "poetry shell";
};
# TODO: grok the difference here..
# - avoid re-cloning git repos on every develop entry..
# - ideally allow hacking on the src code of some deps
# (tractor, pyqtgraph, tomlkit, etc.) WITHOUT having to
# re-install them every time a change is made.
# devShells.default = (p2npkgs.mkPoetryEnv {
# # let {
# # devEnv = p2npkgs.mkPoetryEnv {
# projectDir = projectDir;
# overrides = ahot_overrides;
# inputsFrom = [ self.packages.x86_64-linux.piker ];
# }).env.overrideAttrs (old: {
# buildInputs = [ packages.piker ];
# }
# );
}
); # end of .outputs scope
}

View File

@ -20,6 +20,9 @@ Cacheing apis and toolz.
'''
from collections import OrderedDict
from contextlib import (
asynccontextmanager as acm,
)
from typing import (
Awaitable,
Callable,
@ -27,8 +30,12 @@ from typing import (
TypeVar,
)
from tractor.trionics import maybe_open_context
from .brokers import get_brokermod
from .log import get_logger
log = get_logger(__name__)
T = TypeVar("T")
@ -97,3 +104,21 @@ def async_lifo_cache(
return decorated
return decorator
# TODO: move this to `.brokers.utils`..
@acm
async def open_cached_client(
brokername: str,
) -> 'Client': # noqa
'''
Get a cached broker client from the current actor's local vars.
If one has not been setup do it and cache it.
'''
brokermod = get_brokermod(brokername)
async with maybe_open_context(
acm_func=brokermod.get_client,
) as (cache_hit, client):
yield client

View File

@ -1,16 +0,0 @@
.accounting
-----------
A subsystem for transaction processing, storage and historical
measurement.
.pnl
----
BEP, the break even price: the price at which liquidating
a remaining position results in a zero PnL since the position was
"opened" in the destination asset.
PPU: price-per-unit: the "average cost" (in cumulative mean terms)
of the "entry" transactions which "make a position larger"; taking
a profit relative to this price means that you will "make more
profit then made prior" since the position was opened.

View File

@ -21,21 +21,17 @@ for tendiez.
'''
from ..log import get_logger
from .calc import (
iter_by_dt,
)
from ._ledger import (
iter_by_dt,
Transaction,
TransactionLedger,
open_trade_ledger,
)
from ._pos import (
Account,
load_account,
load_account_from_ledger,
load_pps_from_ledger,
open_pps,
open_account,
Position,
PpTable,
)
from ._mktinfo import (
Asset,
@ -44,36 +40,31 @@ from ._mktinfo import (
MktPair,
Symbol,
unpack_fqme,
_derivs as DerivTypes,
)
from ._allocate import (
mk_allocator,
Allocator,
)
log = get_logger(__name__)
__all__ = [
'Account',
'Allocator',
'Asset',
'MktPair',
'Position',
'PpTable',
'Symbol',
'Transaction',
'TransactionLedger',
'dec_digits',
'digits_to_dec',
'iter_by_dt',
'load_account',
'load_account_from_ledger',
'load_pps_from_ledger',
'mk_allocator',
'open_account',
'open_pps',
'open_trade_ledger',
'unpack_fqme',
'DerivTypes',
]
@ -89,7 +80,7 @@ def get_likely_pair(
'''
try:
src_name_start: str = bs_mktid.rindex(src)
src_name_start = bs_mktid.rindex(src)
except (
ValueError, # substr not found
):
@ -100,8 +91,25 @@ def get_likely_pair(
# log.warning(
# f'No src fiat {src} found in {bs_mktid}?'
# )
return None
return
likely_dst: str = bs_mktid[:src_name_start]
likely_dst = bs_mktid[:src_name_start]
if likely_dst == dst:
return bs_mktid
if __name__ == '__main__':
import sys
from pprint import pformat
args = sys.argv
assert len(args) > 1, 'Specifiy account(s) from `brokers.toml`'
args = args[1:]
for acctid in args:
broker, name = acctid.split('.')
trans, updated_pps = load_pps_from_ledger(broker, name)
print(
f'Processing transactions into pps for {broker}:{acctid}\n'
f'{pformat(trans)}\n\n'
f'{pformat(updated_pps)}'
)

View File

@ -25,7 +25,7 @@ from bidict import bidict
from ._pos import Position
from . import MktPair
from piker.types import Struct
from ..data.types import Struct
_size_units = bidict({
@ -118,9 +118,9 @@ class Allocator(Struct):
ld: int = mkt.size_tick_digits
size_unit = self.size_unit
live_size = live_pp.cumsize
live_size = live_pp.size
abs_live_size = abs(live_size)
abs_startup_size = abs(startup_pp.cumsize)
abs_startup_size = abs(startup_pp.size)
u_per_slot, currency_per_slot = self.step_sizes()
@ -213,6 +213,8 @@ class Allocator(Struct):
slots_used = self.slots_used(
Position(
mkt=mkt,
size=order_size,
ppu=price,
bs_mktid=mkt.bs_mktid,
)
)
@ -239,7 +241,7 @@ class Allocator(Struct):
Calc and return the number of slots used by this ``Position``.
'''
abs_pp_size = abs(pp.cumsize)
abs_pp_size = abs(pp.size)
if self.size_unit == 'currency':
# live_currency_size = size or (abs_pp_size * pp.ppu)

View File

@ -21,77 +21,65 @@ Trade and transaction ledger processing.
from __future__ import annotations
from collections import UserDict
from contextlib import contextmanager as cm
from functools import partial
from pathlib import Path
from pprint import pformat
from types import ModuleType
from typing import (
Any,
Callable,
Generator,
Literal,
TYPE_CHECKING,
Iterator,
Union,
Generator
)
from pendulum import (
datetime,
DateTime,
from_timestamp,
parse,
)
import tomli_w # for fast ledger writing
from piker.types import Struct
from piker import config
from .. import config
from ..data.types import Struct
from ..log import get_logger
from .calc import (
iter_by_dt,
from ._mktinfo import (
Symbol, # legacy
MktPair,
Asset,
)
if TYPE_CHECKING:
from ..data._symcache import (
SymbologyCache,
)
log = get_logger(__name__)
TxnType = Literal[
'clear',
'transfer',
# TODO: see https://github.com/pikers/piker/issues/510
# 'split',
# 'rename',
# 'resize',
# 'removal',
]
class Transaction(Struct, frozen=True):
# NOTE: this is a unified acronym also used in our `MktPair`
# and can stand for any of a
# "fully qualified <blank> endpoint":
# - "market" in the case of financial trades
# (btcusdt.spot.binance).
# - "merkel (tree)" aka a blockchain system "wallet tranfers"
# (btc.blockchain)
# - "money" for tradtitional (digital databases)
# *bank accounts* (usd.swift, eur.sepa)
# TODO: unify this with the `MktPair`,
# once we have that as a required field,
# we don't really need the fqme any more..
fqme: str
tid: str | int # unique transaction id
tid: Union[str, int] # unique transaction id
size: float
price: float
cost: float # commisions or other additional costs
dt: DateTime
# the "event type" in terms of "market events" see above and
# https://github.com/pikers/piker/issues/510
etype: TxnType = 'clear'
dt: datetime
# TODO: we can drop this right since we
# can instead expect the backend to provide this
# via the `MktPair`?
expiry: DateTime | None = None
expiry: datetime | None = None
# TODO: drop the Symbol type, construct using
# t.sys (the transaction system)
# the underlying "transaction system", normally one of a ``MktPair``
# (a description of a tradable double auction) or a ledger-recorded
# ("ledger" in any sense as long as you can record transfers) of any
# sort) ``Asset``.
sym: MktPair | Asset | Symbol | None = None
@property
def sys(self) -> Symbol:
return self.sym
# (optional) key-id defined by the broker-service backend which
# ensures the instrument-symbol market key for this record is unique
@ -100,16 +88,15 @@ class Transaction(Struct, frozen=True):
# service.
bs_mktid: str | int | None = None
def to_dict(
self,
**kwargs,
) -> dict:
dct: dict[str, Any] = super().to_dict(**kwargs)
def to_dict(self) -> dict:
dct = super().to_dict()
# TODO: switch to sys!
dct.pop('sym')
# ensure we use a pendulum formatted
# ISO style str here!@
dct['dt'] = str(self.dt)
return dct
@ -121,63 +108,30 @@ class TransactionLedger(UserDict):
outside.
'''
# NOTE: see `open_trade_ledger()` for defaults, this should
# never be constructed manually!
def __init__(
self,
ledger_dict: dict,
file_path: Path,
account: str,
mod: ModuleType, # broker mod
tx_sort: Callable,
symcache: SymbologyCache,
) -> None:
self.account: str = account
self.file_path: Path = file_path
self.mod: ModuleType = mod
self.tx_sort: Callable = tx_sort
self._symcache: SymbologyCache = symcache
# any added txns we keep in that form for meta-data
# gathering purposes
self._txns: dict[str, Transaction] = {}
self.file_path = file_path
self.tx_sort = tx_sort
super().__init__(ledger_dict)
def __repr__(self) -> str:
return (
f'TransactionLedger: {len(self)}\n'
f'{pformat(list(self.data))}'
)
@property
def symcache(self) -> SymbologyCache:
'''
Read-only ref to backend's ``SymbologyCache``.
'''
return self._symcache
def update_from_t(
self,
t: Transaction,
) -> None:
'''
Given an input `Transaction`, cast to `dict` and update
from it's transaction id.
'''
self.data[t.tid] = t.to_dict()
self._txns[t.tid] = t
def iter_txns(
def iter_trans(
self,
symcache: SymbologyCache | None = None,
mkt_by_fqme: dict[str, MktPair],
broker: str = 'paper',
) -> Generator[
Transaction,
tuple[str, Transaction],
None,
None,
]:
@ -186,162 +140,123 @@ class TransactionLedger(UserDict):
form via generator.
'''
symcache = symcache or self._symcache
if broker != 'paper':
raise NotImplementedError('Per broker support not dun yet!')
if self.account == 'paper':
from piker.clearing import _paper_engine
norm_trade: Callable = partial(
_paper_engine.norm_trade,
brokermod=self.mod,
# TODO: lookup some standard normalizer
# func in the backend?
# from ..brokers import get_brokermod
# mod = get_brokermod(broker)
# trans_dict = mod.norm_trade_records(self.data)
# NOTE: instead i propose the normalizer is
# a one shot routine (that can be lru cached)
# and instead call it for each entry incrementally:
# normer = mod.norm_trade_record(txdict)
# TODO: use tx_sort here yah?
for tid, txdict in self.data.items():
# special field handling for datetimes
# to ensure pendulum is used!
fqme = txdict.get('fqme') or txdict['fqsn']
dt = parse(txdict['dt'])
expiry = txdict.get('expiry')
mkt = mkt_by_fqme.get(fqme)
if not mkt:
# we can't build a trans if we don't have
# the ``.sys: MktPair`` info, so skip.
continue
tx = Transaction(
fqme=fqme,
tid=txdict['tid'],
dt=dt,
price=txdict['price'],
size=txdict['size'],
cost=txdict.get('cost', 0),
bs_mktid=txdict['bs_mktid'],
# TODO: change to .sys!
sym=mkt,
expiry=parse(expiry) if expiry else None,
)
yield tid, tx
else:
norm_trade: Callable = self.mod.norm_trade
# datetime-sort and pack into txs
for tid, txdict in self.tx_sort(self.data.items()):
txn: Transaction = norm_trade(
tid,
txdict,
pairs=symcache.pairs,
symcache=symcache,
)
yield txn
def to_txns(
def to_trans(
self,
symcache: SymbologyCache | None = None,
**kwargs,
) -> dict[str, Transaction]:
'''
Return entire output from ``.iter_txns()`` in a ``dict``.
Return entire output from ``.iter_trans()`` in a ``dict``.
'''
txns: dict[str, Transaction] = {}
for t in self.iter_txns(symcache=symcache):
return dict(self.iter_trans(**kwargs))
if not t:
log.warning(f'{self.mod.name}:{self.account} TXN is -> {t}')
continue
def write_config(
self,
txns[t.tid] = t
return txns
def write_config(self) -> None:
) -> None:
'''
Render the self.data ledger dict to its TOML file form.
ALWAYS order datetime sorted!
Render the self.data ledger dict to it's TOML file form.
'''
is_paper: bool = self.account == 'paper'
symcache: SymbologyCache = self._symcache
cpy = self.data.copy()
towrite: dict[str, Any] = {}
for tid, txdict in self.tx_sort(self.data.copy()):
# write blank-str expiry for non-expiring assets
for tid, trans in cpy.items():
# drop key for non-expiring assets
txdict = towrite[tid] = self.data[tid]
if (
'expiry' in txdict
and txdict['expiry'] is None
):
txdict['expiry'] = ''
txdict.pop('expiry')
# (maybe) re-write old acro-key
if (
is_paper
# if symcache is empty/not supported (yet), don't
# bother xD
and symcache.mktmaps
):
fqme: str = txdict.pop('fqsn', None) or txdict['fqme']
bs_mktid: str | None = txdict.get('bs_mktid')
if (
fqme not in symcache.mktmaps
or (
# also try to see if this is maybe a paper
# engine ledger in which case the bs_mktid
# should be the fqme as well!
bs_mktid
and fqme != bs_mktid
)
):
# always take any (paper) bs_mktid if defined and
# in the backend's cache key set.
if bs_mktid in symcache.mktmaps:
fqme: str = bs_mktid
else:
best_fqme: str = list(symcache.search(fqme))[0]
log.warning(
f'Could not find FQME: {fqme} in qualified set?\n'
f'Qualifying and expanding {fqme} -> {best_fqme}'
)
fqme = best_fqme
if (
bs_mktid
and bs_mktid != fqme
):
# in paper account case always make sure both the
# fqme and bs_mktid are fully qualified..
txdict['bs_mktid'] = fqme
# in paper ledgers always write the latest
# symbology key field: an FQME.
# re-write old acro-key
fqme = txdict.get('fqsn')
if fqme:
txdict['fqme'] = fqme
towrite[tid] = txdict
with self.file_path.open(mode='wb') as fp:
tomli_w.dump(towrite, fp)
def load_ledger(
brokername: str,
acctid: str,
def iter_by_dt(
records: dict[str, Any],
# for testing or manual load from file
dirpath: Path | None = None,
# NOTE: parsers are looked up in the insert order
# so if you know that the record stats show some field
# is more common then others, stick it at the top B)
parsers: dict[tuple[str], Callable] = {
'dt': None, # parity case
'datetime': parse, # datetime-str
'time': from_timestamp, # float epoch
},
key: Callable | None = None,
) -> tuple[dict, Path]:
) -> Iterator[tuple[str, dict]]:
'''
Load a ledger (TOML) file from user's config directory:
$CONFIG_DIR/accounting/ledgers/trades_<brokername>_<acctid>.toml
Return its `dict`-content and file path.
Iterate entries of a ``records: dict`` table sorted by entry recorded
datetime presumably set at the ``'dt'`` field in each entry.
'''
import time
try:
import tomllib
except ModuleNotFoundError:
import tomli as tomllib
ldir: Path = (
dirpath
or
config._config_dir / 'accounting' / 'ledgers'
)
if not ldir.is_dir():
ldir.mkdir()
fname = f'trades_{brokername}_{acctid}.toml'
fpath: Path = ldir / fname
if not fpath.is_file():
log.info(
f'Creating new local trades ledger: {fpath}'
def dyn_parse_to_dt(
pair: tuple[str, dict],
) -> DateTime:
_, txdict = pair
k, v, parser = next(
(k, txdict[k], parsers[k]) for k in parsers if k in txdict
)
fpath.touch()
with fpath.open(mode='rb') as cf:
start = time.time()
ledger_dict = tomllib.load(cf)
log.debug(f'Ledger load took {time.time() - start}s')
return parser(v) if parser else v
return ledger_dict, fpath
for tid, data in sorted(
records.items(),
key=key or dyn_parse_to_dt,
):
yield tid, data
@cm
@ -349,17 +264,10 @@ def open_trade_ledger(
broker: str,
account: str,
allow_from_sync_code: bool = False,
symcache: SymbologyCache | None = None,
# default is to sort by detected datetime-ish field
tx_sort: Callable = iter_by_dt,
rewrite: bool = False,
# for testing or manual load from file
_fp: Path | None = None,
) -> Generator[TransactionLedger, None, None]:
) -> Generator[dict, None, None]:
'''
Indempotently create and read in a trade log file from the
``<configuration_dir>/ledgers/`` directory.
@ -369,52 +277,18 @@ def open_trade_ledger(
name as defined in the user's ``brokers.toml`` config.
'''
from ..brokers import get_brokermod
mod: ModuleType = get_brokermod(broker)
ledger_dict, fpath = load_ledger(
broker,
account,
dirpath=_fp,
)
ledger_dict, fpath = config.load_ledger(broker, account)
cpy = ledger_dict.copy()
# XXX NOTE: if not provided presume we are being called from
# sync code and need to maybe run `trio` to generate..
if symcache is None:
# XXX: be mega pendantic and ensure the caller knows what
# they're doing!
if not allow_from_sync_code:
raise RuntimeError(
'You MUST set `allow_from_sync_code=True` when '
'calling `open_trade_ledger()` from sync code! '
'If you are calling from async code you MUST '
'instead pass a `symcache: SymbologyCache`!'
)
from ..data._symcache import (
get_symcache,
)
symcache: SymbologyCache = get_symcache(broker)
assert symcache
ledger = TransactionLedger(
ledger_dict=cpy,
file_path=fpath,
account=account,
mod=mod,
symcache=symcache,
tx_sort=getattr(mod, 'tx_sort', tx_sort),
tx_sort=tx_sort,
)
try:
yield ledger
finally:
if (
ledger.data != ledger_dict
or rewrite
):
if ledger.data != ledger_dict:
# TODO: show diff output?
# https://stackoverflow.com/questions/12956957/print-diff-of-python-dictionaries
log.info(f'Updating ledger for {fpath}:\n')

View File

@ -36,10 +36,9 @@ from typing import (
Literal,
)
from piker.types import Struct
from ..data.types import Struct
# TODO: make these literals..
_underlyings: list[str] = [
'stock',
'bond',
@ -48,10 +47,6 @@ _underlyings: list[str] = [
'commodity',
]
_crypto_derivs: list[str] = [
'perpetual_future',
'crypto_future',
]
_derivs: list[str] = [
'swap',
@ -71,8 +66,6 @@ AssetTypeName: Literal[
_underlyings
+
_derivs
+
_crypto_derivs
]
# egs. stock, futer, option, bond etc.
@ -128,31 +121,10 @@ class Asset(Struct, frozen=True):
# NOTE: additional info optionally packed in by the backend, but
# should not be explicitly required in our generic API.
info: dict | None = None
info: dict = {} # make it frozen?
# `None` is not toml-compat so drop info
# if no extra data added..
def to_dict(
self,
**kwargs,
) -> dict:
dct = super().to_dict(**kwargs)
if (info := dct.pop('info', None)):
dct['info'] = info
assert dct['tx_tick']
return dct
@classmethod
def from_msg(
cls,
msg: dict[str, Any],
) -> Asset:
return cls(
tx_tick=Decimal(str(msg.pop('tx_tick'))),
info=msg.pop('info', None),
**msg,
)
# TODO?
# _to_dict_skip = {'info'}
def __str__(self) -> str:
return self.name
@ -235,33 +207,6 @@ class MktPair(Struct, frozen=True):
<dst>/<src>.<expiry>.<con_info_1>.<con_info_2>. -> .<venue>.<broker>
^ -- optional tokens ------------------------------- ^
Notes:
------
Some venues provide a different semantic (which we frankly find
confusing and non-general) such as "base" and "quote" asset.
For example this is how `binance` defines the terms:
https://binance-docs.github.io/apidocs/websocket_api/en/#public-api-definitions
https://binance-docs.github.io/apidocs/futures/en/#public-endpoints-info
- *base* asset refers to the asset that is the *quantity* of a symbol.
- *quote* asset refers to the asset that is the *price* of a symbol.
In other words the "quote" asset is the asset that the market
is pricing "buys" *in*, and the *base* asset it the one that the market
allows you to "buy" an *amount of*. Put more simply the *quote*
asset is our "source" asset and the *base* asset is our "destination"
asset.
This defintion can be further understood reading our
`.brokers.binance.api.Pair` type wherein the
`Pair.[quote/base]AssetPrecision` field determines the (transfer)
transaction precision available per asset; i.e. the satoshis
unit in bitcoin for representing the minimum size of a
transaction that can take place on the blockchain.
'''
dst: str | Asset
# "destination asset" (name) used to buy *to*
@ -309,40 +254,12 @@ class MktPair(Struct, frozen=True):
# strike price, call or put, swap type, exercise model, etc.
contract_info: list[str] | None = None
# TODO: rename to sectype since all of these can
# be considered "securities"?
_atype: str = ''
# allow explicit disable of the src part of the market
# pair name -> useful for legacy markets like qqq.nasdaq.ib
_fqme_without_src: bool = False
# NOTE: when cast to `str` return fqme
def __str__(self) -> str:
return self.fqme
def to_dict(
self,
**kwargs,
) -> dict:
d = super().to_dict(**kwargs)
d['src'] = self.src.to_dict(**kwargs)
if not isinstance(self.dst, str):
d['dst'] = self.dst.to_dict(**kwargs)
else:
d['dst'] = str(self.dst)
d['price_tick'] = str(self.price_tick)
d['size_tick'] = str(self.size_tick)
if self.contract_info is None:
d.pop('contract_info')
# d.pop('_fqme_without_src')
return d
@classmethod
def from_msg(
cls,
@ -353,32 +270,36 @@ class MktPair(Struct, frozen=True):
Constructor for a received msg-dict normally received over IPC.
'''
if not isinstance(
dst_asset_msg := msg.pop('dst'),
str,
):
dst: Asset = Asset.from_msg(dst_asset_msg) # .copy()
dst_asset_msg = msg.pop('dst')
src_asset_msg = msg.pop('src')
if isinstance(dst_asset_msg, str):
src: str = str(src_asset_msg)
assert isinstance(src, str)
return cls.from_fqme(
dst_asset_msg,
src=src,
**msg,
)
else:
dst: str = dst_asset_msg
# NOTE: we call `.copy()` here to ensure
# type casting!
dst = Asset(**dst_asset_msg).copy()
if not isinstance(src_asset_msg, str):
src = Asset(**src_asset_msg).copy()
else:
src = str(src_asset_msg)
src_asset_msg: dict = msg.pop('src')
src: Asset = Asset.from_msg(src_asset_msg) # .copy()
# XXX NOTE: ``msgspec`` can encode `Decimal` but it doesn't
# decide to it by default since we aren't spec-cing these
# msgs as structs proper to get them to decode implictily
# (yet) as per,
# - https://github.com/pikers/piker/pull/354
# - https://github.com/goodboy/tractor/pull/311
# SO we have to ensure we do a struct type
# case (which `.copy()` does) to ensure we get the right
# type!
return cls(
dst=dst,
src=src,
price_tick=Decimal(msg.pop('price_tick')),
size_tick=Decimal(msg.pop('size_tick')),
**msg,
# XXX NOTE: ``msgspec`` can encode `Decimal`
# but it doesn't decide to it by default since
# we aren't spec-cing these msgs as structs, SO
# we have to ensure we do a struct type case (which `.copy()`
# does) to ensure we get the right type!
).copy()
@property
@ -406,20 +327,7 @@ class MktPair(Struct, frozen=True):
):
_fqme = f'{fqme}.{broker}'
broker, mkt_ep_key, venue, expiry = unpack_fqme(_fqme)
kven: str = kwargs.pop('venue', venue)
if venue:
assert venue == kven
else:
venue = kven
exp: str = kwargs.pop('expiry', expiry)
if expiry:
assert exp == expiry
else:
expiry = exp
broker, mkt_ep_key, venue, suffix = unpack_fqme(_fqme)
dst: Asset = Asset.guess_from_mkt_ep_key(
mkt_ep_key,
atype=kwargs.get('_atype'),
@ -431,15 +339,14 @@ class MktPair(Struct, frozen=True):
# which we expect to be filled in by some
# backend client with access to that data-info.
return cls(
dst=dst,
# XXX: not resolved to ``Asset`` :(
#src=src,
dst=dst,
broker=broker,
venue=venue,
# XXX NOTE: we presume this token
# if the expiry for now!
expiry=expiry,
expiry=suffix,
price_tick=price_tick,
size_tick=size_tick,
@ -545,7 +452,7 @@ class MktPair(Struct, frozen=True):
'''
key: str = (
self.pair(delim_char=delim_char)
if not (without_src or self._fqme_without_src)
if not without_src
else str(self.dst)
)
@ -606,15 +513,10 @@ class MktPair(Struct, frozen=True):
# TODO: BACKWARD COMPAT, TO REMOVE?
@property
def type_key(self) -> str:
# if set explicitly then use it!
if self._atype:
return self._atype
if isinstance(self.dst, Asset):
return str(self.dst.atype)
return 'UNKNOWN'
return self._atype
@property
def price_tick_digits(self) -> int:

File diff suppressed because it is too large Load Diff

View File

@ -1,698 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Calculation routines for balance and position tracking such that
you know when you're losing money (if possible) XD
'''
from __future__ import annotations
from collections.abc import ValuesView
from contextlib import contextmanager as cm
from math import copysign
from typing import (
Any,
Callable,
Iterator,
TYPE_CHECKING,
)
import polars as pl
from pendulum import (
DateTime,
from_timestamp,
parse,
)
if TYPE_CHECKING:
from ._ledger import (
Transaction,
TransactionLedger,
)
def ppu(
clears: Iterator[Transaction],
# include transaction cost in breakeven price
# and presume the worst case of the same cost
# to exit this transaction (even though in reality
# it will be dynamic based on exit stratetgy).
cost_scalar: float = 2,
# return the ledger of clears as a (now dt sorted) dict with
# new position fields inserted alongside each entry.
as_ledger: bool = False,
) -> float | list[(str, dict)]:
'''
Compute the "price-per-unit" price for the given non-zero sized
rolling position.
The recurrence relation which computes this (exponential) mean
per new clear which **increases** the accumulative postiion size
is:
ppu[-1] = (
ppu[-2] * accum_size[-2]
+
ppu[-1] * size
) / accum_size[-1]
where `cost_basis` for the current step is simply the price
* size of the most recent clearing transaction.
-----
TODO: get the BEP computed and working similarly!
-----
the equivalent "break even price" or bep at each new clear
event step conversely only changes when an "position exiting
clear" which **decreases** the cumulative dst asset size:
bep[-1] = ppu[-1] - (cum_pnl[-1] / cumsize[-1])
'''
asize_h: list[float] = [] # historical accumulative size
ppu_h: list[float] = [] # historical price-per-unit
# ledger: dict[str, dict] = {}
ledger: list[dict] = []
t: Transaction
for t in clears:
clear_size: float = t.size
clear_price: str | float = t.price
is_clear: bool = not isinstance(clear_price, str)
last_accum_size = asize_h[-1] if asize_h else 0
accum_size: float = last_accum_size + clear_size
accum_sign = copysign(1, accum_size)
sign_change: bool = False
# on transfers we normally write some non-valid
# price since withdrawal to another account/wallet
# has nothing to do with inter-asset-market prices.
# TODO: this should be better handled via a `type: 'tx'`
# field as per existing issue surrounding all this:
# https://github.com/pikers/piker/issues/510
if isinstance(clear_price, str):
# TODO: we can't necessarily have this commit to
# the overall pos size since we also need to
# include other positions contributions to this
# balance or we might end up with a -ve balance for
# the position..
continue
# test if the pp somehow went "passed" a net zero size state
# resulting in a change of the "sign" of the size (+ve for
# long, -ve for short).
sign_change = (
copysign(1, last_accum_size) + accum_sign == 0
and last_accum_size != 0
)
# since we passed the net-zero-size state the new size
# after sum should be the remaining size the new
# "direction" (aka, long vs. short) for this clear.
if sign_change:
clear_size: float = accum_size
abs_diff: float = abs(accum_size)
asize_h.append(0)
ppu_h.append(0)
else:
# old size minus the new size gives us size diff with
# +ve -> increase in pp size
# -ve -> decrease in pp size
abs_diff = abs(accum_size) - abs(last_accum_size)
# XXX: LIFO breakeven price update. only an increaze in size
# of the position contributes the breakeven price,
# a decrease does not (i.e. the position is being made
# smaller).
# abs_clear_size = abs(clear_size)
abs_new_size: float | int = abs(accum_size)
if (
abs_diff > 0
and is_clear
):
cost_basis = (
# cost basis for this clear
clear_price * abs(clear_size)
+
# transaction cost
accum_sign * cost_scalar * t.cost
)
if asize_h:
size_last: float = abs(asize_h[-1])
cb_last: float = ppu_h[-1] * size_last
ppu: float = (cost_basis + cb_last) / abs_new_size
else:
ppu: float = cost_basis / abs_new_size
else:
# TODO: for PPU we should probably handle txs out
# (aka withdrawals) similarly by simply not having
# them contrib to the running PPU calc and only
# when the next entry clear comes in (which will
# then have a higher weighting on the PPU).
# on "exit" clears from a given direction,
# only the size changes not the price-per-unit
# need to be updated since the ppu remains constant
# and gets weighted by the new size.
ppu: float = ppu_h[-1] if ppu_h else 0 # set to previous value
# extend with new rolling metric for this step
ppu_h.append(ppu)
asize_h.append(accum_size)
# ledger[t.tid] = {
# 'txn': t,
# ledger[t.tid] = t.to_dict() | {
ledger.append((
t.tid,
t.to_dict() | {
'ppu': ppu,
'cumsize': accum_size,
'sign_change': sign_change,
# TODO: cum_pnl, bep
}
))
final_ppu = ppu_h[-1] if ppu_h else 0
# TODO: once we have etypes in all ledger entries..
# handle any split info entered (for now) manually by user
# if self.split_ratio is not None:
# final_ppu /= self.split_ratio
if as_ledger:
return ledger
else:
return final_ppu
def iter_by_dt(
records: (
dict[str, dict[str, Any]]
| ValuesView[dict] # eg. `Position._events.values()`
| list[dict]
| list[Transaction] # XXX preferred!
),
# NOTE: parsers are looked up in the insert order
# so if you know that the record stats show some field
# is more common then others, stick it at the top B)
parsers: dict[str, Callable | None] = {
'dt': parse, # parity case
'datetime': parse, # datetime-str
'time': from_timestamp, # float epoch
},
key: Callable | None = None,
) -> Iterator[tuple[str, dict]]:
'''
Iterate entries of a transaction table sorted by entry recorded
datetime presumably set at the ``'dt'`` field in each entry.
'''
if isinstance(records, dict):
records: list[tuple[str, dict]] = list(records.items())
def dyn_parse_to_dt(
tx: tuple[str, dict[str, Any]] | Transaction,
) -> DateTime:
# handle `.items()` inputs
if isinstance(tx, tuple):
tx = tx[1]
# dict or tx object?
isdict: bool = isinstance(tx, dict)
# get best parser for this record..
for k in parsers:
if (
isdict and k in tx
or getattr(tx, k, None)
):
v = tx[k] if isdict else tx.dt
assert v is not None, f'No valid value for `{k}`!?'
# only call parser on the value if not None from
# the `parsers` table above (when NOT using
# `.get()`), otherwise pass through the value and
# sort on it directly
if (
not isinstance(v, DateTime)
and (parser := parsers.get(k))
):
return parser(v)
else:
return v
else:
# XXX: should never get here..
breakpoint()
entry: tuple[str, dict] | Transaction
for entry in sorted(
records,
key=key or dyn_parse_to_dt,
):
# NOTE the type sig above; either pairs or txns B)
yield entry
# TODO: probably just move this into the test suite or
# keep it here for use from as such?
# def ensure_state(self) -> None:
# '''
# Audit either the `.cumsize` and `.ppu` local instance vars against
# the clears table calculations and return the calc-ed values if
# they differ and log warnings to console.
# '''
# # clears: list[dict] = self._clears
# # self.first_clear_dt = min(clears, key=lambda e: e['dt'])['dt']
# last_clear: dict = clears[-1]
# csize: float = self.calc_size()
# accum: float = last_clear['accum_size']
# if not self.expired():
# if (
# csize != accum
# and csize != round(accum * (self.split_ratio or 1))
# ):
# raise ValueError(f'Size mismatch: {csize}')
# else:
# assert csize == 0, 'Contract is expired but non-zero size?'
# if self.cumsize != csize:
# log.warning(
# 'Position state mismatch:\n'
# f'{self.cumsize} => {csize}'
# )
# self.cumsize = csize
# cppu: float = self.calc_ppu()
# ppu: float = last_clear['ppu']
# if (
# cppu != ppu
# and self.split_ratio is not None
# # handle any split info entered (for now) manually by user
# and cppu != (ppu / self.split_ratio)
# ):
# raise ValueError(f'PPU mismatch: {cppu}')
# if self.ppu != cppu:
# log.warning(
# 'Position state mismatch:\n'
# f'{self.ppu} => {cppu}'
# )
# self.ppu = cppu
@cm
def open_ledger_dfs(
brokername: str,
acctname: str,
ledger: TransactionLedger | None = None,
**kwargs,
) -> tuple[
dict[str, pl.DataFrame],
TransactionLedger,
]:
'''
Open a ledger of trade records (presumably from some broker
backend), normalize the records into `Transactions` via the
backend's declared endpoint, cast to a `polars.DataFrame` which
can update the ledger on exit.
'''
from piker.toolz import open_crash_handler
with open_crash_handler():
if not ledger:
import time
from ._ledger import open_trade_ledger
now = time.time()
with open_trade_ledger(
brokername,
acctname,
rewrite=True,
allow_from_sync_code=True,
# proxied through from caller
**kwargs,
) as ledger:
if not ledger:
raise ValueError(f'No ledger for {acctname}@{brokername} exists?')
print(f'LEDGER LOAD TIME: {time.time() - now}')
yield ledger_to_dfs(ledger), ledger
def ledger_to_dfs(
ledger: TransactionLedger,
) -> dict[str, pl.DataFrame]:
txns: dict[str, Transaction] = ledger.to_txns()
# ldf = pl.DataFrame(
# list(txn.to_dict() for txn in txns.values()),
ldf = pl.from_dicts(
list(txn.to_dict() for txn in txns.values()),
# only for ordering the cols
schema=[
('fqme', str),
('tid', str),
('bs_mktid', str),
('expiry', str),
('etype', str),
('dt', str),
('size', pl.Float64),
('price', pl.Float64),
('cost', pl.Float64),
],
).sort( # chronological order
'dt'
).with_columns([
pl.col('dt').str.to_datetime(),
# pl.col('expiry').str.to_datetime(),
# pl.col('expiry').dt.date(),
])
# filter out to the columns matching values filter passed
# as input.
# if filter_by_ids:
# for col, vals in filter_by_ids.items():
# str_vals = set(map(str, vals))
# pred: pl.Expr = pl.col(col).eq(str_vals.pop())
# for val in str_vals:
# pred |= pl.col(col).eq(val)
# fdf = df.filter(pred)
# TODO: originally i had tried just using a plain ol' groupby
# + agg here but the issue was re-inserting to the src frame.
# however, learning more about `polars` seems like maybe we can
# use `.over()`?
# https://pola-rs.github.io/polars/py-polars/html/reference/expressions/api/polars.Expr.over.html#polars.Expr.over
# => CURRENTLY we break up into a frame per mkt / fqme
dfs: dict[str, pl.DataFrame] = ldf.partition_by(
'bs_mktid',
as_dict=True,
)
# TODO: not sure if this is even possible but..
# - it'd be more ideal to use `ppt = df.groupby('fqme').agg([`
# - ppu and bep calcs!
for key in dfs:
# covert to lazy form (since apparently we might need it
# eventually ...)
df: pl.DataFrame = dfs[key]
ldf: pl.LazyFrame = df.lazy()
df = dfs[key] = ldf.with_columns([
pl.cumsum('size').alias('cumsize'),
# amount of source asset "sent" (via buy txns in
# the market) to acquire the dst asset, PER txn.
# when this value is -ve (i.e. a sell operation) then
# the amount sent is actually "returned".
(
(pl.col('price') * pl.col('size'))
+
(pl.col('cost')) # * pl.col('size').sign())
).alias('dst_bot'),
]).with_columns([
# rolling balance in src asset units
(pl.col('dst_bot').cumsum() * -1).alias('src_balance'),
# "position operation type" in terms of increasing the
# amount in the dst asset (entering) or decreasing the
# amount in the dst asset (exiting).
pl.when(
pl.col('size').sign() == pl.col('cumsize').sign()
).then(
pl.lit('enter') # see above, but is just price * size per txn
).otherwise(
pl.when(pl.col('cumsize') == 0)
.then(pl.lit('exit_to_zero'))
.otherwise(pl.lit('exit'))
).alias('descr'),
(pl.col('cumsize').sign() == pl.col('size').sign())
.alias('is_enter'),
]).with_columns([
# pl.lit(0, dtype=pl.Utf8).alias('virt_cost'),
pl.lit(0, dtype=pl.Float64).alias('applied_cost'),
pl.lit(0, dtype=pl.Float64).alias('pos_ppu'),
pl.lit(0, dtype=pl.Float64).alias('per_txn_pnl'),
pl.lit(0, dtype=pl.Float64).alias('cum_pos_pnl'),
pl.lit(0, dtype=pl.Float64).alias('pos_bep'),
pl.lit(0, dtype=pl.Float64).alias('cum_ledger_pnl'),
pl.lit(None, dtype=pl.Float64).alias('ledger_bep'),
# TODO: instead of the iterative loop below i guess we
# could try using embedded lists to track which txns
# are part of which ppu / bep calcs? Not sure this will
# look any better nor be any more performant though xD
# pl.lit([[0]], dtype=pl.List(pl.Float64)).alias('list'),
# choose fields to emit for accounting puposes
]).select([
pl.exclude([
'tid',
# 'dt',
'expiry',
'bs_mktid',
'etype',
# 'is_enter',
]),
]).collect()
# compute recurrence relations for ppu and bep
last_ppu: float = 0
last_cumsize: float = 0
last_ledger_pnl: float = 0
last_pos_pnl: float = 0
virt_costs: list[float, float] = [0., 0.]
# imperatively compute the PPU (price per unit) and BEP
# (break even price) iteratively over the ledger, oriented
# around each position state: a state of split balances in
# > 1 asset.
for i, row in enumerate(df.iter_rows(named=True)):
cumsize: float = row['cumsize']
is_enter: bool = row['is_enter']
price: float = row['price']
size: float = row['size']
# the profit is ALWAYS decreased, aka made a "loss"
# by the constant fee charged by the txn provider!
# see below in final PnL calculation and row element
# set.
txn_cost: float = row['cost']
pnl: float = 0
# ALWAYS reset per-position cum PnL
if last_cumsize == 0:
last_pos_pnl: float = 0
# a "position size INCREASING" or ENTER transaction
# which "makes larger", in src asset unit terms, the
# trade's side-size of the destination asset:
# - "buying" (more) units of the dst asset
# - "selling" (more short) units of the dst asset
if is_enter:
# Naively include transaction cost in breakeven
# price and presume the worst case of the
# exact-same-cost-to-exit this transaction's worth
# of size even though in reality it will be dynamic
# based on exit strategy, price, liquidity, etc..
virt_cost: float = txn_cost
# cpu: float = cost / size
# cummean of the cost-per-unit used for modelling
# a projected future exit cost which we immediately
# include in the costs incorporated to BEP on enters
last_cum_costs_size, last_cpu = virt_costs
cum_costs_size: float = last_cum_costs_size + abs(size)
cumcpu = (
(last_cpu * last_cum_costs_size)
+
txn_cost
) / cum_costs_size
virt_costs = [cum_costs_size, cumcpu]
txn_cost = txn_cost + virt_cost
# df[i, 'virt_cost'] = f'{-virt_cost} FROM {cumcpu}@{cum_costs_size}'
# a cumulative mean of the price-per-unit acquired
# in the destination asset:
# https://en.wikipedia.org/wiki/Moving_average#Cumulative_average
# You could also think of this measure more
# generally as an exponential mean with `alpha
# = 1/N` where `N` is the current number of txns
# included in the "position" defining set:
# https://en.wikipedia.org/wiki/Exponential_smoothing
ppu: float = (
(
(last_ppu * last_cumsize)
+
(price * size)
) /
cumsize
)
# a "position size DECREASING" or EXIT transaction
# which "makes smaller" the trade's side-size of the
# destination asset:
# - selling previously bought units of the dst asset
# (aka 'closing' a long position).
# - buying previously borrowed and sold (short) units
# of the dst asset (aka 'covering'/'closing' a short
# position).
else:
# only changes on position size increasing txns
ppu: float = last_ppu
# UNWIND IMPLIED COSTS FROM ENTRIES
# => Reverse the virtual/modelled (2x predicted) txn
# cost that was included in the least-recently
# entered txn that is still part of the current CSi
# set.
# => we look up the cost-per-unit cumsum and apply
# if over the current txn size (by multiplication)
# and then reverse that previusly applied cost on
# the txn_cost for this record.
#
# NOTE: current "model" is just to previously assumed 2x
# the txn cost for a matching enter-txn's
# cost-per-unit; we then immediately reverse this
# prediction and apply the real cost received here.
last_cum_costs_size, last_cpu = virt_costs
prev_virt_cost: float = last_cpu * abs(size)
txn_cost: float = txn_cost - prev_virt_cost # +ve thus a "reversal"
cum_costs_size: float = last_cum_costs_size - abs(size)
virt_costs = [cum_costs_size, last_cpu]
# df[i, 'virt_cost'] = (
# f'{-prev_virt_cost} FROM {last_cpu}@{cum_costs_size}'
# )
# the per-txn profit or loss (PnL) given we are
# (partially) "closing"/"exiting" the position via
# this txn.
pnl: float = (last_ppu - price) * size
# always subtract txn cost from total txn pnl
txn_pnl: float = pnl - txn_cost
# cumulative PnLs per txn
last_ledger_pnl = (
last_ledger_pnl + txn_pnl
)
last_pos_pnl = df[i, 'cum_pos_pnl'] = (
last_pos_pnl + txn_pnl
)
if cumsize == 0:
last_ppu = ppu = 0
# compute the BEP: "break even price", a value that
# determines at what price the remaining cumsize can be
# liquidated such that the net-PnL on the current
# position will result in ZERO gain or loss from open
# to close including all txn costs B)
if (
abs(cumsize) > 0 # non-exit-to-zero position txn
):
cumsize_sign: float = copysign(1, cumsize)
ledger_bep: float = (
(
(ppu * cumsize)
-
(last_ledger_pnl * cumsize_sign)
) / cumsize
)
# NOTE: when we "enter more" dst asset units (aka
# increase position state) AFTER having exited some
# units (aka decreasing the pos size some) the bep
# needs to be RECOMPUTED based on new ppu such that
# liquidation of the cumsize at the bep price
# results in a zero-pnl for the existing position
# (since the last one).
# for position lifetime BEP we never can have
# a valid value once the position is "closed"
# / full exitted Bo
pos_bep: float = (
(
(ppu * cumsize)
-
(last_pos_pnl * cumsize_sign)
) / cumsize
)
# inject DF row with all values
df[i, 'pos_ppu'] = ppu
df[i, 'per_txn_pnl'] = txn_pnl
df[i, 'applied_cost'] = -txn_cost
df[i, 'cum_pos_pnl'] = last_pos_pnl
df[i, 'pos_bep'] = pos_bep
df[i, 'cum_ledger_pnl'] = last_ledger_pnl
df[i, 'ledger_bep'] = ledger_bep
# keep backrefs to suffice reccurence relation
last_ppu: float = ppu
last_cumsize: float = cumsize
# TODO?: pass back the current `Position` object loaded from
# the account as well? Would provide incentive to do all
# this ledger loading inside a new async open_account().
# bs_mktid: str = df[0]['bs_mktid']
# pos: Position = acnt.pps[bs_mktid]
return dfs

View File

@ -18,13 +18,12 @@
CLI front end for trades ledger and position tracking management.
'''
from __future__ import annotations
from pprint import pformat
from typing import (
Any,
)
from rich.console import Console
from rich.markdown import Markdown
import polars as pl
import tractor
import trio
import typer
@ -35,38 +34,63 @@ from ..service import (
)
from ..clearing._messages import BrokerdPosition
from ..calc import humanize
from ..brokers._daemon import broker_init
from ._ledger import (
load_ledger,
TransactionLedger,
# open_trade_ledger,
)
from .calc import (
open_ledger_dfs,
)
ledger = typer.Typer()
def unpack_fqan(
fully_qualified_account_name: str,
console: Console | None = None,
) -> tuple | bool:
try:
brokername, account = fully_qualified_account_name.split('.')
return brokername, account
except ValueError:
if console is not None:
md = Markdown(
f'=> `{fully_qualified_account_name}` <=\n\n'
'is not a valid '
'__fully qualified account name?__\n\n'
'Your account name needs to be of the form '
'`<brokername>.<account_name>`\n'
)
console.print(md)
return False
def broker_init(
brokername: str,
loglevel: str | None = None,
**start_actor_kwargs,
) -> dict:
'''
Given an input broker name, load all named arguments
which can be passed to a daemon + context spawn for
the relevant `brokerd` service endpoint.
'''
from ..brokers import get_brokermod
brokermod = get_brokermod(brokername)
modpath = brokermod.__name__
start_actor_kwargs['name'] = f'brokerd.{brokername}'
start_actor_kwargs.update(
getattr(
brokermod,
'_spawn_kwargs',
{},
)
)
# lookup actor-enabled modules declared by the backend offering the
# `brokerd` endpoint(s).
enabled = start_actor_kwargs['enable_modules'] = [modpath]
for submodname in getattr(
brokermod,
'__enable_modules__',
[],
):
subpath = f'{modpath}.{submodname}'
enabled.append(subpath)
# TODO XXX: DO WE NEED THIS?
# enabled.append('piker.data.feed')
# non-blocking setup of brokerd service nursery
from ..brokers._daemon import _setup_persistent_brokerd
return (
start_actor_kwargs, # to `ActorNursery.start_actor()`
_setup_persistent_brokerd, # service task ep
getattr( # trades endpoint
brokermod,
'trades_dialogue',
None,
),
)
@ledger.command()
@ -82,20 +106,23 @@ def sync(
log = get_logger(loglevel)
console = Console()
pair: tuple[str, str]
if not (pair := unpack_fqan(
fully_qualified_account_name,
console,
)):
try:
brokername, account = fully_qualified_account_name.split('.')
except ValueError:
md = Markdown(
f'=> `{fully_qualified_account_name}` <=\n\n'
'is not a valid '
'__fully qualified account name?__\n\n'
'Your account name needs to be of the form '
'`<brokername>.<account_name>`\n'
)
console.print(md)
return
brokername, account = pair
brokermod, start_kwargs, deamon_ep = broker_init(
start_kwargs, _, trades_ep = broker_init(
brokername,
loglevel=loglevel,
)
brokername: str = brokermod.name
async def main():
@ -109,203 +136,99 @@ def sync(
tractor.open_nursery() as an,
):
try:
log.info(
f'Piker runtime up as {actor.uid}@{sockaddr}'
)
log.info(
f'Piker runtime up as {actor.uid}@{sockaddr}'
)
portal = await an.start_actor(
portal = await an.start_actor(
loglevel=loglevel,
debug_mode=pdb,
**start_kwargs,
)
if (
brokername == 'paper'
or trades_ep is None
):
from ..clearing import _paper_engine as paper
open_trades_endpoint = paper.open_paperboi(
fqme=None, # tell paper to not start clearing loop
broker=brokername,
loglevel=loglevel,
)
else:
# open live brokerd trades endpoint
open_trades_endpoint = portal.open_context(
trades_ep,
loglevel=loglevel,
debug_mode=pdb,
**start_kwargs,
)
from ..clearing import (
open_brokerd_dialog,
positions: dict[str, Any]
accounts: list[str]
async with (
open_trades_endpoint as (
brokerd_ctx,
(positions, accounts),
),
):
assert len(accounts) == 1
summary: str = (
'[dim underline]Piker Position Summary[/] '
f'[dim blue underline]{brokername}[/]'
'[dim].[/]'
f'[blue underline]{account}[/]'
f'[dim underline] -> total pps: [/]'
f'[green]{len(positions)}[/]\n'
)
brokerd_stream: tractor.MsgStream
async with (
# engage the brokerd daemon context
portal.open_context(
deamon_ep,
brokername=brokername,
loglevel=loglevel,
),
# manually open the brokerd trade dialog EP
# (what the EMS normally does internall) B)
open_brokerd_dialog(
brokermod,
portal,
exec_mode=(
'paper'
if account == 'paper'
else 'live'
),
loglevel=loglevel,
) as (
brokerd_stream,
pp_msg_table,
accounts,
),
):
try:
assert len(accounts) == 1
if not pp_msg_table:
ld, fpath = load_ledger(brokername, account)
assert not ld, f'WTF did we fail to parse ledger:\n{ld}'
console.print(
'[yellow]'
'No pps found for '
f'`{brokername}.{account}` '
'account!\n\n'
'[/][underline]'
'None of the following ledger files exist:\n\n[/]'
f'{fpath.as_uri()}\n'
)
return
pps_by_symbol: dict[str, BrokerdPosition] = pp_msg_table[
brokername,
account,
]
summary: str = (
'[dim underline]Piker Position Summary[/] '
f'[dim blue underline]{brokername}[/]'
'[dim].[/]'
f'[blue underline]{account}[/]'
f'[dim underline] -> total pps: [/]'
f'[green]{len(pps_by_symbol)}[/]\n'
for ppdict in positions:
ppmsg = BrokerdPosition(**ppdict)
size = ppmsg.size
if size:
ppu: float = round(
ppmsg.avg_price,
ndigits=2,
)
# for ppdict in positions:
for fqme, ppmsg in pps_by_symbol.items():
# ppmsg = BrokerdPosition(**ppdict)
size = ppmsg.size
if size:
ppu: float = round(
ppmsg.avg_price,
ndigits=2,
)
cost_basis: str = humanize(size * ppu)
h_size: str = humanize(size)
cost_basis: str = humanize(size * ppu)
h_size: str = humanize(size)
if size < 0:
pcolor = 'red'
else:
pcolor = 'green'
if size < 0:
pcolor = 'red'
else:
pcolor = 'green'
# sematic-highlight of fqme
fqme = ppmsg.symbol
tokens = fqme.split('.')
styled_fqme = f'[blue underline]{tokens[0]}[/]'
for tok in tokens[1:]:
styled_fqme += '[dim].[/]'
styled_fqme += f'[dim blue underline]{tok}[/]'
# sematic-highlight of fqme
fqme = ppmsg.symbol
tokens = fqme.split('.')
styled_fqme = f'[blue underline]{tokens[0]}[/]'
for tok in tokens[1:]:
styled_fqme += '[dim].[/]'
styled_fqme += f'[dim blue underline]{tok}[/]'
# TODO: instead display in a ``rich.Table``?
summary += (
styled_fqme +
'[dim]: [/]'
f'[{pcolor}]{h_size}[/]'
'[dim blue]u @[/]'
f'[{pcolor}]{ppu}[/]'
'[dim blue] = [/]'
f'[{pcolor}]$ {cost_basis}\n[/]'
)
# TODO: instead display in a ``rich.Table``?
summary += (
styled_fqme +
'[dim]: [/]'
f'[{pcolor}]{h_size}[/]'
'[dim blue]u @[/]'
f'[{pcolor}]{ppu}[/]'
'[dim blue] = [/]'
f'[{pcolor}]$ {cost_basis}\n[/]'
)
console.print(summary)
console.print(summary)
finally:
# exit via ctx cancellation.
brokerd_ctx: tractor.Context = brokerd_stream._ctx
await brokerd_ctx.cancel(timeout=1)
# exit via ctx cancellation.
await brokerd_ctx.cancel(timeout=1)
# TODO: once ported to newer tractor branch we should
# be able to do a loop like this:
# while brokerd_ctx.cancel_called_remote is None:
# await trio.sleep(0.01)
# await brokerd_ctx.cancel()
# TODO: once ported to newer tractor branch we should
# be able to do a loop like this:
# while brokerd_ctx.cancel_called_remote is None:
# await trio.sleep(0.01)
# await brokerd_ctx.cancel()
finally:
await portal.cancel_actor()
await portal.cancel_actor()
trio.run(main)
@ledger.command()
def disect(
# "fully_qualified_account_name"
fqan: str,
fqme: str, # for ib
# TODO: in tractor we should really have
# a debug_mode ctx for wrapping any kind of code no?
pdb: bool = False,
bs_mktid: str = typer.Option(
None,
"-bid",
),
loglevel: str = typer.Option(
'error',
"-l",
),
):
from piker.log import get_console_log
from piker.toolz import open_crash_handler
get_console_log(loglevel)
pair: tuple[str, str]
if not (pair := unpack_fqan(fqan)):
raise ValueError('{fqan} malformed!?')
brokername, account = pair
# ledger dfs groupby-partitioned by fqme
dfs: dict[str, pl.DataFrame]
# actual ledger instance
ldgr: TransactionLedger
pl.Config.set_tbl_cols(-1)
pl.Config.set_tbl_rows(-1)
with (
open_crash_handler(),
open_ledger_dfs(
brokername,
account,
) as (dfs, ldgr),
):
# look up specific frame for fqme-selected asset
if (df := dfs.get(fqme)) is None:
mktids2fqmes: dict[str, list[str]] = {}
for bs_mktid in dfs:
df: pl.DataFrame = dfs[bs_mktid]
fqmes: pl.Series[str] = df['fqme']
uniques: list[str] = fqmes.unique()
mktids2fqmes[bs_mktid] = set(uniques)
if fqme in uniques:
break
print(
f'No specific ledger for fqme={fqme} could be found in\n'
f'{pformat(mktids2fqmes)}?\n'
f'Maybe the `{brokername}` backend uses something '
'else for its `bs_mktid` then the `fqme`?\n'
'Scanning for matches in unique fqmes per frame..\n'
)
# :pray:
assert not df.is_empty()
# muck around in pdbp REPL
breakpoint()
# TODO: we REALLY need a better console REPL for this
# kinda thing..
# - `xonsh` is an obvious option (and it looks amazin) but
# we need to figure out how to embed it better then just:
# from xonsh.main import main
# main(argv=[])
# which will not actually inject the `df` to globals?
if __name__ == "__main__":
ledger() # this is called from ``>> ledger <accountname>``

View File

@ -17,40 +17,14 @@
"""
Broker clients, daemons and general back end machinery.
"""
from contextlib import (
asynccontextmanager as acm,
)
from importlib import import_module
from types import ModuleType
from tractor.trionics import maybe_open_context
from ._util import (
log,
BrokerError,
SymbolNotFound,
NoData,
DataUnavailable,
DataThrottle,
resproc,
get_logger,
)
__all__: list[str] = [
'BrokerError',
'SymbolNotFound',
'NoData',
'DataUnavailable',
'DataThrottle',
'resproc',
'get_logger',
]
__brokers__: list[str] = [
__brokers__ = [
'binance',
'ib',
'kraken',
'kucoin',
'kucoin'
# broken but used to work
# 'questrade',
@ -71,7 +45,7 @@ def get_brokermod(brokername: str) -> ModuleType:
Return the imported broker module by name.
'''
module: ModuleType = import_module('.' + brokername, 'piker.brokers')
module = import_module('.' + brokername, 'piker.brokers')
# we only allow monkeying because it's for internal keying
module.name = module.__name__.split('.')[-1]
return module
@ -84,28 +58,3 @@ def iter_brokermods():
'''
for name in __brokers__:
yield get_brokermod(name)
@acm
async def open_cached_client(
brokername: str,
**kwargs,
) -> 'Client': # noqa
'''
Get a cached broker client from the current actor's local vars.
If one has not been setup do it and cache it.
'''
brokermod = get_brokermod(brokername)
async with maybe_open_context(
acm_func=brokermod.get_client,
kwargs=kwargs,
) as (cache_hit, client):
if cache_hit:
log.runtime(f'Reusing existing {client}')
yield client

View File

@ -19,16 +19,9 @@ Broker-daemon-actor "endpoint-hooks": the service task entry points for
``brokerd``.
'''
from __future__ import annotations
from contextlib import (
asynccontextmanager as acm,
)
from types import ModuleType
from typing import (
TYPE_CHECKING,
AsyncContextManager,
)
import exceptiongroup as eg
import tractor
import trio
@ -36,14 +29,11 @@ import trio
from . import _util
from . import get_brokermod
if TYPE_CHECKING:
from ..data import _FeedsBus
# `brokerd` enabled modules
# TODO: move this def to the `.data` subpkg..
# NOTE: keeping this list as small as possible is part of our caps-sec
# model and should be treated with utmost care!
_data_mods: str = [
_data_mods = [
'piker.brokers.core',
'piker.brokers.data',
'piker.brokers._daemon',
@ -68,125 +58,31 @@ async def _setup_persistent_brokerd(
the broker backend as needed.
'''
# NOTE: we only need to setup logging once (and only) here
# since all hosted daemon tasks will reference this same
# log instance's (actor local) state and thus don't require
# any further (level) configuration on their own B)
log = _util.get_console_log(
loglevel or tractor.current_actor().loglevel,
name=f'{_util.subsys}.{brokername}',
)
# set global for this actor to this new process-wide instance B)
_util.log = log
# further, set the log level on any broker broker specific
# logger instance.
from piker.data import feed
assert not feed._bus
# allocate a nursery to the bus for spawning background
# tasks to service client IPC requests, normally
# `tractor.Context` connections to explicitly required
# `brokerd` endpoints such as:
# - `stream_quotes()`,
# - `manage_history()`,
# - `allocate_persistent_feed()`,
# - `open_symbol_search()`
# NOTE: see ep invocation details inside `.data.feed`.
try:
async with trio.open_nursery() as service_nursery:
bus: _FeedsBus = feed.get_feed_bus(
brokername,
service_nursery,
)
assert bus is feed._bus
# unblock caller
await ctx.started()
# we pin this task to keep the feeds manager active until the
# parent actor decides to tear it down
await trio.sleep_forever()
except eg.ExceptionGroup:
# TODO: likely some underlying `brokerd` IPC connection
# broke so here we handle a respawn and re-connect attempt!
# This likely should pair with development of the OCO task
# nusery in dev over @ `tractor` B)
# https://github.com/goodboy/tractor/pull/363
raise
def broker_init(
brokername: str,
loglevel: str | None = None,
**start_actor_kwargs,
) -> tuple[
ModuleType,
dict,
AsyncContextManager,
]:
'''
Given an input broker name, load all named arguments
which can be passed for daemon endpoint + context spawn
as required in every `brokerd` (actor) service.
This includes:
- load the appropriate <brokername>.py pkg module,
- reads any declared `__enable_modules__: listr[str]` which will be
passed to `tractor.ActorNursery.start_actor(enabled_modules=<this>)`
at actor start time,
- deliver a references to the daemon lifetime fixture, which
for now is always the `_setup_persistent_brokerd()` context defined
above.
'''
from ..brokers import get_brokermod
brokermod = get_brokermod(brokername)
modpath: str = brokermod.__name__
start_actor_kwargs['name'] = f'brokerd.{brokername}'
start_actor_kwargs.update(
getattr(
brokermod,
'_spawn_kwargs',
{},
)
from piker.data.feed import (
_bus,
get_feed_bus,
)
global _bus
assert not _bus
# XXX TODO: make this not so hacky/monkeypatched..
# -> we need a sane way to configure the logging level for all
# code running in brokerd.
# if utilmod := getattr(brokermod, '_util', False):
# utilmod.log.setLevel(loglevel.upper())
async with trio.open_nursery() as service_nursery:
# assign a nursery to the feeds bus for spawning
# background tasks from clients
get_feed_bus(brokername, service_nursery)
# lookup actor-enabled modules declared by the backend offering the
# `brokerd` endpoint(s).
enabled: list[str]
enabled = start_actor_kwargs['enable_modules'] = [
__name__, # so that eps from THIS mod can be invoked
modpath,
]
for submodname in getattr(
brokermod,
'__enable_modules__',
[],
):
subpath: str = f'{modpath}.{submodname}'
enabled.append(subpath)
# unblock caller
await ctx.started()
return (
brokermod,
start_actor_kwargs, # to `ActorNursery.start_actor()`
# XXX see impl above; contains all (actor global)
# setup/teardown expected in all `brokerd` actor instances.
_setup_persistent_brokerd,
)
# we pin this task to keep the feeds manager active until the
# parent actor decides to tear it down
await trio.sleep_forever()
async def spawn_brokerd(
@ -198,44 +94,44 @@ async def spawn_brokerd(
) -> bool:
from piker.service import Services
from piker.service._util import log # use service mngr log
log.info(f'Spawning {brokername} broker daemon')
(
brokermode,
tractor_kwargs,
daemon_fixture_ep,
) = broker_init(
brokername,
loglevel,
**tractor_kwargs,
)
brokermod = get_brokermod(brokername)
dname = f'brokerd.{brokername}'
extra_tractor_kwargs = getattr(brokermod, '_spawn_kwargs', {})
tractor_kwargs.update(extra_tractor_kwargs)
# ask `pikerd` to spawn a new sub-actor and manage it under its
# actor nursery
from piker.service import Services
modpath = brokermod.__name__
broker_enable = [modpath]
for submodname in getattr(
brokermod,
'__enable_modules__',
[],
):
subpath = f'{modpath}.{submodname}'
broker_enable.append(subpath)
dname: str = tractor_kwargs.pop('name') # f'brokerd.{brokername}'
portal = await Services.actor_n.start_actor(
dname,
enable_modules=_data_mods + tractor_kwargs.pop('enable_modules'),
enable_modules=_data_mods + broker_enable,
loglevel=loglevel,
debug_mode=Services.debug_mode,
**tractor_kwargs
)
# NOTE: the service mngr expects an already spawned actor + its
# portal ref in order to do non-blocking setup of brokerd
# service nursery.
# non-blocking setup of brokerd service nursery
await Services.start_service_task(
dname,
portal,
# signature of target root-task endpoint
daemon_fixture_ep,
_setup_persistent_brokerd,
brokername=brokername,
loglevel=loglevel,
)
@ -252,11 +148,8 @@ async def maybe_spawn_brokerd(
) -> tractor.Portal:
'''
Helper to spawn a brokerd service *from* a client who wishes to
use the sub-actor-daemon but is fine with re-using any existing
and contactable `brokerd`.
Mas o menos, acts as a cached-actor-getter factory.
Helper to spawn a brokerd service *from* a client
who wishes to use the sub-actor-daemon.
'''
from piker.service import maybe_spawn_daemon

View File

@ -1,5 +1,5 @@
# piker: trading gear for hackers
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of pikers)
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of piker0)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
@ -18,11 +18,10 @@
Handy cross-broker utils.
"""
from __future__ import annotations
from functools import partial
import json
import httpx
import asks
import logging
from ..log import (
@ -33,8 +32,6 @@ from ..log import (
subsys: str = 'piker.brokers'
# NOTE: level should be reset by any actor that is spawned
# as well as given a (more) explicit name/key such
# as `piker.brokers.binance` matching the subpkg.
log = get_logger(subsys)
get_console_log = partial(
@ -51,7 +48,6 @@ class SymbolNotFound(BrokerError):
"Symbol not found by broker search"
# TODO: these should probably be moved to `.tsp/.data`?
class NoData(BrokerError):
'''
Symbol data not permitted or no data
@ -61,15 +57,14 @@ class NoData(BrokerError):
def __init__(
self,
*args,
info: dict|None = None,
frame_size: int = 1000,
) -> None:
super().__init__(*args)
self.info: dict|None = info
# when raised, machinery can check if the backend
# set a "frame size" for doing datetime calcs.
# self.frame_size: int = 1000
self.frame_size: int = 1000
class DataUnavailable(BrokerError):
@ -91,18 +86,16 @@ class DataThrottle(BrokerError):
def resproc(
resp: httpx.Response,
resp: asks.response_objects.Response,
log: logging.Logger,
return_json: bool = True,
log_resp: bool = False,
) -> httpx.Response:
'''
Process response and return its json content.
) -> asks.response_objects.Response:
"""Process response and return its json content.
Raise the appropriate error on non-200 OK responses.
'''
"""
if not resp.status_code == 200:
raise BrokerError(resp.body)
try:

View File

@ -0,0 +1,684 @@
# piker: trading gear for hackers
# Copyright (C)
# Guillermo Rodriguez
# Tyler Goodlet
# (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Binance backend
"""
from contextlib import (
asynccontextmanager as acm,
aclosing,
)
from datetime import datetime
from decimal import Decimal
import itertools
from typing import (
Any, Union, Optional,
AsyncGenerator, Callable,
)
import time
import trio
from trio_typing import TaskStatus
import pendulum
import asks
from fuzzywuzzy import process as fuzzy
import numpy as np
import tractor
from .._cacheables import async_lifo_cache
from ..accounting._mktinfo import (
Asset,
MktPair,
digits_to_dec,
)
from .._cacheables import open_cached_client
from ._util import (
resproc,
SymbolNotFound,
DataUnavailable,
)
from ._util import (
log,
get_console_log,
)
from ..data.types import Struct
from ..data.validate import FeedInit
from ..data._web_bs import (
open_autorecon_ws,
NoBsWs,
)
_url = 'https://api.binance.com'
# Broker specific ohlc schema (rest)
_ohlc_dtype = [
('index', int),
('time', int),
('open', float),
('high', float),
('low', float),
('close', float),
('volume', float),
('bar_wap', float), # will be zeroed by sampler if not filled
# XXX: some additional fields are defined in the docs:
# https://binance-docs.github.io/apidocs/spot/en/#kline-candlestick-data
# ('close_time', int),
# ('quote_vol', float),
# ('num_trades', int),
# ('buy_base_vol', float),
# ('buy_quote_vol', float),
# ('ignore', float),
]
# UI components allow this to be declared such that additional
# (historical) fields can be exposed.
ohlc_dtype = np.dtype(_ohlc_dtype)
_show_wap_in_history = False
# https://binance-docs.github.io/apidocs/spot/en/#exchange-information
# TODO: make this frozen again by pre-processing the
# filters list to a dict at init time?
class Pair(Struct, frozen=True):
symbol: str
status: str
baseAsset: str
baseAssetPrecision: int
cancelReplaceAllowed: bool
allowTrailingStop: bool
quoteAsset: str
quotePrecision: int
quoteAssetPrecision: int
baseCommissionPrecision: int
quoteCommissionPrecision: int
orderTypes: list[str]
icebergAllowed: bool
ocoAllowed: bool
quoteOrderQtyMarketAllowed: bool
isSpotTradingAllowed: bool
isMarginTradingAllowed: bool
defaultSelfTradePreventionMode: str
allowedSelfTradePreventionModes: list[str]
filters: dict[
str,
Union[str, int, float]
]
permissions: list[str]
@property
def price_tick(self) -> Decimal:
# XXX: lul, after manually inspecting the response format we
# just directly pick out the info we need
step_size: str = self.filters['PRICE_FILTER']['tickSize'].rstrip('0')
return Decimal(step_size)
@property
def size_tick(self) -> Decimal:
step_size: str = self.filters['LOT_SIZE']['stepSize'].rstrip('0')
return Decimal(step_size)
class OHLC(Struct):
'''
Description of the flattened OHLC quote format.
For schema details see:
https://binance-docs.github.io/apidocs/spot/en/#kline-candlestick-streams
'''
time: int
open: float
high: float
low: float
close: float
volume: float
close_time: int
quote_vol: float
num_trades: int
buy_base_vol: float
buy_quote_vol: float
ignore: int
# null the place holder for `bar_wap` until we
# figure out what to extract for this.
bar_wap: float = 0.0
class L1(Struct):
# https://binance-docs.github.io/apidocs/spot/en/#individual-symbol-book-ticker-streams
update_id: int
sym: str
bid: float
bsize: float
ask: float
asize: float
# convert datetime obj timestamp to unixtime in milliseconds
def binance_timestamp(
when: datetime
) -> int:
return int((when.timestamp() * 1000) + (when.microsecond / 1000))
class Client:
def __init__(self) -> None:
self._sesh = asks.Session(connections=4)
self._sesh.base_location = _url
self._pairs: dict[str, Pair] = {}
async def _api(
self,
method: str,
params: dict,
) -> dict[str, Any]:
resp = await self._sesh.get(
path=f'/api/v3/{method}',
params=params,
timeout=float('inf')
)
return resproc(resp, log)
async def exch_info(
self,
sym: str | None = None,
) -> dict[str, Pair] | Pair:
'''
Fresh exchange-pairs info query for symbol ``sym: str``:
https://binance-docs.github.io/apidocs/spot/en/#exchange-information
'''
cached_pair = self._pairs.get(sym)
if cached_pair:
return cached_pair
# retrieve all symbols by default
params = {}
if sym is not None:
sym = sym.lower()
params = {'symbol': sym}
resp = await self._api('exchangeInfo', params=params)
entries = resp['symbols']
if not entries:
raise SymbolNotFound(f'{sym} not found:\n{resp}')
# pre-process .filters field into a table
pairs = {}
for item in entries:
symbol = item['symbol']
filters = {}
filters_ls: list = item.pop('filters')
for entry in filters_ls:
ftype = entry['filterType']
filters[ftype] = entry
pairs[symbol] = Pair(
filters=filters,
**item,
)
# pairs = {
# item['symbol']: Pair(**item) for item in entries
# }
self._pairs.update(pairs)
if sym is not None:
return pairs[sym]
else:
return self._pairs
symbol_info = exch_info
async def search_symbols(
self,
pattern: str,
limit: int = None,
) -> dict[str, Any]:
if self._pairs is not None:
data = self._pairs
else:
data = await self.exch_info()
matches = fuzzy.extractBests(
pattern,
data,
score_cutoff=50,
)
# repack in dict form
return {item[0]['symbol']: item[0]
for item in matches}
async def bars(
self,
symbol: str,
start_dt: Optional[datetime] = None,
end_dt: Optional[datetime] = None,
limit: int = 1000, # <- max allowed per query
as_np: bool = True,
) -> dict:
if end_dt is None:
end_dt = pendulum.now('UTC').add(minutes=1)
if start_dt is None:
start_dt = end_dt.start_of(
'minute').subtract(minutes=limit)
start_time = binance_timestamp(start_dt)
end_time = binance_timestamp(end_dt)
# https://binance-docs.github.io/apidocs/spot/en/#kline-candlestick-data
bars = await self._api(
'klines',
params={
'symbol': symbol.upper(),
'interval': '1m',
'startTime': start_time,
'endTime': end_time,
'limit': limit
}
)
# TODO: pack this bars scheme into a ``pydantic`` validator type:
# https://binance-docs.github.io/apidocs/spot/en/#kline-candlestick-data
# TODO: we should port this to ``pydantic`` to avoid doing
# manual validation ourselves..
new_bars = []
for i, bar in enumerate(bars):
bar = OHLC(*bar)
bar.typecast()
row = []
for j, (name, ftype) in enumerate(_ohlc_dtype[1:]):
# TODO: maybe we should go nanoseconds on all
# history time stamps?
if name == 'time':
# convert to epoch seconds: float
row.append(bar.time / 1000.0)
else:
row.append(getattr(bar, name))
new_bars.append((i,) + tuple(row))
array = np.array(new_bars, dtype=_ohlc_dtype) if as_np else bars
return array
@acm
async def get_client() -> Client:
client = Client()
log.info('Caching exchange infos..')
await client.exch_info()
yield client
# validation type
class AggTrade(Struct):
e: str # Event type
E: int # Event time
s: str # Symbol
a: int # Aggregate trade ID
p: float # Price
q: float # Quantity
f: int # First trade ID
l: int # Last trade ID
T: int # Trade time
m: bool # Is the buyer the market maker?
M: bool # Ignore
async def stream_messages(
ws: NoBsWs,
) -> AsyncGenerator[NoBsWs, dict]:
# TODO: match syntax here!
msg: dict[str, Any]
async for msg in ws:
match msg:
# for l1 streams binance doesn't add an event type field so
# identify those messages by matching keys
# https://binance-docs.github.io/apidocs/spot/en/#individual-symbol-book-ticker-streams
case {
# NOTE: this is never an old value it seems, so
# they are always sending real L1 spread updates.
'u': upid, # update id
's': sym,
'b': bid,
'B': bsize,
'a': ask,
'A': asize,
}:
# TODO: it would be super nice to have a `L1` piker type
# which "renders" incremental tick updates from a packed
# msg-struct:
# - backend msgs after packed into the type such that we
# can reduce IPC usage but without each backend having
# to do that incremental update logic manually B)
# - would it maybe be more efficient to use this instead?
# https://binance-docs.github.io/apidocs/spot/en/#diff-depth-stream
l1 = L1(
update_id=upid,
sym=sym,
bid=bid,
bsize=bsize,
ask=ask,
asize=asize,
)
l1.typecast()
# repack into piker's tick-quote format
yield 'l1', {
'symbol': l1.sym,
'ticks': [
{
'type': 'bid',
'price': l1.bid,
'size': l1.bsize,
},
{
'type': 'bsize',
'price': l1.bid,
'size': l1.bsize,
},
{
'type': 'ask',
'price': l1.ask,
'size': l1.asize,
},
{
'type': 'asize',
'price': l1.ask,
'size': l1.asize,
}
]
}
# https://binance-docs.github.io/apidocs/spot/en/#aggregate-trade-streams
case {
'e': 'aggTrade',
}:
# NOTE: this is purely for a definition,
# ``msgspec.Struct`` does not runtime-validate until you
# decode/encode, see:
# https://jcristharif.com/msgspec/structs.html#type-validation
msg = AggTrade(**msg)
msg.typecast()
yield 'trade', {
'symbol': msg.s,
'last': msg.p,
'brokerd_ts': time.time(),
'ticks': [{
'type': 'trade',
'price': msg.p,
'size': msg.q,
'broker_ts': msg.T,
}],
}
def make_sub(pairs: list[str], sub_name: str, uid: int) -> dict[str, str]:
"""Create a request subscription packet dict.
https://binance-docs.github.io/apidocs/spot/en/#live-subscribing-unsubscribing-to-streams
"""
return {
'method': 'SUBSCRIBE',
'params': [
f'{pair.lower()}@{sub_name}'
for pair in pairs
],
'id': uid
}
@acm
async def open_history_client(
mkt: MktPair,
) -> tuple[Callable, int]:
symbol: str = mkt.bs_fqme
# TODO implement history getter for the new storage layer.
async with open_cached_client('binance') as client:
async def get_ohlc(
timeframe: float,
end_dt: datetime | None = None,
start_dt: datetime | None = None,
) -> tuple[
np.ndarray,
datetime, # start
datetime, # end
]:
if timeframe != 60:
raise DataUnavailable('Only 1m bars are supported')
array = await client.bars(
symbol,
start_dt=start_dt,
end_dt=end_dt,
)
times = array['time']
if (
end_dt is None
):
inow = round(time.time())
if (inow - times[-1]) > 60:
await tractor.breakpoint()
start_dt = pendulum.from_timestamp(times[0])
end_dt = pendulum.from_timestamp(times[-1])
return array, start_dt, end_dt
yield get_ohlc, {'erlangs': 3, 'rate': 3}
@async_lifo_cache()
async def get_mkt_info(
fqme: str,
) -> tuple[MktPair, Pair]:
async with open_cached_client('binance') as client:
pair: Pair = await client.exch_info(fqme.upper())
mkt = MktPair(
dst=Asset(
name=pair.baseAsset,
atype='crypto',
tx_tick=digits_to_dec(pair.baseAssetPrecision),
),
src=Asset(
name=pair.quoteAsset,
atype='crypto',
tx_tick=digits_to_dec(pair.quoteAssetPrecision),
),
price_tick=pair.price_tick,
size_tick=pair.size_tick,
bs_mktid=pair.symbol,
broker='binance',
)
both = mkt, pair
return both
async def stream_quotes(
send_chan: trio.abc.SendChannel,
symbols: list[str],
feed_is_live: trio.Event,
loglevel: str = None,
# startup sync
task_status: TaskStatus[tuple[dict, dict]] = trio.TASK_STATUS_IGNORED,
) -> None:
# XXX: required to propagate ``tractor`` loglevel to piker logging
get_console_log(loglevel or tractor.current_actor().loglevel)
async with (
send_chan as send_chan,
):
init_msgs: list[FeedInit] = []
for sym in symbols:
mkt, pair = await get_mkt_info(sym)
# build out init msgs according to latest spec
init_msgs.append(
FeedInit(mkt_info=mkt)
)
iter_subids = itertools.count()
@acm
async def subscribe(ws: NoBsWs):
# setup subs
subid: int = next(iter_subids)
# trade data (aka L1)
# https://binance-docs.github.io/apidocs/spot/en/#symbol-order-book-ticker
l1_sub = make_sub(symbols, 'bookTicker', subid)
await ws.send_msg(l1_sub)
# aggregate (each order clear by taker **not** by maker)
# trades data:
# https://binance-docs.github.io/apidocs/spot/en/#aggregate-trade-streams
agg_trades_sub = make_sub(symbols, 'aggTrade', subid)
await ws.send_msg(agg_trades_sub)
# might get ack from ws server, or maybe some
# other msg still in transit..
res = await ws.recv_msg()
subid: str | None = res.get('id')
if subid:
assert res['id'] == subid
yield
subs = []
for sym in symbols:
subs.append("{sym}@aggTrade")
subs.append("{sym}@bookTicker")
# unsub from all pairs on teardown
if ws.connected():
await ws.send_msg({
"method": "UNSUBSCRIBE",
"params": subs,
"id": subid,
})
# XXX: do we need to ack the unsub?
# await ws.recv_msg()
async with (
open_autorecon_ws(
# XXX: see api docs which show diff addr?
# https://developers.binance.com/docs/binance-trading-api/websocket_api#general-api-information
# 'wss://ws-api.binance.com:443/ws-api/v3',
'wss://stream.binance.com/ws',
fixture=subscribe,
) as ws,
# avoid stream-gen closure from breaking trio..
aclosing(stream_messages(ws)) as msg_gen,
):
typ, quote = await anext(msg_gen)
# pull a first quote and deliver
while typ != 'trade':
typ, quote = await anext(msg_gen)
task_status.started((init_msgs, quote))
# signal to caller feed is ready for consumption
feed_is_live.set()
# import time
# last = time.time()
# start streaming
async for typ, msg in msg_gen:
# period = time.time() - last
# hz = 1/period if period else float('inf')
# if hz > 60:
# log.info(f'Binance quotez : {hz}')
topic = msg['symbol'].lower()
await send_chan.send({topic: msg})
# last = time.time()
@tractor.context
async def open_symbol_search(
ctx: tractor.Context,
) -> Client:
async with open_cached_client('binance') as client:
# load all symbols locally for fast search
cache = await client.exch_info()
await ctx.started()
async with ctx.open_stream() as stream:
async for pattern in stream:
# results = await client.exch_info(sym=pattern.upper())
matches = fuzzy.extractBests(
pattern,
cache,
score_cutoff=50,
)
# repack in dict form
await stream.send({
item[0].symbol: item[0]
for item in matches
})

View File

@ -1,60 +0,0 @@
# piker: trading gear for hackers
# Copyright (C)
# Guillermo Rodriguez (aka ze jefe)
# Tyler Goodlet
# (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
binancial secs on the floor, in the office, behind the dumpster.
"""
from .api import (
get_client,
)
from .feed import (
get_mkt_info,
open_history_client,
open_symbol_search,
stream_quotes,
)
from .broker import (
open_trade_dialog,
get_cost,
)
from .venues import (
SpotPair,
FutesPair,
)
__all__ = [
'get_client',
'get_mkt_info',
'get_cost',
'SpotPair',
'FutesPair',
'open_trade_dialog',
'open_history_client',
'open_symbol_search',
'stream_quotes',
]
# `brokerd` modules
__enable_modules__: list[str] = [
'api',
'feed',
'broker',
]

File diff suppressed because it is too large Load Diff

View File

@ -1,710 +0,0 @@
# piker: trading gear for hackers
# Copyright (C)
# Guillermo Rodriguez (aka ze jefe)
# Tyler Goodlet
# (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Live order control B)
'''
from __future__ import annotations
from pprint import pformat
from typing import (
Any,
AsyncIterator,
)
import time
from time import time_ns
from bidict import bidict
import tractor
import trio
from piker.accounting import (
Asset,
)
from piker.brokers._util import (
get_logger,
)
from piker.data._web_bs import (
open_autorecon_ws,
NoBsWs,
)
from piker.brokers import (
open_cached_client,
BrokerError,
)
from piker.clearing import (
OrderDialogs,
)
from piker.clearing._messages import (
BrokerdOrder,
BrokerdOrderAck,
BrokerdStatus,
BrokerdPosition,
BrokerdFill,
BrokerdCancel,
BrokerdError,
Status,
Order,
)
from .venues import (
Pair,
_futes_ws,
_testnet_futes_ws,
)
from .api import Client
log = get_logger('piker.brokers.binance')
# Fee schedule template, mostly for paper engine fees modelling.
# https://www.binance.com/en/support/faq/what-are-market-makers-and-takers-360007720071
def get_cost(
price: float,
size: float,
is_taker: bool = False,
) -> float:
# https://www.binance.com/en/fee/trading
cb: float = price * size
match is_taker:
case True:
return cb * 0.001000
case False if cb < 1e6:
return cb * 0.001000
case False if 1e6 >= cb < 5e6:
return cb * 0.000900
# NOTE: there's more but are you really going
# to have a cb bigger then this per trade?
case False if cb >= 5e6:
return cb * 0.000800
async def handle_order_requests(
ems_order_stream: tractor.MsgStream,
client: Client,
dids: bidict[str, str],
dialogs: OrderDialogs,
) -> None:
'''
Receive order requests from `emsd`, translate tramsit API calls and transmit.
'''
msg: dict | BrokerdOrder | BrokerdCancel
async for msg in ems_order_stream:
log.info(f'Rx order request:\n{pformat(msg)}')
match msg:
case {
'action': 'cancel',
}:
cancel = BrokerdCancel(**msg)
existing: BrokerdOrder | None = dialogs.get(cancel.oid)
if not existing:
log.error(
f'NO Existing order-dialog for {cancel.oid}!?'
)
await ems_order_stream.send(BrokerdError(
oid=cancel.oid,
# TODO: do we need the symbol?
# https://github.com/pikers/piker/issues/514
symbol='unknown',
reason=(
'Invalid `binance` order request dialog oid',
)
))
continue
else:
symbol: str = existing['symbol']
try:
await client.submit_cancel(
symbol,
cancel.oid,
)
except BrokerError as be:
await ems_order_stream.send(
BrokerdError(
oid=msg['oid'],
symbol=symbol,
reason=(
'`binance` CANCEL failed:\n'
f'{be}'
))
)
continue
case {
'account': ('binance.usdtm' | 'binance.spot') as account,
'action': action,
} if action in {'buy', 'sell'}:
# validate
order = BrokerdOrder(**msg)
oid: str = order.oid # emsd order id
modify: bool = False
# NOTE: check and report edits
if existing := dialogs.get(order.oid):
log.info(
f'Existing order for {oid} updated:\n'
f'{pformat(existing.maps[-1])} -> {pformat(msg)}'
)
modify = True
# only add new msg AFTER the existing check
dialogs.add_msg(oid, msg)
else:
# XXX NOTE: update before the ack!
# track latest request state such that map
# lookups start at the most recent msg and then
# scan reverse-chronologically.
dialogs.add_msg(oid, msg)
# XXX: ACK the request **immediately** before sending
# the api side request to ensure the ems maps the oid ->
# reqid correctly!
resp = BrokerdOrderAck(
oid=oid, # ems order request id
reqid=oid, # our custom int mapping
account='binance', # piker account
)
await ems_order_stream.send(resp)
# call our client api to submit the order
# NOTE: modifies only require diff key for user oid:
# https://binance-docs.github.io/apidocs/futures/en/#modify-order-trade
try:
reqid = await client.submit_limit(
symbol=order.symbol,
side=order.action,
quantity=order.size,
price=order.price,
oid=oid,
modify=modify,
)
# SMH they do gen their own order id: ints..
# assert reqid == order.oid
dids[order.oid] = reqid
except BrokerError as be:
await ems_order_stream.send(
BrokerdError(
oid=msg['oid'],
symbol=msg['symbol'],
reason=(
'`binance` request failed:\n'
f'{be}'
))
)
continue
case _:
account = msg.get('account')
if account not in {'binance.spot', 'binance.futes'}:
log.error(
'Order request does not have a valid binance account name?\n'
'Only one of\n'
'- `binance.spot` or,\n'
'- `binance.usdtm`\n'
'is currently valid!'
)
await ems_order_stream.send(
BrokerdError(
oid=msg['oid'],
symbol=msg['symbol'],
reason=(
f'Invalid `binance` broker request msg:\n{msg}'
))
)
@tractor.context
async def open_trade_dialog(
ctx: tractor.Context,
) -> AsyncIterator[dict[str, Any]]:
# TODO: how do we set this from the EMS such that
# positions are loaded from the correct venue on the user
# stream at startup? (that is in an attempt to support both
# spot and futes markets?)
# - I guess we just want to instead start 2 separate user
# stream tasks right? unless we want another actor pool?
# XXX: see issue: <urlhere>
venue_name: str = 'futes'
venue_mode: str = 'usdtm_futes'
account_name: str = 'usdtm'
use_testnet: bool = False
# TODO: if/when we add .accounting support we need to
# do a open_symcache() call.. though maybe we can hide
# this in a new async version of open_account()?
async with open_cached_client('binance') as client:
subconf: dict|None = client.conf.get(venue_name)
# XXX: if no futes.api_key or spot.api_key has been set we
# always fall back to the paper engine!
if (
not subconf
or
not subconf.get('api_key')
):
await ctx.started('paper')
return
use_testnet: bool = subconf.get('use_testnet', False)
async with (
open_cached_client('binance') as client,
):
client.mkt_mode: str = venue_mode
# TODO: map these wss urls depending on spot or futes
# setting passed when this task is spawned?
wss_url: str = _futes_ws if not use_testnet else _testnet_futes_ws
wss: NoBsWs
async with (
client.manage_listen_key() as listen_key,
open_autorecon_ws(f'{wss_url}/?listenKey={listen_key}') as wss,
):
nsid: int = time_ns()
await wss.send_msg({
# "method": "SUBSCRIBE",
"method": "REQUEST",
"params":
[
f"{listen_key}@account",
f"{listen_key}@balance",
f"{listen_key}@position",
# TODO: does this even work!? seems to cause
# a hang on the first msg..? lelelel.
# f"{listen_key}@order",
],
"id": nsid
})
with trio.fail_after(6):
msg = await wss.recv_msg()
assert msg['id'] == nsid
# TODO: load other market wide data / statistics:
# - OI: https://binance-docs.github.io/apidocs/futures/en/#open-interest
# - OI stats: https://binance-docs.github.io/apidocs/futures/en/#open-interest-statistics
accounts: bidict[str, str] = bidict({'binance.usdtm': None})
balances: dict[Asset, float] = {}
positions: list[BrokerdPosition] = []
for resp_dict in msg['result']:
resp: dict = resp_dict['res']
req: str = resp_dict['req']
# @account response should be something like:
# {'accountAlias': 'sRFzFzAuuXsR',
# 'canDeposit': True,
# 'canTrade': True,
# 'canWithdraw': True,
# 'feeTier': 0}
if 'account' in req:
# NOTE: fill in the hash-like key/alias binance
# provides for the account.
alias: str = resp['accountAlias']
accounts['binance.usdtm'] = alias
# @balance response:
# {'accountAlias': 'sRFzFzAuuXsR',
# 'balances': [{'asset': 'BTC',
# 'availableBalance': '0.00000000',
# 'balance': '0.00000000',
# 'crossUnPnl': '0.00000000',
# 'crossWalletBalance': '0.00000000',
# 'maxWithdrawAmount': '0.00000000',
# 'updateTime': 0}]
# ...
# }
elif 'balance' in req:
for entry in resp['balances']:
name: str = entry['asset']
balance: float = float(entry['balance'])
last_update_t: int = entry['updateTime']
spot_asset: Asset = client._venue2assets['spot'][name]
if balance > 0:
balances[spot_asset] = (balance, last_update_t)
# await tractor.pause()
# @position response:
# {'positions': [{'entryPrice': '0.0',
# 'isAutoAddMargin': False,
# 'isolatedMargin': '0',
# 'leverage': 20,
# 'liquidationPrice': '0',
# 'marginType': 'CROSSED',
# 'markPrice': '0.60289650',
# 'markPrice': '0.00000000',
# 'maxNotionalValue': '25000',
# 'notional': '0',
# 'positionAmt': '0',
# 'positionSide': 'BOTH',
# 'symbol': 'ETHUSDT_230630',
# 'unRealizedProfit': '0.00000000',
# 'updateTime': 1672741444894}
# ...
# }
elif 'position' in req:
for entry in resp['positions']:
bs_mktid: str = entry['symbol']
entry_size: float = float(entry['positionAmt'])
pair: Pair | None = client._venue2pairs[
venue_mode
].get(bs_mktid)
if (
pair
and entry_size > 0
):
entry_price: float = float(entry['entryPrice'])
ppmsg = BrokerdPosition(
broker='binance',
account=f'binance.{account_name}',
# TODO: maybe we should be passing back
# a `MktPair` here?
symbol=pair.bs_fqme.lower() + '.binance',
size=entry_size,
avg_price=entry_price,
)
positions.append(ppmsg)
if pair is None:
log.warning(
f'`{bs_mktid}` Position entry but no market pair?\n'
f'{pformat(entry)}\n'
)
await ctx.started((
positions,
list(accounts)
))
# TODO: package more state tracking into the dialogs API?
# - hmm maybe we could include `OrderDialogs.dids:
# bidict` as part of the interface and then ask for
# a reqid field to be passed at init?
# |-> `OrderDialog(reqid_field='orderId')` kinda thing?
# - also maybe bundle in some kind of dialog to account
# table?
dialogs = OrderDialogs()
dids: dict[str, int] = bidict()
# TODO: further init setup things to get full EMS and
# .accounting support B)
# - live order loading via user stream subscription and
# update to the order dialog table.
# - MAKE SURE we add live orders loaded during init
# into the dialogs table to ensure they can be
# cancelled, meaning we can do a symbol lookup.
# - position loading using `piker.accounting` subsys
# and comparison with binance's own position calcs.
# - load pps and accounts using accounting apis, write
# the ledger and account files
# - table: Account
# - ledger: TransactionLedger
async with (
trio.open_nursery() as tn,
ctx.open_stream() as ems_stream,
):
# deliver all pre-exist open orders to EMS thus syncing
# state with existing live limits reported by them.
order: Order
for order in await client.get_open_orders():
status_msg = Status(
time_ns=time.time_ns(),
resp='open',
oid=order.oid,
reqid=order.oid,
# embedded order info
req=order,
src='binance',
)
dialogs.add_msg(order.oid, order.to_dict())
await ems_stream.send(status_msg)
tn.start_soon(
handle_order_requests,
ems_stream,
client,
dids,
dialogs,
)
tn.start_soon(
handle_order_updates,
venue_mode,
account_name,
client,
ems_stream,
wss,
dialogs,
)
await trio.sleep_forever()
async def handle_order_updates(
venue: str,
account_name: str,
client: Client,
ems_stream: tractor.MsgStream,
wss: NoBsWs,
dialogs: OrderDialogs,
) -> None:
'''
Main msg handling loop for all things order management.
This code is broken out to make the context explicit and state
variables defined in the signature clear to the reader.
'''
async for msg in wss:
log.info(f'Rx USERSTREAM msg:\n{pformat(msg)}')
match msg:
# ORDER update
# spot: https://binance-docs.github.io/apidocs/spot/en/#payload-balance-update
# futes: https://binance-docs.github.io/apidocs/futures/en/#event-order-update
# futes: https://binance-docs.github.io/apidocs/futures/en/#event-balance-and-position-update
# {'o': {
# 'L': '0',
# 'N': 'USDT',
# 'R': False,
# 'S': 'BUY',
# 'T': 1687028772484,
# 'X': 'NEW',
# 'a': '0',
# 'ap': '0',
# 'b': '7012.06520',
# 'c': '518d4122-8d3e-49b0-9a1e-1fabe6f62e4c',
# 'cp': False,
# 'f': 'GTC',
# 'i': 3376956924,
# 'l': '0',
# 'm': False,
# 'n': '0',
# 'o': 'LIMIT',
# 'ot': 'LIMIT',
# 'p': '21136.80',
# 'pP': False,
# 'ps': 'BOTH',
# 'q': '0.047',
# 'rp': '0',
# 's': 'BTCUSDT',
# 'si': 0,
# 'sp': '0',
# 'ss': 0,
# 't': 0,
# 'wt': 'CONTRACT_PRICE',
# 'x': 'NEW',
# 'z': '0'}
# }
case {
# 'e': 'executionReport',
'e': 'ORDER_TRADE_UPDATE',
'T': int(epoch_ms),
'o': {
's': bs_mktid,
# XXX NOTE XXX see special ids for market
# events or margin calls:
# // special client order id:
# // starts with "autoclose-": liquidation order
# // "adl_autoclose": ADL auto close order
# // "settlement_autoclose-": settlement order
# for delisting or delivery
'c': oid,
# 'i': reqid, # binance internal int id
# prices
'a': submit_price,
'ap': avg_price,
'L': fill_price,
# sizing
'q': req_size,
'l': clear_size_filled, # this event
'z': accum_size_filled, # accum
# commissions
'n': cost,
'N': cost_asset,
# state
'S': side,
'X': status,
},
} as order_msg:
log.info(
f'{status} for {side} ORDER oid: {oid}\n'
f'bs_mktid: {bs_mktid}\n\n'
f'order size: {req_size}\n'
f'cleared size: {clear_size_filled}\n'
f'accum filled size: {accum_size_filled}\n\n'
f'submit price: {submit_price}\n'
f'fill_price: {fill_price}\n'
f'avg clearing price: {avg_price}\n\n'
f'cost: {cost}@{cost_asset}\n'
)
# status remap from binance to piker's
# status set:
# - NEW
# - PARTIALLY_FILLED
# - FILLED
# - CANCELED
# - EXPIRED
# https://binance-docs.github.io/apidocs/futures/en/#event-order-update
req_size: float = float(req_size)
accum_size_filled: float = float(accum_size_filled)
fill_price: float = float(fill_price)
match status:
case 'PARTIALLY_FILLED' | 'FILLED':
status = 'fill'
fill_msg = BrokerdFill(
time_ns=time_ns(),
# reqid=reqid,
reqid=oid,
# just use size value for now?
# action=action,
size=clear_size_filled,
price=fill_price,
# TODO: maybe capture more msg data
# i.e fees?
broker_details={'name': 'broker'} | order_msg,
broker_time=time.time(),
)
await ems_stream.send(fill_msg)
if accum_size_filled == req_size:
status = 'closed'
dialogs.pop(oid)
case 'NEW':
status = 'open'
case 'EXPIRED':
status = 'canceled'
dialogs.pop(oid)
case _:
status = status.lower()
resp = BrokerdStatus(
time_ns=time_ns(),
# reqid=reqid,
reqid=oid,
# TODO: i feel like we don't need to make the
# ems and upstream clients aware of this?
# account='binance.usdtm',
status=status,
filled=accum_size_filled,
remaining=req_size - accum_size_filled,
broker_details={
'name': 'binance',
'broker_time': epoch_ms / 1000.
}
)
await ems_stream.send(resp)
# ACCOUNT and POSITION update B)
# {
# 'E': 1687036749218,
# 'e': 'ACCOUNT_UPDATE'
# 'T': 1687036749215,
# 'a': {'B': [{'a': 'USDT',
# 'bc': '0',
# 'cw': '1267.48920735',
# 'wb': '1410.90245576'}],
# 'P': [{'cr': '-3292.10973007',
# 'ep': '26349.90000',
# 'iw': '143.41324841',
# 'ma': 'USDT',
# 'mt': 'isolated',
# 'pa': '0.038',
# 'ps': 'BOTH',
# 's': 'BTCUSDT',
# 'up': '5.17555453'}],
# 'm': 'ORDER'},
# }
case {
'T': int(epoch_ms),
'e': 'ACCOUNT_UPDATE',
'a': {
'P': [{
's': bs_mktid,
'pa': pos_amount,
'ep': entry_price,
}],
},
}:
# real-time relay position updates back to EMS
pair: Pair | None = client._venue2pairs[venue].get(bs_mktid)
ppmsg = BrokerdPosition(
broker='binance',
account=f'binance.{account_name}',
# TODO: maybe we should be passing back
# a `MktPair` here?
symbol=pair.bs_fqme.lower() + '.binance',
size=float(pos_amount),
avg_price=float(entry_price),
)
await ems_stream.send(ppmsg)
case _:
log.warning(
'Unhandled event:\n'
f'{pformat(msg)}'
)

View File

@ -1,557 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Real-time and historical data feed endpoints.
'''
from __future__ import annotations
from contextlib import (
asynccontextmanager as acm,
aclosing,
)
from datetime import datetime
from functools import (
partial,
)
import itertools
from pprint import pformat
from typing import (
Any,
AsyncGenerator,
Callable,
Generator,
)
import time
import trio
from trio_typing import TaskStatus
from pendulum import (
from_timestamp,
)
import numpy as np
import tractor
from piker.brokers import (
open_cached_client,
NoData,
)
from piker._cacheables import (
async_lifo_cache,
)
from piker.accounting import (
Asset,
DerivTypes,
MktPair,
unpack_fqme,
)
from piker.types import Struct
from piker.data.validate import FeedInit
from piker.data._web_bs import (
open_autorecon_ws,
NoBsWs,
)
from piker.brokers._util import (
DataUnavailable,
get_logger,
)
from .api import (
Client,
)
from .venues import (
Pair,
FutesPair,
get_api_eps,
)
log = get_logger('piker.brokers.binance')
class L1(Struct):
# https://binance-docs.github.io/apidocs/spot/en/#individual-symbol-book-ticker-streams
update_id: int
sym: str
bid: float
bsize: float
ask: float
asize: float
# validation type
class AggTrade(Struct, frozen=True):
e: str # Event type
E: int # Event time
s: str # Symbol
a: int # Aggregate trade ID
p: float # Price
q: float # Quantity
f: int # First trade ID
l: int # noqa Last trade ID
T: int # Trade time
m: bool # Is the buyer the market maker?
M: bool | None = None # Ignore
async def stream_messages(
ws: NoBsWs,
) -> AsyncGenerator[NoBsWs, dict]:
# TODO: match syntax here!
msg: dict[str, Any]
async for msg in ws:
match msg:
# for l1 streams binance doesn't add an event type field so
# identify those messages by matching keys
# https://binance-docs.github.io/apidocs/spot/en/#individual-symbol-book-ticker-streams
case {
# NOTE: this is never an old value it seems, so
# they are always sending real L1 spread updates.
'u': upid, # update id
's': sym,
'b': bid,
'B': bsize,
'a': ask,
'A': asize,
}:
# TODO: it would be super nice to have a `L1` piker type
# which "renders" incremental tick updates from a packed
# msg-struct:
# - backend msgs after packed into the type such that we
# can reduce IPC usage but without each backend having
# to do that incremental update logic manually B)
# - would it maybe be more efficient to use this instead?
# https://binance-docs.github.io/apidocs/spot/en/#diff-depth-stream
l1 = L1(
update_id=upid,
sym=sym,
bid=bid,
bsize=bsize,
ask=ask,
asize=asize,
)
# for speed probably better to only specifically
# cast fields we need in numerical form?
# l1.typecast()
# repack into piker's tick-quote format
yield 'l1', {
'symbol': l1.sym,
'ticks': [
{
'type': 'bid',
'price': float(l1.bid),
'size': float(l1.bsize),
},
{
'type': 'bsize',
'price': float(l1.bid),
'size': float(l1.bsize),
},
{
'type': 'ask',
'price': float(l1.ask),
'size': float(l1.asize),
},
{
'type': 'asize',
'price': float(l1.ask),
'size': float(l1.asize),
}
]
}
# https://binance-docs.github.io/apidocs/spot/en/#aggregate-trade-streams
case {
'e': 'aggTrade',
}:
# NOTE: this is purely for a definition,
# ``msgspec.Struct`` does not runtime-validate until you
# decode/encode, see:
# https://jcristharif.com/msgspec/structs.html#type-validation
msg = AggTrade(**msg) # TODO: should we .copy() ?
piker_quote: dict = {
'symbol': msg.s,
'last': float(msg.p),
'brokerd_ts': time.time(),
'ticks': [{
'type': 'trade',
'price': float(msg.p),
'size': float(msg.q),
'broker_ts': msg.T,
}],
}
yield 'trade', piker_quote
def make_sub(pairs: list[str], sub_name: str, uid: int) -> dict[str, str]:
'''
Create a request subscription packet dict.
- spot:
https://binance-docs.github.io/apidocs/spot/en/#live-subscribing-unsubscribing-to-streams
- futes:
https://binance-docs.github.io/apidocs/futures/en/#websocket-market-streams
'''
return {
'method': 'SUBSCRIBE',
'params': [
f'{pair.lower()}@{sub_name}'
for pair in pairs
],
'id': uid
}
# TODO, why aren't frame resp `log.info()`s showing in upstream
# code?!
@acm
async def open_history_client(
mkt: MktPair,
) -> tuple[Callable, int]:
# TODO implement history getter for the new storage layer.
async with open_cached_client('binance') as client:
async def get_ohlc(
timeframe: float,
end_dt: datetime | None = None,
start_dt: datetime | None = None,
) -> tuple[
np.ndarray,
datetime, # start
datetime, # end
]:
if timeframe != 60:
raise DataUnavailable('Only 1m bars are supported')
# TODO: better wrapping for venue / mode?
# - eventually logic for usd vs. coin settled futes
# based on `MktPair.src` type/value?
# - maybe something like `async with
# Client.use_venue('usdtm_futes')`
if mkt.type_key in DerivTypes:
client.mkt_mode = 'usdtm_futes'
else:
client.mkt_mode = 'spot'
array: np.ndarray = await client.bars(
mkt=mkt,
start_dt=start_dt,
end_dt=end_dt,
)
if array.size == 0:
raise NoData(
f'No frame for {start_dt} -> {end_dt}\n'
)
times = array['time']
if not times.any():
raise ValueError(
'Bad frame with null-times?\n\n'
f'{times}'
)
if end_dt is None:
inow: int = round(time.time())
if (inow - times[-1]) > 60:
await tractor.pause()
start_dt = from_timestamp(times[0])
end_dt = from_timestamp(times[-1])
return array, start_dt, end_dt
yield get_ohlc, {'erlangs': 3, 'rate': 3}
@async_lifo_cache()
async def get_mkt_info(
fqme: str,
) -> tuple[MktPair, Pair] | None:
# uppercase since kraken bs_mktid is always upper
if 'binance' not in fqme.lower():
fqme += '.binance'
mkt_mode: str = ''
broker, mkt_ep, venue, expiry = unpack_fqme(fqme)
# NOTE: we always upper case all tokens to be consistent with
# binance's symbology style for pairs, like `BTCUSDT`, but in
# theory we could also just keep things lower case; as long as
# we're consistent and the symcache matches whatever this func
# returns, always!
expiry: str = expiry.upper()
venue: str = venue.upper()
venue_lower: str = venue.lower()
# XXX TODO: we should change the usdtm_futes name to just
# usdm_futes (dropping the tether part) since it turns out that
# there are indeed USD-tokens OTHER THEN tether being used as
# the margin assets.. it's going to require a wholesale
# (variable/key) rename as well as file name adjustments to any
# existing tsdb set..
if 'usd' in venue_lower:
mkt_mode: str = 'usdtm_futes'
# NO IDEA what these contracts (some kinda DEX-ish futes?) are
# but we're masking them for now..
elif (
'defi' in venue_lower
# TODO: handle coinm futes which have a margin asset that
# is some crypto token!
# https://binance-docs.github.io/apidocs/delivery/en/#exchange-information
or 'btc' in venue_lower
):
return None
else:
# NOTE: see the `FutesPair.bs_fqme: str` implementation
# to understand the reverse market info lookup below.
mkt_mode = venue_lower or 'spot'
if (
venue
and 'spot' not in venue_lower
# XXX: catch all in case user doesn't know which
# venue they want (usdtm vs. coinm) and we can choose
# a default (via config?) once we support coin-m APIs.
or 'perp' in venue_lower
):
if not mkt_mode:
mkt_mode: str = f'{venue_lower}_futes'
async with open_cached_client(
'binance',
) as client:
assets: dict[str, Asset] = await client.get_assets()
pair_str: str = mkt_ep.upper()
# switch venue-mode depending on input pattern parsing
# since we want to use a particular endpoint (set) for
# pair info lookup!
client.mkt_mode = mkt_mode
pair: Pair = await client.exch_info(
pair_str,
venue=mkt_mode, # explicit
expiry=expiry,
)
if 'futes' in mkt_mode:
assert isinstance(pair, FutesPair)
dst: Asset | None = assets.get(pair.bs_dst_asset)
if (
not dst
# TODO: a known asset DNE list?
# and pair.baseAsset == 'DEFI'
):
log.warning(
f'UNKNOWN {venue} asset {pair.baseAsset} from,\n'
f'{pformat(pair.to_dict())}'
)
# XXX UNKNOWN missing "asset", though no idea why?
# maybe it's only avail in the margin venue(s): /dapi/ ?
return None
mkt = MktPair(
dst=dst,
src=assets[pair.bs_src_asset],
price_tick=pair.price_tick,
size_tick=pair.size_tick,
bs_mktid=pair.symbol,
expiry=expiry,
venue=venue,
broker='binance',
# NOTE: sectype is always taken from dst, see
# `MktPair.type_key` and `Client._cache_pairs()`
# _atype=sectype,
)
return mkt, pair
@acm
async def subscribe(
ws: NoBsWs,
symbols: list[str],
# defined once at import time to keep a global state B)
iter_subids: Generator[int, None, None] = itertools.count(),
):
# setup subs
subid: int = next(iter_subids)
# trade data (aka L1)
# https://binance-docs.github.io/apidocs/spot/en/#symbol-order-book-ticker
l1_sub = make_sub(symbols, 'bookTicker', subid)
await ws.send_msg(l1_sub)
# aggregate (each order clear by taker **not** by maker)
# trades data:
# https://binance-docs.github.io/apidocs/spot/en/#aggregate-trade-streams
agg_trades_sub = make_sub(symbols, 'aggTrade', subid)
await ws.send_msg(agg_trades_sub)
# might get ack from ws server, or maybe some
# other msg still in transit..
res = await ws.recv_msg()
subid: str | None = res.get('id')
if subid:
assert res['id'] == subid
yield
subs = []
for sym in symbols:
subs.append("{sym}@aggTrade")
subs.append("{sym}@bookTicker")
# unsub from all pairs on teardown
if ws.connected():
await ws.send_msg({
"method": "UNSUBSCRIBE",
"params": subs,
"id": subid,
})
# XXX: do we need to ack the unsub?
# await ws.recv_msg()
async def stream_quotes(
send_chan: trio.abc.SendChannel,
symbols: list[str],
feed_is_live: trio.Event,
loglevel: str = None,
# startup sync
task_status: TaskStatus[tuple[dict, dict]] = trio.TASK_STATUS_IGNORED,
) -> None:
async with (
send_chan as send_chan,
open_cached_client('binance') as client,
):
init_msgs: list[FeedInit] = []
for sym in symbols:
mkt: MktPair
pair: Pair
mkt, pair = await get_mkt_info(sym)
# build out init msgs according to latest spec
init_msgs.append(
FeedInit(mkt_info=mkt)
)
wss_url: str = get_api_eps(client.mkt_mode)[1] # 2nd elem is wss url
# TODO: for sanity, but remove eventually Xp
if 'future' in mkt.type_key:
assert 'fstream' in wss_url
async with (
open_autorecon_ws(
url=wss_url,
fixture=partial(
subscribe,
symbols=[mkt.bs_mktid],
),
) as ws,
# avoid stream-gen closure from breaking trio..
aclosing(stream_messages(ws)) as msg_gen,
):
# log.info('WAITING ON FIRST LIVE QUOTE..')
typ, quote = await anext(msg_gen)
# pull a first quote and deliver
while typ != 'trade':
typ, quote = await anext(msg_gen)
task_status.started((init_msgs, quote))
# signal to caller feed is ready for consumption
feed_is_live.set()
# import time
# last = time.time()
# XXX NOTE: can't include the `.binance` suffix
# or the sampling loop will not broadcast correctly
# since `bus._subscribers.setdefault(bs_fqme, set())`
# is used inside `.data.open_feed_bus()` !!!
topic: str = mkt.bs_fqme
# start streaming
async for typ, quote in msg_gen:
# period = time.time() - last
# hz = 1/period if period else float('inf')
# if hz > 60:
# log.info(f'Binance quotez : {hz}')
await send_chan.send({topic: quote})
# last = time.time()
@tractor.context
async def open_symbol_search(
ctx: tractor.Context,
) -> Client:
# NOTE: symbology tables are loaded as part of client
# startup in ``.api.get_client()`` and in this case
# are stored as `Client._pairs`.
async with open_cached_client('binance') as client:
# TODO: maybe we should deliver the cache
# so that client's can always do a local-lookup-first
# style try and then update async as (new) match results
# are delivered from here?
await ctx.started()
async with ctx.open_stream() as stream:
pattern: str
async for pattern in stream:
# NOTE: pattern fuzzy-matching is done within
# the methd impl.
pairs: dict[str, Pair] = await client.search_symbols(
pattern,
)
# repack in fqme-keyed table
byfqme: dict[str, Pair] = {}
for pair in pairs.values():
byfqme[pair.bs_fqme] = pair
await stream.send(byfqme)

View File

@ -1,303 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Per market data-type definitions and schemas types.
"""
from __future__ import annotations
from typing import (
Literal,
)
from decimal import Decimal
from msgspec import field
from piker.types import Struct
# API endpoint paths by venue / sub-API
_domain: str = 'binance.com'
_spot_url = f'https://api.{_domain}'
_futes_url = f'https://fapi.{_domain}'
# WEBsocketz
# NOTE XXX: see api docs which show diff addr?
# https://developers.binance.com/docs/binance-trading-api/websocket_api#general-api-information
_spot_ws: str = 'wss://stream.binance.com/ws'
# or this one? ..
# 'wss://ws-api.binance.com:443/ws-api/v3',
# https://binance-docs.github.io/apidocs/futures/en/#websocket-market-streams
_futes_ws: str = f'wss://fstream.{_domain}/ws'
_auth_futes_ws: str = 'wss://fstream-auth.{_domain}/ws'
# test nets
# NOTE: spot test network only allows certain ep sets:
# https://testnet.binance.vision/
# https://www.binance.com/en/support/faq/how-to-test-my-functions-on-binance-testnet-ab78f9a1b8824cf0a106b4229c76496d
_testnet_spot_url: str = 'https://testnet.binance.vision/api'
_testnet_spot_ws: str = 'wss://testnet.binance.vision/ws'
# or this one? ..
# 'wss://testnet.binance.vision/ws-api/v3'
_testnet_futes_url: str = 'https://testnet.binancefuture.com'
_testnet_futes_ws: str = 'wss://stream.binancefuture.com/ws'
MarketType = Literal[
'spot',
# 'margin',
'usdtm_futes',
# 'coinm_futes',
]
def get_api_eps(venue: MarketType) -> tuple[str, str]:
'''
Return API ep root paths per venue.
'''
return {
'spot': (
_spot_url,
_spot_ws,
),
'usdtm_futes': (
_futes_url,
_futes_ws,
),
}[venue]
class Pair(Struct, frozen=True, kw_only=True):
symbol: str
status: str
orderTypes: list[str]
# src
quoteAsset: str
quotePrecision: int
# dst
baseAsset: str
baseAssetPrecision: int
filters: dict[
str,
str | int | float,
] = field(default_factory=dict)
@property
def price_tick(self) -> Decimal:
# XXX: lul, after manually inspecting the response format we
# just directly pick out the info we need
step_size: str = self.filters['PRICE_FILTER']['tickSize'].rstrip('0')
return Decimal(step_size)
@property
def size_tick(self) -> Decimal:
step_size: str = self.filters['LOT_SIZE']['stepSize'].rstrip('0')
return Decimal(step_size)
@property
def bs_fqme(self) -> str:
return self.symbol
@property
def bs_mktid(self) -> str:
return f'{self.symbol}.{self.venue}'
class SpotPair(Pair, frozen=True):
cancelReplaceAllowed: bool
allowTrailingStop: bool
quoteAssetPrecision: int
baseCommissionPrecision: int
quoteCommissionPrecision: int
icebergAllowed: bool
ocoAllowed: bool
quoteOrderQtyMarketAllowed: bool
isSpotTradingAllowed: bool
isMarginTradingAllowed: bool
otoAllowed: bool
defaultSelfTradePreventionMode: str
allowedSelfTradePreventionModes: list[str]
permissions: list[str]
permissionSets: list[list[str]]
# NOTE: see `.data._symcache.SymbologyCache.load()` for why
ns_path: str = 'piker.brokers.binance:SpotPair'
@property
def venue(self) -> str:
return 'SPOT'
@property
def bs_fqme(self) -> str:
return f'{self.symbol}.SPOT'
@property
def bs_src_asset(self) -> str:
return f'{self.quoteAsset}'
@property
def bs_dst_asset(self) -> str:
return f'{self.baseAsset}'
class FutesPair(Pair):
symbol: str # 'BTCUSDT',
pair: str # 'BTCUSDT',
baseAssetPrecision: int # 8,
contractType: str # 'PERPETUAL',
deliveryDate: int # 4133404800000,
liquidationFee: float # '0.012500',
maintMarginPercent: float # '2.5000',
marginAsset: str # 'USDT',
marketTakeBound: float # '0.05',
maxMoveOrderLimit: int # 10000,
onboardDate: int # 1569398400000,
pricePrecision: int # 2,
quantityPrecision: int # 3,
quoteAsset: str # 'USDT',
quotePrecision: int # 8,
requiredMarginPercent: float # '5.0000',
timeInForce: list[str] # ['GTC', 'IOC', 'FOK', 'GTX'],
triggerProtect: float # '0.0500',
underlyingSubType: list[str] # ['PoW'],
underlyingType: str # 'COIN'
# NOTE: see `.data._symcache.SymbologyCache.load()` for why
ns_path: str = 'piker.brokers.binance:FutesPair'
# NOTE: for compat with spot pairs and `MktPair.src: Asset`
# processing..
@property
def quoteAssetPrecision(self) -> int:
return self.quotePrecision
@property
def expiry(self) -> str:
symbol: str = self.symbol
contype: str = self.contractType
match contype:
case (
'CURRENT_QUARTER'
| 'CURRENT_QUARTER DELIVERING'
| 'NEXT_QUARTER' # su madre binance..
):
pair, _, expiry = symbol.partition('_')
assert pair == self.pair # sanity
return f'{expiry}'
case 'PERPETUAL':
return 'PERP'
case '':
subtype: list[str] = self.underlyingSubType
if not subtype:
if self.status == 'PENDING_TRADING':
return 'PENDING'
match subtype:
case ['DEFI']:
return 'PERP'
# wow, just wow you binance guys suck..
if self.status == 'PENDING_TRADING':
return 'PENDING'
# XXX: yeah no clue then..
raise ValueError(
f'Bad .expiry token match: {contype} for {symbol}'
)
@property
def venue(self) -> str:
symbol: str = self.symbol
ctype: str = self.contractType
margin: str = self.marginAsset
match ctype:
case 'PERPETUAL':
return f'{margin}M'
case (
'CURRENT_QUARTER'
| 'CURRENT_QUARTER DELIVERING'
| 'NEXT_QUARTER' # su madre binance..
):
_, _, expiry = symbol.partition('_')
return f'{margin}M'
case '':
subtype: list[str] = self.underlyingSubType
if not subtype:
if self.status == 'PENDING_TRADING':
return f'{margin}M'
match subtype:
case (
['DEFI']
| ['USDC']
):
return f'{subtype[0]}'
# XXX: yeah no clue then..
raise ValueError(
f'Bad .venue token match: {ctype}'
)
@property
def bs_fqme(self) -> str:
symbol: str = self.symbol
ctype: str = self.contractType
venue: str = self.venue
pair: str = self.pair
match ctype:
case (
'CURRENT_QUARTER'
| 'NEXT_QUARTER' # su madre binance..
):
pair, _, expiry = symbol.partition('_')
assert pair == self.pair
return f'{pair}.{venue}.{self.expiry}'
@property
def bs_src_asset(self) -> str:
return f'{self.quoteAsset}'
@property
def bs_dst_asset(self) -> str:
return f'{self.baseAsset}.{self.venue}'
PAIRTYPES: dict[MarketType, Pair] = {
'spot': SpotPair,
'usdtm_futes': FutesPair,
# TODO: support coin-margined venue:
# https://binance-docs.github.io/apidocs/delivery/en/#change-log
# 'coinm_futes': CoinFutesPair,
}

View File

@ -21,7 +21,6 @@ import os
from functools import partial
from operator import attrgetter
from operator import itemgetter
from types import ModuleType
import click
import trio
@ -195,7 +194,7 @@ def brokercheck(config, broker):
@cli.command()
@click.option('--keys', '-k', multiple=True,
help='Return results only for these keys')
help='Return results only for these keys')
@click.argument('meth', nargs=1)
@click.argument('kwargs', nargs=-1)
@click.pass_obj
@ -242,7 +241,7 @@ def quote(config, tickers):
'''
# global opts
brokermod = list(config['brokermods'].values())[0]
brokermod = config['brokermods'][0]
quotes = trio.run(partial(core.stocks_quote, brokermod, tickers))
if not quotes:
@ -269,7 +268,7 @@ def bars(config, symbol, count):
'''
# global opts
brokermod = list(config['brokermods'].values())[0]
brokermod = config['brokermods'][0]
# broker backend should return at the least a
# list of candle dictionaries
@ -304,7 +303,7 @@ def record(config, rate, name, dhost, filename):
'''
# global opts
brokermod = list(config['brokermods'].values())[0]
brokermod = config['brokermods'][0]
loglevel = config['loglevel']
log = config['log']
@ -369,7 +368,7 @@ def optsquote(config, symbol, date):
'''
# global opts
brokermod = list(config['brokermods'].values())[0]
brokermod = config['brokermods'][0]
quotes = trio.run(
partial(
@ -386,151 +385,58 @@ def optsquote(config, symbol, date):
@cli.command()
@click.argument('tickers', nargs=-1, required=True)
@click.pass_obj
def mkt_info(
config: dict,
tickers: list[str],
):
def symbol_info(config, tickers):
'''
Print symbol quotes to the console
'''
from msgspec.json import encode, decode
from ..accounting import MktPair
from ..service import (
open_piker_runtime,
)
# global opts
brokermods: dict[str, ModuleType] = config['brokermods']
brokermod = config['brokermods'][0]
mkts: list[MktPair] = []
async def main():
async with open_piker_runtime(
name='mkt_info_query',
# loglevel=loglevel,
debug_mode=True,
) as (_, _):
for fqme in tickers:
bs_fqme, _, broker = fqme.rpartition('.')
brokermod: ModuleType = brokermods[broker]
mkt, bs_pair = await core.mkt_info(
brokermod,
bs_fqme,
)
mkts.append((mkt, bs_pair))
trio.run(main)
if not mkts:
log.error(
f'No market info could be found for {tickers}'
)
quotes = trio.run(partial(core.symbol_info, brokermod, tickers))
if not quotes:
log.error(f"No quotes could be found for {tickers}?")
return
if len(mkts) < len(tickers):
syms = tuple(map(itemgetter('fqme'), mkts))
if len(quotes) < len(tickers):
syms = tuple(map(itemgetter('symbol'), quotes))
for ticker in tickers:
if ticker not in syms:
log.warn(f"Could not find symbol {ticker}?")
brokermod.log.warn(f"Could not find symbol {ticker}?")
# TODO: use ``rich.Table`` intead here!
for mkt, bs_pair in mkts:
click.echo(
'\n'
'----------------------------------------------------\n'
f'{type(bs_pair)}\n'
'----------------------------------------------------\n'
f'{colorize_json(bs_pair.to_dict())}\n'
'----------------------------------------------------\n'
f'as piker `MktPair` with fqme: {mkt.fqme}\n'
'----------------------------------------------------\n'
# NOTE: roundtrip to json codec for console print
f'{colorize_json(decode(encode(mkt)))}'
)
click.echo(colorize_json(quotes))
@cli.command()
@click.argument('pattern', required=True)
# TODO: move this to top level click/typer context for all subs
@click.option(
'--pdb',
is_flag=True,
help='Enable tractor debug mode',
)
@click.pass_obj
def search(
config: dict,
pattern: str,
pdb: bool,
):
def search(config, pattern):
'''
Search for symbols from broker backend(s).
'''
# global opts
brokermods = list(config['brokermods'].values())
brokermods = config['brokermods']
# define tractor entrypoint
async def main(func):
async with maybe_open_pikerd(
loglevel=config['loglevel'],
debug_mode=pdb,
):
return await func()
from piker.toolz import open_crash_handler
with open_crash_handler():
quotes = trio.run(
main,
partial(
core.symbol_search,
brokermods,
pattern,
),
)
quotes = trio.run(
main,
partial(
core.symbol_search,
brokermods,
pattern,
),
)
if not quotes:
log.error(f"No matches could be found for {pattern}?")
return
if not quotes:
log.error(f"No matches could be found for {pattern}?")
return
click.echo(colorize_json(quotes))
@cli.command()
@click.argument('section', required=False)
@click.argument('value', required=False)
@click.option('--delete', '-d', flag_value=True, help='Delete section')
@click.pass_obj
def brokercfg(config, section, value, delete):
'''
If invoked with no arguments, open an editor to edit broker
configs file or get / update an individual section.
'''
from .. import config
if section:
conf, path = config.load()
if not delete:
if value:
config.set_value(conf, section, value)
click.echo(
colorize_json(
config.get_value(conf, section))
)
else:
config.del_value(conf, section)
config.write(config=conf)
else:
conf, path = config.load(raw=True)
config.write(
raw=click.edit(text=conf)
)
click.echo(colorize_json(quotes))

View File

@ -29,8 +29,7 @@ import trio
from ._util import log
from . import get_brokermod
from ..service import maybe_spawn_brokerd
from . import open_cached_client
from ..accounting import MktPair
from .._cacheables import open_cached_client
async def api(brokername: str, methname: str, **kwargs) -> dict:
@ -95,15 +94,15 @@ async def option_chain(
return await client.option_chains(contracts)
# async def contracts(
# brokermod: ModuleType,
# symbol: str,
# ) -> Dict[str, Dict[str, Dict[str, Any]]]:
# """Return option contracts (all expiries) for ``symbol``.
# """
# async with brokermod.get_client() as client:
# # return await client.get_all_contracts([symbol])
# return await client.get_all_contracts([symbol])
async def contracts(
brokermod: ModuleType,
symbol: str,
) -> Dict[str, Dict[str, Dict[str, Any]]]:
"""Return option contracts (all expiries) for ``symbol``.
"""
async with brokermod.get_client() as client:
# return await client.get_all_contracts([symbol])
return await client.get_all_contracts([symbol])
async def bars(
@ -117,6 +116,17 @@ async def bars(
return await client.bars(symbol, **kwargs)
async def symbol_info(
brokermod: ModuleType,
symbol: str,
**kwargs,
) -> Dict[str, Dict[str, Dict[str, Any]]]:
"""Return symbol info from broker.
"""
async with brokermod.get_client() as client:
return await client.symbol_info(symbol, **kwargs)
async def search_w_brokerd(name: str, pattern: str) -> dict:
async with open_cached_client(name) as client:
@ -145,11 +155,7 @@ async def symbol_search(
async with maybe_spawn_brokerd(
mod.name,
infect_asyncio=getattr(
mod,
'_infect_asyncio',
False,
),
infect_asyncio=getattr(mod, '_infect_asyncio', False),
) as portal:
results.append((
@ -167,20 +173,3 @@ async def symbol_search(
n.start_soon(search_backend, mod.name)
return results
async def mkt_info(
brokermod: ModuleType,
fqme: str,
**kwargs,
) -> MktPair:
'''
Return MktPair info from broker including src and dst assets.
'''
async with open_cached_client(brokermod.name) as client:
assert client
return await brokermod.get_mkt_info(
fqme.replace(brokermod.name, '')
)

View File

@ -21,6 +21,8 @@ Deribit backend.
from piker.log import get_logger
log = get_logger(__name__)
from .api import (
get_client,
)
@ -28,15 +30,13 @@ from .feed import (
open_history_client,
open_symbol_search,
stream_quotes,
# backfill_bars,
backfill_bars
)
# from .broker import (
# open_trade_dialog,
# trades_dialogue,
# norm_trade_records,
# )
log = get_logger(__name__)
__all__ = [
'get_client',
# 'trades_dialogue',

View File

@ -18,33 +18,43 @@
Deribit backend.
'''
import asyncio
from contextlib import (
asynccontextmanager as acm,
)
from datetime import datetime
from functools import partial
import json
import time
from typing import (
Any,
Optional,
Callable,
)
import asyncio
from contextlib import asynccontextmanager as acm, AsyncExitStack
from functools import partial
from datetime import datetime
from typing import Any, Optional, Iterable, Callable
import pendulum
import asks
import trio
from trio_typing import TaskStatus
from rapidfuzz import process as fuzzy
from trio_typing import Nursery, TaskStatus
from fuzzywuzzy import process as fuzzy
import numpy as np
from piker.data.types import Struct
from piker.data._web_bs import (
NoBsWs,
open_autorecon_ws,
open_jsonrpc_session
)
from .._util import resproc
from piker import config
from piker.log import get_logger
from tractor.trionics import (
broadcast_receiver,
BroadcastReceiver,
maybe_open_context
)
from tractor import to_asyncio
# XXX WOOPS XD
# yeah you'll need to install it since it was removed in #489 by
# accident; well i thought we had removed all usage..
from cryptofeed import FeedHandler
from cryptofeed.defines import (
DERIBIT,
L1_BOOK, TRADES,
@ -52,20 +62,6 @@ from cryptofeed.defines import (
)
from cryptofeed.symbols import Symbol
from piker.data import (
def_iohlcv_fields,
match_from_pairs,
Struct,
)
from piker.data._web_bs import (
open_jsonrpc_session
)
from piker import config
from piker.log import get_logger
log = get_logger(__name__)
@ -79,13 +75,26 @@ _ws_url = 'wss://www.deribit.com/ws/api/v2'
_testnet_ws_url = 'wss://test.deribit.com/ws/api/v2'
# Broker specific ohlc schema (rest)
_ohlc_dtype = [
('index', int),
('time', int),
('open', float),
('high', float),
('low', float),
('close', float),
('volume', float),
('bar_wap', float), # will be zeroed by sampler if not filled
]
class JSONRPCResult(Struct):
jsonrpc: str = '2.0'
id: int
result: Optional[list[dict]] = None
result: Optional[dict] = None
error: Optional[dict] = None
usIn: int
usOut: int
usIn: int
usOut: int
usDiff: int
testnet: bool
@ -292,29 +301,24 @@ class Client:
currency: str = 'btc', # BTC, ETH, SOL, USDC
kind: str = 'option',
expired: bool = False
) -> dict[str, Any]:
"""Get symbol info for the exchange.
) -> dict[str, dict]:
'''
Get symbol infos.
'''
"""
if self._pairs:
return self._pairs
# will retrieve all symbols by default
params: dict[str, str] = {
params = {
'currency': currency.upper(),
'kind': kind,
'expired': str(expired).lower()
}
resp: JSONRPCResult = await self.json_rpc(
'public/get_instruments',
params,
)
# convert to symbol-keyed table
results: list[dict] | None = resp.result
instruments: dict[str, dict] = {
resp = await self.json_rpc('public/get_instruments', params)
results = resp.result
instruments = {
item['instrument_name'].lower(): item
for item in results
}
@ -327,7 +331,6 @@ class Client:
async def cache_symbols(
self,
) -> dict:
if not self._pairs:
self._pairs = await self.symbol_info()
@ -338,23 +341,17 @@ class Client:
pattern: str,
limit: int = 30,
) -> dict[str, Any]:
'''
Fuzzy search symbology set for pairs matching `pattern`.
data = await self.symbol_info()
'''
pairs: dict[str, Any] = await self.symbol_info()
matches: dict[str, Pair] = match_from_pairs(
pairs=pairs,
query=pattern.upper(),
matches = fuzzy.extractBests(
pattern,
data,
score_cutoff=35,
limit=limit
)
# repack in name-keyed table
return {
pair['instrument_name'].lower(): pair
for pair in matches.values()
}
# repack in dict form
return {item[0]['instrument_name'].lower(): item[0]
for item in matches}
async def bars(
self,
@ -408,7 +405,7 @@ class Client:
new_bars.append((i,) + tuple(row))
array = np.array(new_bars, dtype=def_iohlcv_fields) if as_np else klines
array = np.array(new_bars, dtype=_ohlc_dtype) if as_np else klines
return array
async def last_trades(

View File

@ -26,11 +26,11 @@ import time
import trio
from trio_typing import TaskStatus
import pendulum
from rapidfuzz import process as fuzzy
from fuzzywuzzy import process as fuzzy
import numpy as np
import tractor
from piker.brokers import open_cached_client
from piker._cacheables import open_cached_client
from piker.log import get_logger, get_console_log
from piker.data import ShmArray
from piker.brokers._util import (
@ -39,6 +39,7 @@ from piker.brokers._util import (
)
from cryptofeed import FeedHandler
from cryptofeed.defines import (
DERIBIT, L1_BOOK, TRADES, OPTION, CALL, PUT
)

View File

@ -30,33 +30,19 @@ from .api import (
)
from .feed import (
open_history_client,
open_symbol_search,
stream_quotes,
)
from .broker import (
open_trade_dialog,
)
from .ledger import (
norm_trade,
norm_trade_records,
tx_sort,
)
from .symbols import (
get_mkt_info,
open_symbol_search,
_search_conf,
trades_dialogue,
)
__all__ = [
'get_client',
'get_mkt_info',
'norm_trade',
'norm_trade_records',
'open_trade_dialog',
'trades_dialogue',
'open_history_client',
'open_symbol_search',
'stream_quotes',
'_search_conf',
'tx_sort',
]
_brokerd_mods: list[str] = [
@ -66,7 +52,6 @@ _brokerd_mods: list[str] = [
_datad_mods: list[str] = [
'feed',
'symbols',
]
@ -86,8 +71,3 @@ _spawn_kwargs = {
# know if ``brokerd`` should be spawned with
# ``tractor``'s aio mode.
_infect_asyncio: bool = True
# XXX NOTE: for now we disable symcache with this backend since
# there is no clearly simple nor practical way to download "all
# symbology info" for all supported venues..
_no_symcache: bool = True

View File

@ -159,11 +159,7 @@ def load_flex_trades(
for acctid in trades_by_account:
trades_by_id = trades_by_account[acctid]
with open_trade_ledger(
'ib',
acctid,
allow_from_sync_code=True,
) as ledger_dict:
with open_trade_ledger('ib', acctid) as ledger_dict:
tid_delta = set(trades_by_id) - set(ledger_dict)
log.info(
'New trades detected\n'

View File

@ -29,13 +29,14 @@ import subprocess
import tractor
from piker.brokers._util import get_logger
from .._util import log
if TYPE_CHECKING:
from .api import Client
from ib_insync import IB
from .api import (
MethodProxy,
ib_Client
)
log = get_logger('piker.brokers.ib')
_reset_tech: Literal[
'vnc',
@ -49,8 +50,7 @@ _reset_tech: Literal[
async def data_reset_hack(
# vnc_host: str,
client: Client,
vnc_host: str,
reset_type: Literal['data', 'connection'],
) -> None:
@ -81,32 +81,12 @@ async def data_reset_hack(
that need to be wrangle.
'''
ib_client: IB = client.ib
# look up any user defined vnc socket address mapped from
# a particular API socket port.
api_port: str = str(ib_client.client.port)
vnc_host: str
vnc_port: int
vnc_sockaddr: tuple[str] | None = client.conf.get('vnc_addrs')
no_setup_msg:str = (
f'No data reset hack test setup for {vnc_sockaddr}!\n'
'See config setup tips @\n'
'No data reset hack test setup for {vnc_host}!\n'
'See setup @\n'
'https://github.com/pikers/piker/tree/master/piker/brokers/ib'
)
if not vnc_sockaddr:
log.warning(
no_setup_msg
+
'REQUIRES A `vnc_addrs: array` ENTRY'
)
vnc_host, vnc_port = vnc_sockaddr.get(
api_port,
('localhost', 3003)
)
global _reset_tech
match _reset_tech:
@ -116,7 +96,6 @@ async def data_reset_hack(
partial(
vnc_click_hack,
host=vnc_host,
port=vnc_port,
)
)
except OSError:
@ -125,7 +104,7 @@ async def data_reset_hack(
return False
try:
import i3ipc # noqa (since a deps dynamic check)
import i3ipc
except ModuleNotFoundError:
log.warning(no_setup_msg)
return False
@ -149,8 +128,7 @@ async def data_reset_hack(
async def vnc_click_hack(
host: str,
port: int,
host: str = 'localhost',
reset_type: str = 'data'
) -> None:
'''
@ -176,12 +154,8 @@ async def vnc_click_hack(
async with asyncvnc.connect(
host,
port=port,
# TODO: doesn't work see:
# https://github.com/barneygale/asyncvnc/issues/7
port=3003,
# password='ibcansmbz',
) as client:
# move to middle of screen
@ -195,11 +169,6 @@ async def vnc_click_hack(
def i3ipc_xdotool_manual_click_hack() -> None:
'''
Do the data reset hack but expecting a local X-window using `xdotool`.
'''
import i3ipc
i3 = i3ipc.Connection()
# TODO: might be worth offering some kinda api for grabbing
@ -259,7 +228,7 @@ def i3ipc_xdotool_manual_click_hack() -> None:
timeout=timeout,
)
# re-activate and focus original window
# re-activate and focus original window
subprocess.call([
'xdotool',
'windowactivate', '--sync', str(orig_win_id),

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -21,47 +21,39 @@ from __future__ import annotations
import asyncio
from contextlib import (
asynccontextmanager as acm,
nullcontext,
)
from decimal import Decimal
from dataclasses import asdict
from datetime import datetime
from functools import partial
from pprint import pformat
from math import isnan
import time
from typing import (
Any,
Callable,
TYPE_CHECKING,
Optional,
Awaitable,
)
from async_generator import aclosing
import ib_insync as ibis
from fuzzywuzzy import process as fuzzy
import numpy as np
from pendulum import (
now,
from_timestamp,
# DateTime,
Duration,
duration as mk_duration,
)
import pendulum
import tractor
import trio
from trio_typing import TaskStatus
from piker.accounting import (
MktPair,
)
from piker.data.validate import FeedInit
from piker.brokers._util import (
from .._util import (
NoData,
DataUnavailable,
SymbolNotFound,
)
from .api import (
# _adhoc_futes_set,
Client,
con2fqme,
log,
load_aio_clients,
ibis,
MethodProxy,
open_client_proxies,
get_preferred_data_client,
@ -70,13 +62,16 @@ from .api import (
RequestError,
)
from ._util import data_reset_hack
from .symbols import get_mkt_info
if TYPE_CHECKING:
from trio._core._run import Task
from piker._cacheables import (
async_lifo_cache,
)
from piker.accounting import (
Asset,
MktPair,
)
from piker.data.validate import FeedInit
# XXX NOTE: See available types table docs:
# https://interactivebrokers.github.io/tws-api/tick_types.html
tick_types = {
77: 'trade',
@ -96,9 +91,9 @@ tick_types = {
# ``ib_insync`` already packs these into
# quotes under the following fields.
55: 'trades_per_min', # `'tradeRate'`
56: 'vlm_per_min', # `'volumeRate'`
89: 'shortable_units', # `'shortableShares'`
# 55: 'trades_per_min', # `'tradeRate'`
# 56: 'vlm_per_min', # `'volumeRate'`
# 89: 'shortable', # `'shortableShares'`
}
@ -143,21 +138,32 @@ async def open_history_client(
# memory.
# IB's internal symbology does not expect the "source asset" in
# the "symbol name", what we call the "market pair name". This is
# the "symbol name", what we call the "market name". This is
# common in most legacy market brokers since it's presumed that
# given a certain stock exchange, listed assets are traded
# "from" a particular source fiat, normally something like USD
# on the given venue-provider, eg. nasdaq, nyse, etc.
fqme_kwargs: dict[str, Any] = {}
if mkt.dst.atype != 'fiat':
fqme_kwargs = {
'without_src': True, # default is True
'delim_char': '', # bc they would normally use a frickin `.` smh
}
# "from" a particular source fiat, normally something like USD.
if (
mkt.src
and mkt.src.atype == 'fiat'
):
fqme_kwargs: dict[str, Any] = {}
fqme: str = mkt.get_bs_fqme(**(fqme_kwargs))
if mkt.dst.atype == 'forex':
# XXX: for now we do need the src token kept in since
fqme_kwargs = {
'without_src': False, # default is True
'delim_char': '', # bc they would normally use a frickin `.` smh
}
fqme: str = mkt.get_bs_fqme(**(fqme_kwargs))
else:
fqme = mkt.bs_fqme
async with open_data_client() as proxy:
max_timeout: float = 2.
mean: float = 0
count: int = 0
@ -165,36 +171,27 @@ async def open_history_client(
head_dt: None | datetime = None
if (
# fx cons seem to not provide this endpoint?
# TODO: guard against all contract types which don't
# support it?
'idealpro' not in fqme
):
head_dt: datetime | None = await proxy.maybe_get_head_time(
fqme=fqme
)
try:
head_dt = await proxy.get_head_time(fqme=fqme)
except RequestError:
head_dt = None
async def get_hist(
timeframe: float,
end_dt: datetime | None = None,
start_dt: datetime | None = None,
end_dt: Optional[datetime] = None,
start_dt: Optional[datetime] = None,
) -> tuple[np.ndarray, str]:
nonlocal max_timeout, mean, count
if (
start_dt
and start_dt.timestamp() == 0
):
await tractor.pause()
query_start = time.time()
out, timedout = await get_bars(
proxy,
fqme,
timeframe,
end_dt=end_dt,
start_dt=start_dt,
)
latency = time.time() - query_start
if (
@ -208,48 +205,24 @@ async def open_history_client(
f'mean: {mean}'
)
# could be trying to retreive bars over weekend
if out is None:
if (
out is None
):
# could be trying to retreive bars over weekend
log.error(f"Can't grab bars starting at {end_dt}!?!?")
if (
end_dt
and head_dt
and end_dt <= head_dt
):
raise DataUnavailable(
f'First timestamp is {head_dt}\n'
f'But {end_dt} was requested..'
)
raise NoData(
f'{end_dt}',
# frame_size=2000,
)
else:
raise NoData(
info={
'fqme': fqme,
'head_dt': head_dt,
'start_dt': start_dt,
'end_dt': end_dt,
'timedout': timedout,
},
)
if (
end_dt
and head_dt
and end_dt <= head_dt
):
raise DataUnavailable(f'First timestamp is {head_dt}')
# also see return type for `get_bars()`
bars: ibis.objects.BarDataList
bars_array: np.ndarray
first_dt: datetime
last_dt: datetime
(
bars,
bars_array,
first_dt,
last_dt,
) = out
# TODO: audit the sampling period here as well?
# timestep should always be at least as large as the
# period step.
# tdiff: np.ndarray = np.diff(bars_array['time'])
# if (tdiff < timeframe).any():
# await tractor.pause()
bars, bars_array, first_dt, last_dt = out
# volume cleaning since there's -ve entries,
# wood luv to know what crookery that is..
@ -263,18 +236,7 @@ async def open_history_client(
# quite sure why.. needs some tinkering and probably
# a lookthrough of the ``ib_insync`` machinery, for eg. maybe
# we have to do the batch queries on the `asyncio` side?
yield (
get_hist,
{
'erlangs': 1, # max conc reqs
'rate': 3, # max req rate
'frame_types': { # expected frame sizes
1: mk_duration(seconds=2e3),
60: mk_duration(days=2),
}
},
)
yield get_hist, {'erlangs': 1, 'rate': 3}
_pacing: str = (
@ -313,7 +275,7 @@ async def wait_on_data_reset(
# )
# try to wait on the reset event(s) to arrive, a timeout
# will trigger a retry up to 6 times (for now).
client: Client = proxy._aio_ns
client = proxy._aio_ns.ib.client
done = trio.Event()
with trio.move_on_after(timeout) as cs:
@ -322,10 +284,10 @@ async def wait_on_data_reset(
log.warning(
'Sending DATA RESET request:\n'
f'{client.ib.client}'
f'{client}'
)
res = await data_reset_hack(
client=client,
vnc_host=client.host,
reset_type=reset_type,
)
@ -360,10 +322,9 @@ async def wait_on_data_reset(
return False
_data_resetter_task: Task | None = None
_data_resetter_task: trio.Task | None = None
_failed_resets: int = 0
async def get_bars(
proxy: MethodProxy,
@ -372,7 +333,6 @@ async def get_bars(
# blank to start which tells ib to look up the latest datum
end_dt: str = '',
start_dt: str | None = '',
# TODO: make this more dynamic based on measured frame rx latency?
# how long before we trigger a feed reset (seconds)
@ -386,15 +346,7 @@ async def get_bars(
task_status: TaskStatus[trio.CancelScope] = trio.TASK_STATUS_IGNORED,
) -> tuple[
tuple[ # result tuple
ibis.objects.BarDataList,
np.ndarray,
datetime,
datetime,
] | None,
bool, # timed out hint
]:
) -> (dict, np.ndarray):
'''
Retrieve historical data from a ``trio``-side task using
a ``MethoProxy``.
@ -419,11 +371,7 @@ async def get_bars(
while _failed_resets < max_failed_resets:
try:
(
bars,
bars_array,
dt_duration,
) = await proxy.bars(
out = await proxy.bars(
fqme=fqme,
end_dt=end_dt,
sample_period_s=timeframe,
@ -434,58 +382,28 @@ async def get_bars(
# current impl) to detect a cancel case.
# timeout=timeout,
)
# usually either a request during a venue closure
# or into a large (weekend) closure gap.
if not bars:
# no data returned?
if out is None:
raise NoData(f'{end_dt}')
bars, bars_array, dt_duration = out
if (
not bars
and end_dt
):
log.warning(
'History frame is blank?\n'
f'start_dt: {start_dt}\n'
f'end_dt: {end_dt}\n'
f'duration: {dt_duration}\n'
f'History is blank for {dt_duration} from {end_dt}'
)
# NOTE: REQUIRED to pass back value..
result = None
return None
end_dt -= dt_duration
continue
# not enough bars signal, likely due to venue
# operational gaps.
if end_dt:
dur_s: float = len(bars) * timeframe
bars_dur = Duration(seconds=dur_s)
dt_dur_s: float = dt_duration.in_seconds()
if dur_s < dt_dur_s:
log.warning(
'History frame is shorter then expected?\n'
f'start_dt: {start_dt}\n'
f'end_dt: {end_dt}\n'
f'duration: {dt_dur_s}\n'
f'frame duration seconds: {dur_s}\n'
f'dur diff: {dt_duration - bars_dur}\n'
)
# NOTE: we used to try to get a minimal
# set of bars by recursing but this ran
# into possible infinite query loops
# when logic in the `Client.bars()` dt
# diffing went bad. So instead for now
# we just return the
# shorter-then-expected history with
# a warning.
# TODO: in the future it prolly makes
# the most send to do venue operating
# hours lookup and
# timestamp-in-operating-range set
# checking to know for sure if we can
# safely and quickly ignore non-uniform history
# frame timestamp gaps..
# end_dt -= dt_duration
# continue
# await tractor.pause()
if bars_array is None:
raise SymbolNotFound(fqme)
first_dt = from_timestamp(
first_dt = pendulum.from_timestamp(
bars[0].date.timestamp())
last_dt = from_timestamp(
last_dt = pendulum.from_timestamp(
bars[-1].date.timestamp())
time = bars_array['time']
@ -498,22 +416,15 @@ async def get_bars(
if data_cs:
data_cs.cancel()
# NOTE: setting this is critical!
result = (
bars, # ib native
bars_array, # numpy
first_dt,
last_dt,
)
result = (bars, bars_array, first_dt, last_dt)
# signal data reset loop parent task
result_ready.set()
# NOTE: this isn't getting collected anywhere!
return result
except RequestError as err:
msg: str = err.message
msg = err.message
if 'No market data permissions for' in msg:
# TODO: signalling for no permissions searches
@ -535,7 +446,7 @@ async def get_bars(
if end_dt is not None:
end_dt = end_dt.subtract(days=1)
elif end_dt is None:
end_dt = now().subtract(days=1)
end_dt = pendulum.now().subtract(days=1)
log.warning(
f'NO DATA found ending @ {end_dt}\n'
@ -551,29 +462,21 @@ async def get_bars(
nodatas_count += 1
continue
elif (
'API historical data query cancelled'
in
err.message
):
elif 'API historical data query cancelled' in err.message:
log.warning(
'Query cancelled by IB (:eyeroll:):\n'
f'{err.message}'
)
continue
elif (
'Trading TWS session is connected from a different IP'
in
err.message
in err.message
):
log.warning("ignoring ip address warning")
continue
# XXX: more or less same as above timeout case
elif (
_pacing in msg
):
elif _pacing in msg:
log.warning(
'History throttle rate reached!\n'
'Resetting farms with `ctrl-alt-f` hack\n'
@ -625,10 +528,9 @@ async def get_bars(
# don't double invoke the reset hack if another
# requester task already has it covered.
continue
else:
_data_resetter_task = trio.lowlevel.current_task()
unset_resetter: bool = True
unset_resetter = True
# spawn new data reset task
data_cs, reset_done = await nurse.start(
@ -641,16 +543,30 @@ async def get_bars(
# sync wait on reset to complete
await reset_done.wait()
_data_resetter_task = (
None
if unset_resetter
else _data_resetter_task
)
assert result
return (
result,
data_cs is not None,
)
_data_resetter_task = None if unset_resetter else _data_resetter_task
return result, data_cs is not None
# re-mapping to piker asset type names
# https://github.com/erdewit/ib_insync/blob/master/ib_insync/contract.py#L113
_asset_type_map = {
'STK': 'stock',
'OPT': 'option',
'FUT': 'future',
'CONTFUT': 'continuous_future',
'CASH': 'forex',
'IND': 'index',
'CFD': 'cfd',
'BOND': 'bond',
'CMDTY': 'commodity',
'FOP': 'futures_option',
'FUND': 'mutual_fund',
'WAR': 'warrant',
'IOPT': 'warran',
'BAG': 'bag',
'CRYPTO': 'crypto', # bc it's diff then fiat?
# 'NEWS': 'news',
}
_quote_streams: dict[str, trio.abc.ReceiveStream] = {}
@ -671,8 +587,8 @@ async def _setup_quote_stream(
# making them mostly useless and explains why the scanner
# is always slow XD
# '293', # Trade count for day
# '294', # Trade rate / minute
# '295', # Vlm rate / minute
'294', # Trade rate / minute
'295', # Vlm rate / minute
),
contract: Contract | None = None,
@ -686,12 +602,13 @@ async def _setup_quote_stream(
'''
global _quote_streams
to_trio.send_nowait(None)
async with load_aio_clients(
disconnect_on_exit=False,
) as accts2clients:
caccount_name, client = get_preferred_data_client(accts2clients)
contract = contract or (await client.find_contract(symbol))
to_trio.send_nowait(contract) # cuz why not
ticker: Ticker = client.ib.reqMktData(contract, ','.join(opts))
# NOTE: it's batch-wise and slow af but I guess could
@ -783,9 +700,7 @@ async def open_aio_quote_stream(
symbol=symbol,
contract=contract,
) as (contract, from_aio):
assert contract
) as (first, from_aio):
# cache feed for later consumers
_quote_streams[symbol] = from_aio
@ -856,6 +771,98 @@ def normalize(
return data
@async_lifo_cache()
async def get_mkt_info(
fqme: str,
proxy: MethodProxy | None = None,
) -> tuple[MktPair, ibis.ContractDetails]:
# XXX: we don't need to split off any fqme broker part?
# bs_fqme, _, broker = fqme.partition('.')
proxy: MethodProxy
get_details: bool = False
if proxy is not None:
client_ctx = nullcontext(proxy)
else:
client_ctx = open_data_client
async with client_ctx as proxy:
try:
(
con, # Contract
details, # ContractDetails
) = await proxy.get_sym_details(symbol=fqme)
except ConnectionError:
log.exception(f'Proxy is ded {proxy._aio_ns}')
raise
# TODO: more consistent field translation
init_info: dict = {}
atype = _asset_type_map[con.secType]
if atype == 'commodity':
venue: str = 'cmdty'
else:
venue = con.primaryExchange or con.exchange
price_tick: Decimal = Decimal(str(details.minTick))
if atype == 'stock':
# XXX: GRRRR they don't support fractional share sizes for
# stocks from the API?!
# if con.secType == 'STK':
size_tick = Decimal('1')
else:
size_tick: Decimal = Decimal(str(details.minSize).rstrip('0'))
# |-> TODO: there is also the Contract.sizeIncrement, bt wtf is it?
# NOTE: this is duplicate from the .broker.norm_trade_records()
# routine, we should factor all this parsing somewhere..
expiry_str = str(con.lastTradeDateOrContractMonth)
# if expiry:
# expiry_str: str = str(pendulum.parse(
# str(expiry).strip(' ')
# ))
# TODO: currently we can't pass the fiat src asset because
# then we'll get a `MNQUSD` request for history data..
# we need to figure out how we're going to handle this (later?)
# but likely we want all backends to eventually handle
# ``dst/src.venue.`` style !?
src: str | Asset = ''
if atype == 'forex':
src = Asset(
name=str(con.currency),
atype='fiat',
tx_tick=Decimal('0.01'), # right?
)
mkt = MktPair(
dst=Asset(
name=con.symbol.lower(),
atype=atype,
tx_tick=size_tick,
),
src=src,
price_tick=price_tick,
size_tick=size_tick,
bs_mktid=str(con.conId),
venue=str(venue),
expiry=expiry_str,
broker='ib',
# TODO: options contract info as str?
# contract_info=<optionsdetails>
)
return mkt, details
async def stream_quotes(
send_chan: trio.abc.SendChannel,
@ -883,10 +890,7 @@ async def stream_quotes(
proxy: MethodProxy
mkt: MktPair
details: ibis.ContractDetails
async with (
open_data_client() as proxy,
# trio.open_nursery() as tn,
):
async with open_data_client() as proxy:
mkt, details = await get_mkt_info(
sym,
proxy=proxy, # passed to avoid implicit client load
@ -895,7 +899,7 @@ async def stream_quotes(
init_msg = FeedInit(mkt_info=mkt)
if mkt.dst.atype in {
'fiat',
'forex',
'index',
'commodity',
}:
@ -906,50 +910,26 @@ async def stream_quotes(
init_msgs.append(init_msg)
con: Contract = details.contract
first_ticker: Ticker | None = None
first_ticker: Ticker = await proxy.get_quote(contract=con)
first_quote: dict = normalize(first_ticker)
log.runtime(f'FIRST QUOTE: {first_quote}')
# TODO: we should instead spawn a task that waits on a feed to start
# and let it wait indefinitely..instead of this hard coded stuff.
with trio.move_on_after(1):
first_ticker: Ticker = await proxy.get_quote(
contract=con,
raise_on_timeout=False,
)
first_ticker = await proxy.get_quote(contract=con)
if first_ticker:
first_quote: dict = normalize(first_ticker)
# TODO: we need a stack-oriented log levels filters for
# this!
# log.info(message, filter={'stack': 'live_feed'}) ?
log.runtime(
'Rxed init quote:\n\n'
f'{pformat(first_quote)}\n'
)
# NOTE: it might be outside regular trading hours for
# assets with "standard venue operating hours" so we
# only "pretend the feed is live" when the dst asset
# type is NOT within the NON-NORMAL-venue set: aka not
# commodities, forex or crypto currencies which CAN
# always return a NaN on a snap quote request during
# normal venue hours. In the case of a closed venue
# (equitiies, futes, bonds etc.) we at least try to
# grab the OHLC history.
# it might be outside regular trading hours so see if we can at
# least grab history.
if (
first_ticker
and
isnan(first_ticker.last)
# SO, if the last quote price value is NaN we ONLY
# "pretend to do" `feed_is_live.set()` if it's a known
# dst asset venue with a lot of closed operating hours.
isnan(first_ticker.last) # last quote price value is nan
and mkt.dst.atype not in {
'commodity',
'fiat',
'forex',
'crypto',
}
):
task_status.started((
init_msgs,
first_quote,
))
task_status.started((init_msgs, first_quote))
# it's not really live but this will unblock
# the brokerd feed task to tell the ui to update?
@ -959,28 +939,6 @@ async def stream_quotes(
await trio.sleep_forever()
return # we never expect feed to come up?
# TODO: we should instead spawn a task that waits on a feed
# to start and let it wait indefinitely..instead of this
# hard coded stuff.
# async def wait_for_first_quote():
# with trio.CancelScope() as cs:
# XXX: MUST acquire a ticker + first quote before starting
# the live quotes loop!
# with trio.move_on_after(1):
first_ticker = await proxy.get_quote(
contract=con,
raise_on_timeout=True,
)
first_quote: dict = normalize(first_ticker)
# TODO: we need a stack-oriented log levels filters for
# this!
# log.info(message, filter={'stack': 'live_feed'}) ?
log.runtime(
'Rxed init quote:\n'
f'{pformat(first_quote)}'
)
cs: trio.CancelScope | None = None
startup: bool = True
while (
@ -1001,11 +959,8 @@ async def stream_quotes(
# only on first entry at feed boot up
if startup:
startup: bool = False
task_status.started((
init_msgs,
first_quote,
))
startup = False
task_status.started((init_msgs, first_quote))
# start a stream restarter task which monitors the
# data feed event.
@ -1029,7 +984,7 @@ async def stream_quotes(
# generally speaking these feeds don't
# include vlm data.
atype: str = mkt.dst.atype
atype = mkt.dst.atype
log.info(
f'No-vlm {mkt.fqme}@{atype}, skipping quote poll'
)
@ -1065,16 +1020,154 @@ async def stream_quotes(
quote = normalize(ticker)
log.debug(f"First ticker received {quote}")
# tell data-layer spawner-caller that live
# quotes are now streaming.
# tell caller quotes are now coming in live
feed_is_live.set()
# last = time.time()
async for ticker in stream:
quote = normalize(ticker)
fqme = quote['fqme']
# print(f'sending {fqme}:\n{quote}')
await send_chan.send({fqme: quote})
# ugh, clear ticks since we've consumed them
ticker.ticks = []
# last = time.time()
@tractor.context
async def open_symbol_search(
ctx: tractor.Context,
) -> None:
# TODO: load user defined symbol set locally for fast search?
await ctx.started({})
async with (
open_client_proxies() as (proxies, clients),
open_data_client() as data_proxy,
):
async with ctx.open_stream() as stream:
# select a non-history client for symbol search to lighten
# the load in the main data node.
proxy = data_proxy
for name, proxy in proxies.items():
if proxy is data_proxy:
continue
break
ib_client = proxy._aio_ns.ib
log.info(f'Using {ib_client} for symbol search')
last = time.time()
async for pattern in stream:
log.info(f'received {pattern}')
now = time.time()
# this causes tractor hang...
# assert 0
assert pattern, 'IB can not accept blank search pattern'
# throttle search requests to no faster then 1Hz
diff = now - last
if diff < 1.0:
log.debug('throttle sleeping')
await trio.sleep(diff)
try:
pattern = stream.receive_nowait()
except trio.WouldBlock:
pass
if (
not pattern
or pattern.isspace()
# XXX: not sure if this is a bad assumption but it
# seems to make search snappier?
or len(pattern) < 1
):
log.warning('empty pattern received, skipping..')
# TODO: *BUG* if nothing is returned here the client
# side will cache a null set result and not showing
# anything to the use on re-searches when this query
# timed out. We probably need a special "timeout" msg
# or something...
# XXX: this unblocks the far end search task which may
# hold up a multi-search nursery block
await stream.send({})
continue
log.info(f'searching for {pattern}')
last = time.time()
# async batch search using api stocks endpoint and module
# defined adhoc symbol set.
stock_results = []
async def stash_results(target: Awaitable[list]):
try:
results = await target
except tractor.trionics.Lagged:
print("IB SYM-SEARCH OVERRUN?!?")
return
stock_results.extend(results)
for i in range(10):
with trio.move_on_after(3) as cs:
async with trio.open_nursery() as sn:
sn.start_soon(
stash_results,
proxy.search_symbols(
pattern=pattern,
upto=5,
),
)
# trigger async request
await trio.sleep(0)
if cs.cancelled_caught:
log.warning(
f'Search timeout? {proxy._aio_ns.ib.client}'
)
continue
else:
break
# # match against our ad-hoc set immediately
# adhoc_matches = fuzzy.extractBests(
# pattern,
# list(_adhoc_futes_set),
# score_cutoff=90,
# )
# log.info(f'fuzzy matched adhocs: {adhoc_matches}')
# adhoc_match_results = {}
# if adhoc_matches:
# # TODO: do we need to pull contract details?
# adhoc_match_results = {i[0]: {} for i in
# adhoc_matches}
log.debug(f'fuzzy matching stocks {stock_results}')
stock_matches = fuzzy.extractBests(
pattern,
stock_results,
score_cutoff=50,
)
# matches = adhoc_match_results | {
matches = {
item[0]: {} for item in stock_matches
}
# TODO: we used to deliver contract details
# {item[2]: item[0] for item in stock_matches}
log.debug(f"sending matches: {matches.keys()}")
await stream.send(matches)

View File

@ -1,529 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Trade transaction accounting and normalization.
'''
from __future__ import annotations
from bisect import insort
from dataclasses import asdict
from decimal import Decimal
from functools import partial
from pprint import pformat
from typing import (
Any,
Callable,
TYPE_CHECKING,
)
from bidict import bidict
from pendulum import (
DateTime,
parse,
from_timestamp,
)
from ib_insync import (
Contract,
Commodity,
Fill,
Execution,
CommissionReport,
)
from piker.types import Struct
from piker.data import (
SymbologyCache,
)
from piker.accounting import (
Asset,
dec_digits,
digits_to_dec,
Transaction,
MktPair,
iter_by_dt,
)
from ._flex_reports import parse_flex_dt
from ._util import log
if TYPE_CHECKING:
from .api import (
Client,
MethodProxy,
)
tx_sort: Callable = partial(
iter_by_dt,
parsers={
'dateTime': parse_flex_dt,
'datetime': parse,
# XXX: for some some fucking 2022 and
# back options records.. f@#$ me..
'date': parse,
}
)
def norm_trade(
tid: str,
record: dict[str, Any],
# this is the dict that was returned from
# `Client.get_mkt_pairs()` and when running offline ledger
# processing from `.accounting`, this will be the table loaded
# into `SymbologyCache.pairs`.
pairs: dict[str, Struct],
symcache: SymbologyCache | None = None,
) -> Transaction | None:
conid: int = str(record.get('conId') or record['conid'])
bs_mktid: str = str(conid)
# NOTE: sometimes weird records (like BTTX?)
# have no field for this?
comms: float = -1 * (
record.get('commission')
or record.get('ibCommission')
or 0
)
if not comms:
log.warning(
'No commissions found for record?\n'
f'{pformat(record)}\n'
)
price: float = (
record.get('price')
or record.get('tradePrice')
)
if price is None:
log.warning(
'No `price` field found in record?\n'
'Skipping normalization..\n'
f'{pformat(record)}\n'
)
return None
# the api doesn't do the -/+ on the quantity for you but flex
# records do.. are you fucking serious ib...!?
size: float|int = (
record.get('quantity')
or record['shares']
) * {
'BOT': 1,
'SLD': -1,
}[record['side']]
symbol: str = record['symbol']
exch: str = (
record.get('listingExchange')
or record.get('primaryExchange')
or record['exchange']
)
# NOTE: remove null values since `tomlkit` can't serialize
# them to file.
if dnc := record.pop('deltaNeutralContract', None):
record['deltaNeutralContract'] = dnc
# likely an opts contract record from a flex report..
# TODO: no idea how to parse ^ the strike part from flex..
# (00010000 any, or 00007500 tsla, ..)
# we probably must do the contract lookup for this?
if (
' ' in symbol
or '--' in exch
):
underlying, _, tail = symbol.partition(' ')
exch: str = 'opt'
expiry: str = tail[:6]
# otype = tail[6]
# strike = tail[7:]
log.warning(
f'Skipping option contract -> NO SUPPORT YET!\n'
f'{symbol}\n'
)
return None
# timestamping is way different in API records
dtstr: str = record.get('datetime')
date: str = record.get('date')
flex_dtstr: str = record.get('dateTime')
if dtstr or date:
dt: DateTime = parse(dtstr or date)
elif flex_dtstr:
# probably a flex record with a wonky non-std timestamp..
dt: DateTime = parse_flex_dt(record['dateTime'])
# special handling of symbol extraction from
# flex records using some ad-hoc schema parsing.
asset_type: str = (
record.get('assetCategory')
or record.get('secType')
or 'STK'
)
if (expiry := (
record.get('lastTradeDateOrContractMonth')
or record.get('expiry')
)
):
expiry: str = str(expiry).strip(' ')
# NOTE: we directly use the (simple and usually short)
# date-string expiry token when packing the `MktPair`
# since we want the fqme to contain *that* token.
# It might make sense later to instead parse and then
# render different output str format(s) for this same
# purpose depending on asset-type-market down the road.
# Eg. for derivs we use the short token only for fqme
# but use the isoformat('T') for transactions and
# account file position entries?
# dt_str: str = pendulum.parse(expiry).isoformat('T')
# XXX: pretty much all legacy market assets have a fiat
# currency (denomination) determined by their venue.
currency: str = record['currency']
src = Asset(
name=currency.lower(),
atype='fiat',
tx_tick=Decimal('0.01'),
)
match asset_type:
case 'FUT':
# XXX (flex) ledger entries don't necessarily have any
# simple 3-char key.. sometimes the .symbol is some
# weird internal key that we probably don't want in the
# .fqme => we should probably just wrap `Contract` to
# this like we do other crypto$ backends XD
# NOTE: at least older FLEX records should have
# this field.. no idea about API entries..
local_symbol: str | None = record.get('localSymbol')
underlying_key: str = record.get('underlyingSymbol')
descr: str | None = record.get('description')
if (
not (
local_symbol
and symbol in local_symbol
)
and (
descr
and symbol not in descr
)
):
con_key, exp_str = descr.split(' ')
symbol: str = underlying_key or con_key
dst = Asset(
name=symbol.lower(),
atype='future',
tx_tick=Decimal('1'),
)
case 'STK':
dst = Asset(
name=symbol.lower(),
atype='stock',
tx_tick=Decimal('1'),
)
case 'CASH':
if currency not in symbol:
# likely a dict-casted `Forex` contract which
# has .symbol as the dst and .currency as the
# src.
name: str = symbol.lower()
else:
# likely a flex-report record which puts
# EUR.USD as the symbol field and just USD in
# the currency field.
name: str = symbol.lower().replace(f'.{src.name}', '')
dst = Asset(
name=name,
atype='fiat',
tx_tick=Decimal('0.01'),
)
case 'OPT':
dst = Asset(
name=symbol.lower(),
atype='option',
tx_tick=Decimal('1'),
# TODO: we should probably always cast to the
# `Contract` instance then dict-serialize that for
# the `.info` field!
# info=asdict(Option()),
)
case 'CMDTY':
from .symbols import _adhoc_symbol_map
con_kwargs, _ = _adhoc_symbol_map[symbol.upper()]
dst = Asset(
name=symbol.lower(),
atype='commodity',
tx_tick=Decimal('1'),
info=asdict(Commodity(**con_kwargs)),
)
# try to build out piker fqme from record.
# src: str = record['currency']
price_tick: Decimal = digits_to_dec(dec_digits(price))
# NOTE: can't serlialize `tomlkit.String` so cast to native
atype: str = str(dst.atype)
# if not (mkt := symcache.mktmaps.get(bs_mktid)):
mkt = MktPair(
bs_mktid=bs_mktid,
dst=dst,
price_tick=price_tick,
# NOTE: for "legacy" assets, volume is normally discreet, not
# a float, but we keep a digit in case the suitz decide
# to get crazy and change it; we'll be kinda ready
# schema-wise..
size_tick=Decimal('1'),
src=src, # XXX: normally always a fiat
_atype=atype,
venue=exch,
expiry=expiry,
broker='ib',
_fqme_without_src=(atype != 'fiat'),
)
fqme: str = mkt.fqme
# XXX: if passed in, we fill out the symcache ad-hoc in order
# to make downstream accounting work..
if symcache is not None:
orig_mkt: MktPair | None = symcache.mktmaps.get(bs_mktid)
if (
orig_mkt
and orig_mkt.fqme != mkt.fqme
):
log.warning(
# print(
f'Contracts with common `conId`: {bs_mktid} mismatch..\n'
f'{orig_mkt.fqme} -> {mkt.fqme}\n'
# 'with DIFF:\n'
# f'{mkt - orig_mkt}'
)
symcache.mktmaps[bs_mktid] = mkt
symcache.mktmaps[fqme] = mkt
symcache.assets[src.name] = src
symcache.assets[dst.name] = dst
# NOTE: for flex records the normal fields for defining an fqme
# sometimes won't be available so we rely on two approaches for
# the "reverse lookup" of piker style fqme keys:
# - when dealing with API trade records received from
# `IB.trades()` we do a contract lookup at he time of processing
# - when dealing with flex records, it is assumed the record
# is at least a day old and thus the TWS position reporting system
# should already have entries if the pps are still open, in
# which case, we can pull the fqme from that table (see
# `trades_dialogue()` above).
return Transaction(
fqme=fqme,
tid=tid,
size=size,
price=price,
cost=comms,
dt=dt,
expiry=expiry,
bs_mktid=str(conid),
)
def norm_trade_records(
ledger: dict[str, Any],
symcache: SymbologyCache | None = None,
) -> dict[str, Transaction]:
'''
Normalize (xml) flex-report or (recent) API trade records into
our ledger format with parsing for `MktPair` and `Asset`
extraction to fill in the `Transaction.sys: MktPair` field.
'''
records: list[Transaction] = []
for tid, record in ledger.items():
txn = norm_trade(
tid,
record,
# NOTE: currently no symcache support
pairs={},
symcache=symcache,
)
if txn is None:
continue
# inject txns sorted by datetime
insort(
records,
txn,
key=lambda t: t.dt
)
return {r.tid: r for r in records}
def api_trades_to_ledger_entries(
accounts: bidict[str, str],
fills: list[Fill],
) -> dict[str, dict]:
'''
Convert API execution objects entry objects into
flattened-``dict`` form, pretty much straight up without
modification except add a `pydatetime` field from the parsed
timestamp so that on write
'''
trades_by_account: dict[str, dict] = {}
for fill in fills:
# NOTE: for the schema, see the defn for `Fill` which is
# a `NamedTuple` subtype
fdict: dict = fill._asdict()
# flatten all (sub-)objects and convert to dicts.
# with values packed into one top level entry.
val: CommissionReport | Execution | Contract
txn_dict: dict[str, Any] = {}
for attr_name, val in fdict.items():
match attr_name:
# value is a `@dataclass` subtype
case 'contract' | 'execution' | 'commissionReport':
txn_dict.update(asdict(val))
case 'time':
# ib has wack ns timestamps, or is that us?
continue
# TODO: we can remove this case right since there's
# only 4 fields on a `Fill`?
case _:
txn_dict[attr_name] = val
tid = str(txn_dict['execId'])
dt = from_timestamp(txn_dict['time'])
txn_dict['datetime'] = str(dt)
acctid = accounts[txn_dict['acctNumber']]
# NOTE: only inserted (then later popped) for sorting below!
txn_dict['pydatetime'] = dt
if not tid:
# this is likely some kind of internal adjustment
# transaction, likely one of the following:
# - an expiry event that will show a "book trade" indicating
# some adjustment to cash balances: zeroing or itm settle.
# - a manual cash balance position adjustment likely done by
# the user from the accounts window in TWS where they can
# manually set the avg price and size:
# https://api.ibkr.com/lib/cstools/faq/web1/index.html#/tag/DTWS_ADJ_AVG_COST
log.warning(
'Skipping ID-less ledger txn_dict:\n'
f'{pformat(txn_dict)}'
)
continue
trades_by_account.setdefault(
acctid, {}
)[tid] = txn_dict
# TODO: maybe we should just bisect.insort() into a list of
# tuples and then return a dict of that?
# sort entries in output by python based datetime
for acctid in trades_by_account:
trades_by_account[acctid] = dict(sorted(
trades_by_account[acctid].items(),
key=lambda entry: entry[1].pop('pydatetime'),
))
return trades_by_account
async def update_ledger_from_api_trades(
fills: list[Fill],
client: Client | MethodProxy,
accounts_def_inv: bidict[str, str],
# NOTE: provided for ad-hoc insertions "as transactions are
# processed" -> see `norm_trade()` signature requirements.
symcache: SymbologyCache | None = None,
) -> tuple[
dict[str, Transaction],
dict[str, dict],
]:
# XXX; ERRGGG..
# pack in the "primary/listing exchange" value from a
# contract lookup since it seems this isn't available by
# default from the `.fills()` method endpoint...
fill: Fill
for fill in fills:
con: Contract = fill.contract
conid: str = con.conId
pexch: str | None = con.primaryExchange
if not pexch:
cons = await client.get_con(conid=conid)
if cons:
con = cons[0]
pexch = con.primaryExchange or con.exchange
else:
# for futes it seems like the primary is always empty?
pexch: str = con.exchange
# pack in the ``Contract.secType``
# entry['asset_type'] = condict['secType']
entries: dict[str, dict] = api_trades_to_ledger_entries(
accounts_def_inv,
fills,
)
# normalize recent session's trades to the `Transaction` type
trans_by_acct: dict[str, dict[str, Transaction]] = {}
for acctid, trades_by_id in entries.items():
# normalize to transaction form
trans_by_acct[acctid] = norm_trade_records(
trades_by_id,
symcache=symcache,
)
return trans_by_acct, entries

View File

@ -1,615 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Symbology search and normalization.
'''
from __future__ import annotations
from contextlib import (
nullcontext,
)
from decimal import Decimal
import time
from typing import (
Awaitable,
TYPE_CHECKING,
)
from rapidfuzz import process as fuzzy
import ib_insync as ibis
import tractor
import trio
from piker.accounting import (
Asset,
MktPair,
unpack_fqme,
)
from piker._cacheables import (
async_lifo_cache,
)
from ._util import (
log,
)
if TYPE_CHECKING:
from .api import (
MethodProxy,
Client,
)
_futes_venues = (
'GLOBEX',
'NYMEX',
'CME',
'CMECRYPTO',
'COMEX',
# 'CMDTY', # special name case..
'CBOT', # (treasury) yield futures
)
_adhoc_cmdty_set = {
# metals
# https://misc.interactivebrokers.com/cstools/contract_info/v3.10/index.php?action=Conid%20Info&wlId=IB&conid=69067924
'xauusd.cmdty', # london gold spot ^
'xagusd.cmdty', # silver spot
}
# NOTE: if you aren't seeing one of these symbol's futues contracts
# show up, it's likely the `.<venue>` part is wrong!
_adhoc_futes_set = {
# equities
'nq.cme',
'mnq.cme', # micro
'es.cme',
'mes.cme', # micro
# cypto$
'brr.cme',
'mbt.cme', # micro
'ethusdrr.cme',
# agriculture
'he.comex', # lean hogs
'le.comex', # live cattle (geezers)
'gf.comex', # feeder cattle (younguns)
# raw
'lb.comex', # random len lumber
'gc.comex',
'mgc.comex', # micro
# oil & gas
'cl.nymex',
'ni.comex', # silver futes
'qi.comex', # mini-silver futes
# treasury yields
# etfs by duration:
# SHY -> IEI -> IEF -> TLT
'zt.cbot', # 2y
'z3n.cbot', # 3y
'zf.cbot', # 5y
'zn.cbot', # 10y
'zb.cbot', # 30y
# (micros of above)
'2yy.cbot',
'5yy.cbot',
'10y.cbot',
'30y.cbot',
}
# taken from list here:
# https://www.interactivebrokers.com/en/trading/products-spot-currencies.php
_adhoc_fiat_set = set((
'USD, AED, AUD, CAD,'
'CHF, CNH, CZK, DKK,'
'EUR, GBP, HKD, HUF,'
'ILS, JPY, MXN, NOK,'
'NZD, PLN, RUB, SAR,'
'SEK, SGD, TRY, ZAR'
).split(' ,')
)
# manually discovered tick discrepancies,
# onl god knows how or why they'd cuck these up..
_adhoc_mkt_infos: dict[int | str, dict] = {
'vtgn.nasdaq': {'price_tick': Decimal('0.01')},
}
# map of symbols to contract ids
_adhoc_symbol_map = {
# https://misc.interactivebrokers.com/cstools/contract_info/v3.10/index.php?action=Conid%20Info&wlId=IB&conid=69067924
# NOTE: some cmdtys/metals don't have trade data like gold/usd:
# https://groups.io/g/twsapi/message/44174
'XAUUSD': ({'conId': 69067924}, {'whatToShow': 'MIDPOINT'}),
}
for qsn in _adhoc_futes_set:
sym, venue = qsn.split('.')
assert venue.upper() in _futes_venues, f'{venue}'
_adhoc_symbol_map[sym.upper()] = (
{'exchange': venue},
{},
)
# exchanges we don't support at the moment due to not knowing
# how to do symbol-contract lookup correctly likely due
# to not having the data feeds subscribed.
_exch_skip_list = {
'ASX', # aussie stocks
'MEXI', # mexican stocks
# no idea
'NSE',
'VALUE',
'FUNDSERV',
'SWB2',
'PSE',
'PHLX',
}
# optional search config the backend can register for
# it's symbol search handling (in this case we avoid
# accepting patterns before the kb has settled more then
# a quarter second).
_search_conf = {
'pause_period': 6 / 16,
}
@tractor.context
async def open_symbol_search(ctx: tractor.Context) -> None:
'''
Symbology search brokerd-endpoint.
'''
from .api import open_client_proxies
from .feed import open_data_client
# TODO: load user defined symbol set locally for fast search?
await ctx.started({})
async with (
open_client_proxies() as (proxies, _),
open_data_client() as data_proxy,
):
async with ctx.open_stream() as stream:
# select a non-history client for symbol search to lighten
# the load in the main data node.
proxy = data_proxy
for name, proxy in proxies.items():
if proxy is data_proxy:
continue
break
ib_client = proxy._aio_ns.ib
log.info(
f'Using API client for symbol-search\n'
f'{ib_client}\n'
)
last = time.time()
async for pattern in stream:
log.info(f'received {pattern}')
now: float = time.time()
# this causes tractor hang...
# assert 0
assert pattern, 'IB can not accept blank search pattern'
# throttle search requests to no faster then 1Hz
diff = now - last
if diff < 1.0:
log.debug('throttle sleeping')
await trio.sleep(diff)
try:
pattern = stream.receive_nowait()
except trio.WouldBlock:
pass
if (
not pattern
or pattern.isspace()
# XXX: not sure if this is a bad assumption but it
# seems to make search snappier?
or len(pattern) < 1
):
log.warning('empty pattern received, skipping..')
# TODO: *BUG* if nothing is returned here the client
# side will cache a null set result and not showing
# anything to the use on re-searches when this query
# timed out. We probably need a special "timeout" msg
# or something...
# XXX: this unblocks the far end search task which may
# hold up a multi-search nursery block
await stream.send({})
continue
log.info(f'searching for {pattern}')
last = time.time()
# async batch search using api stocks endpoint and module
# defined adhoc symbol set.
stock_results = []
async def extend_results(
target: Awaitable[list]
) -> None:
try:
results = await target
except tractor.trionics.Lagged:
print("IB SYM-SEARCH OVERRUN?!?")
return
stock_results.extend(results)
for _ in range(10):
with trio.move_on_after(3) as cs:
async with trio.open_nursery() as sn:
sn.start_soon(
extend_results,
proxy.search_symbols(
pattern=pattern,
upto=5,
),
)
# trigger async request
await trio.sleep(0)
if cs.cancelled_caught:
log.warning(
f'Search timeout? {proxy._aio_ns.ib.client}'
)
continue
elif stock_results:
break
# else:
# await tractor.pause()
# # match against our ad-hoc set immediately
# adhoc_matches = fuzzy.extract(
# pattern,
# list(_adhoc_futes_set),
# score_cutoff=90,
# )
# log.info(f'fuzzy matched adhocs: {adhoc_matches}')
# adhoc_match_results = {}
# if adhoc_matches:
# # TODO: do we need to pull contract details?
# adhoc_match_results = {i[0]: {} for i in
# adhoc_matches}
log.debug(f'fuzzy matching stocks {stock_results}')
stock_matches = fuzzy.extract(
pattern,
stock_results,
score_cutoff=50,
)
# matches = adhoc_match_results | {
matches = {
item[0]: {} for item in stock_matches
}
# TODO: we used to deliver contract details
# {item[2]: item[0] for item in stock_matches}
log.debug(f"sending matches: {matches.keys()}")
await stream.send(matches)
# re-mapping to piker asset type names
# https://github.com/erdewit/ib_insync/blob/master/ib_insync/contract.py#L113
_asset_type_map = {
'STK': 'stock',
'OPT': 'option',
'FUT': 'future',
'CONTFUT': 'continuous_future',
'CASH': 'fiat',
'IND': 'index',
'CFD': 'cfd',
'BOND': 'bond',
'CMDTY': 'commodity',
'FOP': 'futures_option',
'FUND': 'mutual_fund',
'WAR': 'warrant',
'IOPT': 'warran',
'BAG': 'bag',
'CRYPTO': 'crypto', # bc it's diff then fiat?
# 'NEWS': 'news',
}
def parse_patt2fqme(
# client: Client,
pattern: str,
) -> tuple[str, str, str, str]:
# TODO: we can't use this currently because
# ``wrapper.starTicker()`` currently cashes ticker instances
# which means getting a singel quote will potentially look up
# a quote for a ticker that it already streaming and thus run
# into state clobbering (eg. list: Ticker.ticks). It probably
# makes sense to try this once we get the pub-sub working on
# individual symbols...
# XXX UPDATE: we can probably do the tick/trades scraping
# inside our eventkit handler instead to bypass this entirely?
currency = ''
# fqme parsing stage
# ------------------
if '.ib' in pattern:
_, symbol, venue, expiry = unpack_fqme(pattern)
else:
symbol = pattern
expiry = ''
# # another hack for forex pairs lul.
# if (
# '.idealpro' in symbol
# # or '/' in symbol
# ):
# exch: str = 'IDEALPRO'
# symbol = symbol.removesuffix('.idealpro')
# if '/' in symbol:
# symbol, currency = symbol.split('/')
# else:
# TODO: yes, a cache..
# try:
# # give the cache a go
# return client._contracts[symbol]
# except KeyError:
# log.debug(f'Looking up contract for {symbol}')
expiry: str = ''
if symbol.count('.') > 1:
symbol, _, expiry = symbol.rpartition('.')
# use heuristics to figure out contract "type"
symbol, venue = symbol.upper().rsplit('.', maxsplit=1)
return symbol, currency, venue, expiry
def con2fqme(
con: ibis.Contract,
_cache: dict[int, (str, bool)] = {}
) -> tuple[str, bool]:
'''
Convert contracts to fqme-style strings to be used both in
symbol-search matching and as feed tokens passed to the front
end data deed layer.
Previously seen contracts are cached by id.
'''
# should be real volume for this contract by default
calc_price: bool = False
if con.conId:
try:
# TODO: LOL so apparently IB just changes the contract
# ID (int) on a whim.. so we probably need to use an
# FQME style key after all...
return _cache[con.conId]
except KeyError:
pass
suffix: str = con.primaryExchange or con.exchange
symbol: str = con.symbol
expiry: str = con.lastTradeDateOrContractMonth or ''
match con:
case ibis.Option():
# TODO: option symbol parsing and sane display:
symbol = con.localSymbol.replace(' ', '')
case (
ibis.Commodity()
# search API endpoint returns std con box..
| ibis.Contract(secType='CMDTY')
):
# commodities and forex don't have an exchange name and
# no real volume so we have to calculate the price
suffix = con.secType
# no real volume on this tract
calc_price = True
case ibis.Forex() | ibis.Contract(secType='CASH'):
dst, src = con.localSymbol.split('.')
symbol = ''.join([dst, src])
suffix = con.exchange or 'idealpro'
# no real volume on forex feeds..
calc_price = True
if not suffix:
entry = _adhoc_symbol_map.get(
con.symbol or con.localSymbol
)
if entry:
meta, kwargs = entry
cid = meta.get('conId')
if cid:
assert con.conId == meta['conId']
suffix = meta['exchange']
# append a `.<suffix>` to the returned symbol
# key for derivatives that normally is the expiry
# date key.
if expiry:
suffix += f'.{expiry}'
fqme_key = symbol.lower()
if suffix:
fqme_key = '.'.join((fqme_key, suffix)).lower()
_cache[con.conId] = fqme_key, calc_price
return fqme_key, calc_price
@async_lifo_cache()
async def get_mkt_info(
fqme: str,
proxy: MethodProxy | None = None,
) -> tuple[MktPair, ibis.ContractDetails]:
if '.ib' not in fqme:
fqme += '.ib'
broker, pair, venue, expiry = unpack_fqme(fqme)
proxy: MethodProxy
if proxy is not None:
client_ctx = nullcontext(proxy)
else:
from .feed import (
open_data_client,
)
client_ctx = open_data_client
async with client_ctx as proxy:
try:
(
con, # Contract
details, # ContractDetails
) = await proxy.get_sym_details(fqme=fqme)
except ConnectionError:
log.exception(f'Proxy is ded {proxy._aio_ns}')
raise
# TODO: more consistent field translation
atype = _asset_type_map[con.secType]
if atype == 'commodity':
venue: str = 'cmdty'
else:
venue = con.primaryExchange or con.exchange
price_tick: Decimal = Decimal(str(details.minTick))
ib_min_tick_gt_2: Decimal = Decimal('0.01')
if (
price_tick < ib_min_tick_gt_2
):
# TODO: we need to add some kinda dynamic rounding sys
# to our MktPair i guess?
# not sure where the logic should sit, but likely inside
# the `.clearing._ems` i suppose...
log.warning(
'IB seems to disallow a min price tick < 0.01 '
'when the price is > 2.0..?\n'
f'Decreasing min tick precision for {fqme} to 0.01'
)
# price_tick = ib_min_tick
# await tractor.pause()
if atype == 'stock':
# XXX: GRRRR they don't support fractional share sizes for
# stocks from the API?!
# if con.secType == 'STK':
size_tick = Decimal('1')
else:
size_tick: Decimal = Decimal(
str(details.minSize).rstrip('0')
)
# |-> TODO: there is also the Contract.sizeIncrement, bt wtf is it?
# NOTE: this is duplicate from the .broker.norm_trade_records()
# routine, we should factor all this parsing somewhere..
expiry_str = str(con.lastTradeDateOrContractMonth)
# if expiry:
# expiry_str: str = str(pendulum.parse(
# str(expiry).strip(' ')
# ))
# TODO: currently we can't pass the fiat src asset because
# then we'll get a `MNQUSD` request for history data..
# we need to figure out how we're going to handle this (later?)
# but likely we want all backends to eventually handle
# ``dst/src.venue.`` style !?
src = Asset(
name=str(con.currency).lower(),
atype='fiat',
tx_tick=Decimal('0.01'), # right?
)
dst = Asset(
name=con.symbol.lower(),
atype=atype,
tx_tick=size_tick,
)
mkt = MktPair(
src=src,
dst=dst,
price_tick=price_tick,
size_tick=size_tick,
bs_mktid=str(con.conId),
venue=str(venue),
expiry=expiry_str,
broker='ib',
# TODO: options contract info as str?
# contract_info=<optionsdetails>
_fqme_without_src=(atype != 'fiat'),
)
# just.. wow.
if entry := _adhoc_mkt_infos.get(mkt.bs_fqme):
log.warning(f'Frickin {mkt.fqme} has an adhoc {entry}..')
new = mkt.to_dict()
new['price_tick'] = entry['price_tick']
new['src'] = src
new['dst'] = dst
mkt = MktPair(**new)
# if possible register the bs_mktid to the just-built
# mkt so that it can be retreived by order mode tasks later.
# TODO NOTE: this is going to be problematic if/when we split
# out the datatd vs. brokerd actors since the mktmap lookup
# table will now be inaccessible..
if proxy is not None:
client: Client = proxy._aio_ns
client._contracts[mkt.bs_fqme] = con
client._cons2mkts[con] = mkt
return mkt, details

View File

@ -19,57 +19,44 @@ Kraken backend.
Sub-modules within break into the core functionalities:
- .api: for the core API machinery which generally
a ``asks``/``trio-websocket`` implemented ``Client``.
- .broker: part for orders / trading endpoints.
- .feed: for real-time and historical data query endpoints.
- .ledger: for transaction processing as it pertains to accounting.
- .symbols: for market (name) search and symbology meta-defs.
- ``broker.py`` part for orders / trading endpoints
- ``feed.py`` for real-time data feed endpoints
- ``api.py`` for the core API machinery which is ``trio``-ized
wrapping around ``ib_insync``.
'''
from .symbols import (
Pair, # for symcache
open_symbol_search,
# required by `.accounting`, `.data`
get_mkt_info,
)
# required by `.brokers`
from piker.log import get_logger
log = get_logger(__name__)
from .api import (
get_client,
)
from .feed import (
# required by `.data`
stream_quotes,
get_mkt_info,
open_history_client,
open_symbol_search,
stream_quotes,
)
from .broker import (
# required by `.clearing`
open_trade_dialog,
)
from .ledger import (
# required by `.accounting`
norm_trade,
trades_dialogue,
norm_trade_records,
)
__all__ = [
'get_client',
'get_mkt_info',
'Pair',
'open_trade_dialog',
'trades_dialogue',
'open_history_client',
'open_symbol_search',
'stream_quotes',
'norm_trade_records',
'norm_trade',
]
# tractor RPC enable arg
__enable_modules__: list[str] = [
'api',
'broker',
'feed',
'symbols',
'broker',
]

View File

@ -15,11 +15,12 @@
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Core (web) API client
Kraken web API wrapping.
'''
from contextlib import asynccontextmanager as acm
from datetime import datetime
from decimal import Decimal
import itertools
from typing import (
Any,
@ -27,8 +28,10 @@ from typing import (
)
import time
import httpx
from bidict import bidict
import pendulum
import asks
from fuzzywuzzy import process as fuzzy
import numpy as np
import urllib.parse
import hashlib
@ -37,14 +40,10 @@ import base64
import trio
from piker import config
from piker.data import (
def_iohlcv_fields,
match_from_pairs,
)
from piker.data.types import Struct
from piker.accounting._mktinfo import (
Asset,
digits_to_dec,
dec_digits,
)
from piker.brokers._util import (
resproc,
@ -53,21 +52,29 @@ from piker.brokers._util import (
DataThrottle,
)
from piker.accounting import Transaction
from piker.log import get_logger
from .symbols import Pair
log = get_logger('piker.brokers.kraken')
from . import log
# <uri>/<version>/
_url = 'https://api.kraken.com/0'
_headers: dict[str, str] = {
'User-Agent': 'krakenex/2.1.0 (+https://github.com/veox/python3-krakenex)'
}
# TODO: this is the only backend providing this right?
# in which case we should drop it from the defaults and
# instead make a custom fields descr in this module!
# Broker specific ohlc schema which includes a vwap field
_ohlc_dtype = [
('index', int),
('time', int),
('open', float),
('high', float),
('low', float),
('close', float),
('volume', float),
('count', int),
('bar_wap', float),
]
# UI components allow this to be declared such that additional
# (historical) fields can be exposed.
ohlc_dtype = np.dtype(_ohlc_dtype)
_show_wap_in_history = True
_symbol_info_translation: dict[str, str] = {
'tick_decimals': 'pair_decimals',
@ -75,18 +82,12 @@ _symbol_info_translation: dict[str, str] = {
def get_config() -> dict[str, Any]:
'''
Load our section from `piker/brokers.toml`.
'''
conf, path = config.load(
conf_name='brokers',
touch_if_dne=True,
)
if (section := conf.get('kraken')) is None:
log.warning(
f'No config section found for kraken in {path}'
)
conf, path = config.load()
section = conf.get('kraken')
if section is None:
log.warning(f'No config section found for kraken in {path}')
return {}
return section
@ -117,51 +118,92 @@ class InvalidKey(ValueError):
'''
# https://www.kraken.com/features/api#get-tradable-pairs
class Pair(Struct):
altname: str # alternate pair name
wsname: str # WebSocket pair name (if available)
aclass_base: str # asset class of base component
base: str # asset id of base component
aclass_quote: str # asset class of quote component
quote: str # asset id of quote component
lot: str # volume lot size
cost_decimals: int
costmin: float
pair_decimals: int # scaling decimal places for pair
lot_decimals: int # scaling decimal places for volume
# amount to multiply lot volume by to get currency volume
lot_multiplier: float
# array of leverage amounts available when buying
leverage_buy: list[int]
# array of leverage amounts available when selling
leverage_sell: list[int]
# fee schedule array in [volume, percent fee] tuples
fees: list[tuple[int, float]]
# maker fee schedule array in [volume, percent fee] tuples (if on
# maker/taker)
fees_maker: list[tuple[int, float]]
fee_volume_currency: str # volume discount currency
margin_call: str # margin call level
margin_stop: str # stop-out/liquidation margin level
ordermin: float # minimum order volume for pair
tick_size: float # min price step size
status: str
short_position_limit: float = 0
long_position_limit: float = float('inf')
@property
def price_tick(self) -> Decimal:
return digits_to_dec(self.pair_decimals)
@property
def size_tick(self) -> Decimal:
return digits_to_dec(self.lot_decimals)
class Client:
# assets and mkt pairs are key-ed by kraken's ReST response
# symbol-bs_mktids (we call them "X-keys" like fricking
# "XXMRZEUR"). these keys used directly since ledger endpoints
# return transaction sets keyed with the same set!
_Assets: dict[str, Asset] = {}
_AssetPairs: dict[str, Pair] = {}
# symbol mapping from all names to the altname
_ntable: dict[str, str] = {}
# offer lookup tables for all .altname and .wsname
# to the equivalent .xname so that various symbol-schemas
# can be mapped to `Pair`s in the tables above.
_altnames: dict[str, str] = {}
_wsnames: dict[str, str] = {}
# 2-way map of symbol names to their "alt names" ffs XD
_altnames: bidict[str, str] = bidict()
# key-ed by `Pair.bs_fqme: str`, and thus used for search
# allowing for lookup using piker's own FQME symbology sys.
_pairs: dict[str, Pair] = {}
_assets: dict[str, Asset] = {}
def __init__(
self,
config: dict[str, str],
httpx_client: httpx.AsyncClient,
name: str = '',
api_key: str = '',
secret: str = ''
) -> None:
self._sesh: httpx.AsyncClient = httpx_client
self._sesh = asks.Session(connections=4)
self._sesh.base_location = _url
self._sesh.headers.update({
'User-Agent':
'krakenex/2.1.0 (+https://github.com/veox/python3-krakenex)'
})
self._name = name
self._api_key = api_key
self._secret = secret
self.conf: dict[str, str] = config
self.assets: dict[str, Asset] = {}
@property
def pairs(self) -> dict[str, Pair]:
if self._pairs is None:
raise RuntimeError(
"Client didn't run `.get_mkt_pairs()` on startup?!"
"Make sure to run `cache_symbols()` on startup!"
)
# retreive and cache all symbols
return self._pairs
@ -170,9 +212,10 @@ class Client:
method: str,
data: dict,
) -> dict[str, Any]:
resp: httpx.Response = await self._sesh.post(
url=f'/public/{method}',
resp = await self._sesh.post(
path=f'/public/{method}',
json=data,
timeout=float('inf')
)
return resproc(resp, log)
@ -183,18 +226,18 @@ class Client:
uri_path: str
) -> dict[str, Any]:
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
'API-Key': self._api_key,
'API-Sign': get_kraken_signature(
uri_path,
data,
self._secret,
),
'Content-Type':
'application/x-www-form-urlencoded',
'API-Key':
self._api_key,
'API-Sign':
get_kraken_signature(uri_path, data, self._secret)
}
resp: httpx.Response = await self._sesh.post(
url=f'/private/{method}',
resp = await self._sesh.post(
path=f'/private/{method}',
data=data,
headers=headers,
timeout=float('inf')
)
return resproc(resp, log)
@ -220,29 +263,17 @@ class Client:
'Balance',
{},
)
by_bsmktid: dict[str, dict] = resp['result']
by_bsmktid = resp['result']
balances: dict = {}
for xname, bal in by_bsmktid.items():
asset: Asset = self._Assets[xname]
# TODO: we need to pull out the "asset" decimals
# data and return a `decimal.Decimal` instead here!
# using the underlying Asset
return {
self._altnames[sym].lower(): float(bal)
for sym, bal in by_bsmktid.items()
}
# TODO: which KEY should we use? it's used to index
# the `Account.pps: dict` ..
key: str = asset.name.lower()
# TODO: should we just return a `Decimal` here
# or is the rounded version ok?
balances[key] = round(
float(bal),
ndigits=dec_digits(asset.tx_tick)
)
return balances
async def get_assets(
self,
reload: bool = False,
) -> dict[str, Asset]:
async def get_assets(self) -> dict[str, Asset]:
'''
Load and cache all asset infos and pack into
our native ``Asset`` struct.
@ -260,37 +291,21 @@ class Client:
}
'''
if (
not self._assets
or reload
):
resp = await self._public('Assets', {})
assets: dict[str, dict] = resp['result']
resp = await self._public('Assets', {})
assets = resp['result']
for bs_mktid, info in assets.items():
for bs_mktid, info in assets.items():
altname = self._altnames[bs_mktid] = info['altname']
aclass: str = info['aclass']
altname: str = info['altname']
aclass: str = info['aclass']
asset = Asset(
name=altname,
atype=f'crypto_{aclass}',
tx_tick=digits_to_dec(info['decimals']),
info=info,
)
# NOTE: yes we keep 2 sets since kraken insists on
# keeping 3 frickin sets bc apparently they have
# no sane data engineers whol all like different
# keys for their fricking symbology sets..
self._Assets[bs_mktid] = asset
self._assets[altname.lower()] = asset
self._assets[altname] = asset
self.assets[bs_mktid] = Asset(
name=altname.lower(),
atype=f'crypto_{aclass}',
tx_tick=digits_to_dec(info['decimals']),
info=info,
)
# we return the "most native" set merged with our preferred
# naming (which i guess is the "altname" one) since that's
# what the symcache loader will be storing, and we need the
# keys that are easiest to match against in any trade
# records.
return self._Assets | self._assets
return self.assets
async def get_trades(
self,
@ -371,25 +386,23 @@ class Client:
# 'amount': '0.00300726', 'fee': '0.00001000', 'time':
# 1658347714, 'status': 'Success'}]}
if xfers:
import tractor
await tractor.pp()
trans: dict[str, Transaction] = {}
for entry in xfers:
# look up the normalized name and asset info
asset_key: str = entry['asset']
asset: Asset = self._Assets[asset_key]
asset_key: str = asset.name.lower()
asset_key = entry['asset']
asset = self.assets[asset_key]
asset_key = self._altnames[asset_key].lower()
# XXX: this is in the asset units (likely) so it isn't
# quite the same as a commisions cost necessarily..)
# TODO: also round this based on `Pair` cost precision info?
cost = float(entry['fee'])
# fqme: str = asset_key + '.kraken'
fqme = asset_key + '.kraken'
tx = Transaction(
fqme=asset_key, # this must map to an entry in .assets!
fqme=fqme,
sym=asset,
tid=entry['txid'],
dt=pendulum.from_timestamp(entry['time']),
bs_mktid=f'{asset_key}{src_asset}',
@ -404,11 +417,6 @@ class Client:
# XXX: see note above
cost=cost,
# not a trade but a withdrawal or deposit on the
# asset (chain) system.
etype='transfer',
)
trans[tx.tid] = tx
@ -459,7 +467,7 @@ class Client:
# txid is a transaction id given by kraken
return await self.endpoint('CancelOrder', {"txid": reqid})
async def asset_pairs(
async def pair_info(
self,
pair_patt: str | None = None,
@ -471,76 +479,64 @@ class Client:
https://docs.kraken.com/rest/#tag/Market-Data/operation/getTradableAssetPairs
'''
if not self._AssetPairs:
# get all pairs by default, or filter
# to whatever pattern is provided as input.
req_pairs: dict[str, str] | None = None
if pair_patt is not None:
req_pairs = {'pair': pair_patt}
# get all pairs by default, or filter
# to whatever pattern is provided as input.
pairs: dict[str, str] | None = None
if pair_patt is not None:
pairs = {'pair': pair_patt}
resp = await self._public(
'AssetPairs',
req_pairs,
)
err = resp['error']
if err:
raise SymbolNotFound(pair_patt)
resp = await self._public(
'AssetPairs',
pairs,
)
err = resp['error']
if err:
raise SymbolNotFound(pair_patt)
# NOTE: we try to key pairs by our custom defined
# `.bs_fqme` field since we want to offer search over
# this pattern set, callers should fill out lookup
# tables for kraken's bs_mktid keys to map to these
# keys!
# XXX: FURTHER kraken's data eng team decided to offer
# 3 frickin market-pair-symbol key sets depending on
# which frickin API is being used.
# Example for the trading pair 'LTC<EUR'
# - the "X-key" from rest eps 'XLTCZEUR'
# - the "websocket key" from ws msgs is 'LTC/EUR'
# - the "altname key" also delivered in pair info is 'LTCEUR'
for xkey, data in resp['result'].items():
pairs: dict[str, Pair] = {
# NOTE: always cache in pairs tables for faster lookup
pair = Pair(xname=xkey, **data)
# register the above `Pair` structs for all
# key-sets/monikers: a set of 4 (frickin) tables
# acting as a combined surjection of all possible
# (and stupid) kraken names to their `Pair` obj.
self._AssetPairs[xkey] = pair
self._pairs[pair.bs_fqme] = pair
self._altnames[pair.altname] = pair
self._wsnames[pair.wsname] = pair
key: Pair(**data)
for key, data in resp['result'].items()
}
# always cache so we can possibly do faster lookup
self._pairs.update(pairs)
if pair_patt is not None:
return next(iter(self._pairs.items()))[1]
return next(iter(pairs.items()))[1]
return self._AssetPairs
return pairs
async def get_mkt_pairs(
self,
reload: bool = False,
) -> dict:
async def cache_symbols(self) -> dict:
'''
Load all market pair info build and cache it for downstream
use.
Load all market pair info build and cache it for downstream use.
Multiple pair info lookup tables (like ``._altnames:
dict[str, str]``) are created for looking up the
piker-native `Pair`-struct from any input of the three
(yes, it's that idiotic..) available symbol/pair-key-sets
that kraken frickin offers depending on the API including
the .altname, .wsname and the weird ass default set they
return in ReST responses .xname..
A ``._ntable: dict[str, str]`` is available for mapping the
websocket pair name-keys and their http endpoint API (smh)
equivalents to the "alternative name" which is generally the one
we actually want to use XD
'''
if (
not self._pairs
or reload
):
await self.asset_pairs()
if not self._pairs:
pairs = await self.pair_info()
assert self._pairs == pairs
return self._AssetPairs
# table of all ws and rest keys to their alt-name values.
ntable: dict[str, str] = {}
for rest_key in list(pairs.keys()):
pair: Pair = pairs[rest_key]
altname = pair.altname
wsname = pair.wsname
ntable[altname] = ntable[rest_key] = ntable[wsname] = altname
# register the pair under all monikers, a giant flat
# surjection of all possible names to each info obj.
self._pairs[altname] = self._pairs[wsname] = pair
self._ntable.update(ntable)
return self._pairs
async def search_symbols(
self,
@ -556,20 +552,16 @@ class Client:
'''
if not len(self._pairs):
await self.get_mkt_pairs()
assert self._pairs, '`Client.get_mkt_pairs()` was never called!?'
await self.cache_symbols()
assert self._pairs, '`Client.cache_symbols()` was never called!?'
matches: dict[str, Pair] = match_from_pairs(
pairs=self._pairs,
query=pattern.upper(),
matches = fuzzy.extractBests(
pattern,
self._pairs,
score_cutoff=50,
)
# repack in .altname-keyed output table
return {
pair.altname: pair
for pair in matches.values()
}
# repack in dict form
return {item[0].altname: item[0] for item in matches}
async def bars(
self,
@ -630,11 +622,11 @@ class Client:
new_bars.append(
(i,) + tuple(
ftype(bar[j]) for j, (name, ftype) in enumerate(
def_iohlcv_fields[1:]
_ohlc_dtype[1:]
)
)
)
array = np.array(new_bars, dtype=def_iohlcv_fields) if as_np else bars
array = np.array(new_bars, dtype=_ohlc_dtype) if as_np else bars
return array
except KeyError:
errmsg = json['error'][0]
@ -649,55 +641,37 @@ class Client:
raise BrokerError(errmsg)
@classmethod
def to_bs_fqme(
def normalize_symbol(
cls,
pair_str: str
) -> str:
ticker: str
) -> tuple[str, Pair]:
'''
Normalize symbol names to to a 3x3 pair from the global
definition map which we build out from the data retreived from
the 'AssetPairs' endpoint, see methods above.
'''
try:
return cls._altnames[pair_str.upper()].bs_fqme
except KeyError as ke:
raise SymbolNotFound(f'kraken has no {ke.args[0]}')
return cls._ntable[ticker].lower()
@acm
async def get_client() -> Client:
conf: dict[str, Any] = get_config()
async with httpx.AsyncClient(
base_url=_url,
headers=_headers,
conf = get_config()
if conf:
client = Client(
conf,
name=conf['key_descr'],
api_key=conf['api_key'],
secret=conf['secret']
)
else:
client = Client({})
# TODO: is there a way to numerate this?
# https://www.python-httpx.org/advanced/clients/#why-use-a-client
# connections=4
) as trio_client:
if conf:
client = Client(
conf,
httpx_client=trio_client,
# at startup, load all symbols, and asset info in
# batch requests.
async with trio.open_nursery() as nurse:
nurse.start_soon(client.get_assets)
await client.cache_symbols()
# TODO: don't break these up and just do internal
# conf lookups instead..
name=conf['key_descr'],
api_key=conf['api_key'],
secret=conf['secret']
)
else:
client = Client(
conf={},
httpx_client=trio_client,
)
# at startup, load all symbols, and asset info in
# batch requests.
async with trio.open_nursery() as nurse:
nurse.start_soon(client.get_assets)
await client.get_mkt_pairs()
yield client
yield client

View File

@ -18,12 +18,14 @@
Order api and machinery
'''
from collections import ChainMap, defaultdict
from contextlib import (
asynccontextmanager as acm,
aclosing,
)
from functools import partial
from itertools import count
import math
from pprint import pformat
import time
from typing import (
@ -34,19 +36,21 @@ from typing import (
)
from bidict import bidict
import pendulum
import trio
import tractor
from piker.accounting import (
Position,
Account,
PpTable,
Transaction,
TransactionLedger,
open_trade_ledger,
open_account,
open_pps,
get_likely_pair,
)
from piker.clearing import(
OrderDialogs,
from piker.accounting._mktinfo import (
MktPair,
)
from piker.clearing._messages import (
Order,
@ -59,24 +63,18 @@ from piker.clearing._messages import (
BrokerdPosition,
BrokerdStatus,
)
from piker.brokers import (
open_cached_client,
)
from piker.data import open_symcache
from . import log
from .api import (
log,
Client,
BrokerError,
get_client,
)
from .feed import (
get_mkt_info,
open_autorecon_ws,
NoBsWs,
stream_messages,
)
from .ledger import (
norm_trade_records,
verify_balances,
)
MsgUnion = Union[
BrokerdCancel,
@ -126,7 +124,7 @@ async def handle_order_requests(
client: Client,
ems_order_stream: tractor.MsgStream,
token: str,
apiflows: OrderDialogs,
apiflows: dict[int, ChainMap[dict[str, dict]]],
ids: bidict[str, int],
reqids2txids: dict[int, str],
@ -136,8 +134,10 @@ async def handle_order_requests(
and deliver acks or errors.
'''
# XXX: UGH, let's unify this.. with ``msgspec``!!!
msg: dict | Order
# XXX: UGH, let's unify this.. with ``msgspec``.
msg: dict[str, Any]
order: BrokerdOrder
async for msg in ems_order_stream:
log.info(f'Rx order msg:\n{pformat(msg)}')
match msg:
@ -183,12 +183,11 @@ async def handle_order_requests(
# logic from old `Client.submit_limit()`
if order.oid in ids:
ep: str = 'editOrder'
reqid: int = ids[order.oid] # integer not txid
ep = 'editOrder'
reqid = ids[order.oid] # integer not txid
try:
txid: str = reqids2txids[reqid]
txid = reqids2txids[reqid]
except KeyError:
# XXX: not sure if this block ever gets hit now?
log.error('TOO FAST EDIT')
reqids2txids[reqid] = TooFastEdit(reqid)
@ -209,7 +208,7 @@ async def handle_order_requests(
}
else:
ep: str = 'addOrder'
ep = 'addOrder'
reqid = BrokerClient.new_reqid()
ids[order.oid] = reqid
@ -222,12 +221,8 @@ async def handle_order_requests(
'type': order.action,
}
# XXX strip any .<venue> token which should
# ONLY ever be '.spot' rn, until we support
# futes.
bs_fqme: str = order.symbol.replace('.spot', '')
psym: str = bs_fqme.upper()
pair: str = f'{psym[:3]}/{psym[3:]}'
psym = order.symbol.upper()
pair = f'{psym[:3]}/{psym[3:]}'
# XXX: ACK the request **immediately** before sending
# the api side request to ensure the ems maps the oid ->
@ -265,7 +260,7 @@ async def handle_order_requests(
await ws.send_msg(req)
# placehold for sanity checking in relay loop
apiflows.add_msg(reqid, msg)
apiflows[reqid].maps.append(msg)
case _:
account = msg.get('account')
@ -371,23 +366,24 @@ async def subscribe(
def trades2pps(
acnt: Account,
ledger: TransactionLedger,
table: PpTable,
acctid: str,
new_trans: dict[str, Transaction] = {},
write_storage: bool = True,
) -> list[BrokerdPosition]:
) -> tuple[
list[BrokerdPosition],
list[Transaction],
]:
if new_trans:
updated = acnt.update_from_ledger(
updated = table.update_from_trans(
new_trans,
symcache=ledger.symcache,
)
log.info(f'Updated pps:\n{pformat(updated)}')
pp_entries, closed_pp_objs = acnt.dump_active()
pp_objs: dict[Union[str, int], Position] = acnt.pps
pp_entries, closed_pp_objs = table.dump_active()
pp_objs: dict[Union[str, int], Position] = table.pps
pps: dict[int, Position]
position_msgs: list[dict] = []
@ -401,13 +397,13 @@ def trades2pps(
# backend suffix prefixed but when
# reading accounts from ledgers we
# don't need it and/or it's prefixed
# in the section acnt.. we should
# in the section table.. we should
# just strip this from the message
# right since `.broker` is already
# included?
account='kraken.' + acctid,
symbol=p.mkt.fqme,
size=p.cumsize,
size=p.size,
avg_price=p.ppu,
currency='',
)
@ -418,29 +414,30 @@ def trades2pps(
# as little as possible. we need to either do
# these writes in another actor, or try out `trio`'s
# async file IO api?
acnt.write_config()
table.write_config()
return position_msgs
@tractor.context
async def open_trade_dialog(
async def trades_dialogue(
ctx: tractor.Context,
loglevel: str = None,
) -> AsyncIterator[dict[str, Any]]:
async with (
# TODO: maybe bind these together and deliver
# a tuple from `.open_cached_client()`?
open_cached_client('kraken') as client,
open_symcache('kraken') as symcache,
):
# make ems flip to paper mode when no creds setup in
# `brokers.toml` B0
async with get_client() as client:
if not client._api_key:
await ctx.started('paper')
return
# TODO: make ems flip to paper mode via
# some returned signal if the user only wants to use
# the data feed or we return this?
# else:
# await ctx.started(({}, ['paper']))
# NOTE: currently we expect the user to define a "source fiat"
# (much like the web UI let's you set an "account currency")
# such that all positions (nested or flat) will be translated to
@ -452,7 +449,10 @@ async def open_trade_dialog(
acc_name = 'kraken.' + acctid
# task local msg dialog tracking
apiflows = OrderDialogs()
apiflows: defaultdict[
int,
ChainMap[dict[str, dict]],
] = defaultdict(ChainMap)
# 2way map for ems ids to kraken int reqids..
ids: bidict[str, int] = bidict()
@ -464,8 +464,8 @@ async def open_trade_dialog(
# - delete the *ABSOLUTE LAST* entry from account's corresponding
# trade ledgers file (NOTE this MUST be the last record
# delivered from the api ledger),
# - open you ``account.kraken.spot.toml`` and find that
# same tid and delete it from the pos's clears table,
# - open you ``pps.toml`` and find that same tid and delete it
# from the pp's clears table,
# - set this flag to `True`
#
# You should see an update come in after the order mode
@ -476,85 +476,172 @@ async def open_trade_dialog(
# update things correctly.
simulate_pp_update: bool = False
acnt: Account
table: PpTable
ledger: TransactionLedger
with (
open_account(
open_pps(
'kraken',
acctid,
write_on_exit=True,
) as acnt,
) as table,
open_trade_ledger(
'kraken',
acctid,
symcache=symcache,
) as ledger,
):
# TODO: loading ledger entries should all be done
# within a newly implemented `async with open_account()
# as acnt` where `Account.ledger: TransactionLedger`
# can be used to explicitily update and write the
# offline TOML files!
# ------ - ------
# MOL the init sequence is:
# - get `Account` (with presumed pre-loaded ledger done
# beind the scenes as part of ctx enter).
# - pull new trades from API, update the ledger with
# normalized to `Transaction` entries of those
# records, presumably (and implicitly) update the
# acnt state including expiries, positions,
# transfers..), and finally of course existing
# per-asset balances.
# - validate all pos and balances ensuring there's
# no seemingly noticeable discrepancies?
# transaction-ify the ledger entries
ledger_trans = await norm_trade_records(ledger)
# LOAD and transaction-ify the EXISTING LEDGER
ledger_trans: dict[str, Transaction] = await norm_trade_records(
ledger,
client,
api_name_set='xname',
)
if not acnt.pps:
acnt.update_from_ledger(
ledger_trans,
symcache=ledger.symcache,
)
acnt.write_config()
if not table.pps:
# NOTE: we can't use this since it first needs
# broker: str input support!
# table.update_from_trans(ledger.to_trans())
table.update_from_trans(ledger_trans)
table.write_config()
# TODO: eventually probably only load
# as far back as it seems is not deliverd in the
# most recent 50 trades and assume that by ordering we
# already have those records in the ledger?
tids2trades: dict[str, dict] = await client.get_trades()
# already have those records in the ledger.
tids2trades = await client.get_trades()
ledger.update(tids2trades)
if tids2trades:
ledger.write_config()
api_trans: dict[str, Transaction] = await norm_trade_records(
tids2trades,
client,
api_name_set='xname',
)
api_trans = await norm_trade_records(tids2trades)
# retrieve kraken reported balances
# and do diff with ledger to determine
# what amount of trades-transactions need
# to be reloaded.
balances: dict[str, float] = await client.get_balances()
balances = await client.get_balances()
verify_balances(
acnt,
src_fiat,
balances,
client,
ledger,
ledger_trans,
api_trans,
)
for dst, size in balances.items():
# XXX NOTE: only for simulate-testing a "new fill" since
# we don't care about tracking positions
# in the user's source fiat currency.
if (
dst == src_fiat
or not any(
dst in bs_mktid for bs_mktid in table.pps
)
):
log.warning(
f'Skipping balance `{dst}`:{size} for position calcs!'
)
continue
def has_pp(
dst: str,
size: float,
) -> Position | None:
src2dst: dict[str, str] = {}
for bs_mktid in table.pps:
likely_pair = get_likely_pair(
src_fiat,
dst,
bs_mktid,
)
if likely_pair:
src2dst[src_fiat] = dst
for src, dst in src2dst.items():
pair = f'{dst}{src_fiat}'
pp = table.pps.get(pair)
if (
pp
and math.isclose(pp.size, size)
):
return pp
elif (
size == 0
and pp.size
):
log.warning(
f'`kraken` account says you have a ZERO '
f'balance for {bs_mktid}:{pair}\n'
f'but piker seems to think `{pp.size}`\n'
'This is likely a discrepancy in piker '
'accounting if the above number is'
"large,' though it's likely to due lack"
"f tracking xfers fees.."
)
return pp
return None # signal no entry
pos = has_pp(dst, size)
if not pos:
# we have a balance for which there is no pp
# entry? so we have to likely update from the
# ledger.
updated = table.update_from_trans(ledger_trans)
log.info(f'Updated pps from ledger:\n{pformat(updated)}')
pos = has_pp(dst, size)
if (
not pos
and not simulate_pp_update
):
# try reloading from API
table.update_from_trans(api_trans)
pos = has_pp(dst, size)
if not pos:
# get transfers to make sense of abs balances.
# NOTE: we do this after ledger and API
# loading since we might not have an entry
# in the ``pps.toml`` for the necessary pair
# yet and thus this likely pair grabber will
# likely fail.
for bs_mktid in table.pps:
likely_pair = get_likely_pair(
src_fiat,
dst,
bs_mktid,
)
if likely_pair:
break
else:
raise ValueError(
'Could not find a position pair in '
'ledger for likely widthdrawal '
f'candidate: {dst}'
)
if likely_pair:
# this was likely pp that had a withdrawal
# from the dst asset out of the account.
xfer_trans = await client.get_xfers(
dst,
# TODO: not all src assets are
# 3 chars long...
src_asset=likely_pair[3:],
)
if xfer_trans:
updated = table.update_from_trans(
xfer_trans,
cost_scalar=1,
)
log.info(
f'Updated {dst} from transfers:\n'
f'{pformat(updated)}'
)
if has_pp(dst, size):
raise ValueError(
'Could not reproduce balance:\n'
f'dst: {dst}, {size}\n'
)
# only for simulate-testing a "new fill" since
# otherwise we have to actually conduct a live clear.
if simulate_pp_update:
tid = list(tids2trades)[0]
@ -562,28 +649,26 @@ async def open_trade_dialog(
# stage a first reqid of `0`
reqids2txids[0] = last_trade_dict['ordertxid']
ppmsgs: list[BrokerdPosition] = trades2pps(
acnt,
ledger,
ppmsgs = trades2pps(
table,
acctid,
)
# sync with EMS delivering pps and accounts
await ctx.started((ppmsgs, [acc_name]))
# TODO: ideally this blocks the this task
# as little as possible. we need to either do
# these writes in another actor, or try out `trio`'s
# async file IO api?
acnt.write_config()
table.write_config()
# Get websocket token for authenticated data stream
# Assert that a token was actually received.
resp = await client.endpoint('GetWebSocketsToken', {})
if err := resp.get('error'):
err = resp.get('error')
if err:
raise BrokerError(err)
# resp token for ws init
token: str = resp['result']['token']
token = resp['result']['token']
ws: NoBsWs
async with (
@ -612,35 +697,32 @@ async def open_trade_dialog(
# enter relay loop
await handle_order_updates(
client=client,
ws=ws,
ws_stream=stream,
ems_stream=ems_stream,
apiflows=apiflows,
ids=ids,
reqids2txids=reqids2txids,
acnt=acnt,
ledger=ledger,
acctid=acctid,
acc_name=acc_name,
token=token,
ws,
stream,
ems_stream,
apiflows,
ids,
reqids2txids,
table,
api_trans,
acctid,
acc_name,
token,
)
async def handle_order_updates(
client: Client, # only for pairs table needed in ledger proc
ws: NoBsWs,
ws_stream: AsyncIterator,
ems_stream: tractor.MsgStream,
apiflows: OrderDialogs,
apiflows: dict[int, ChainMap[dict[str, dict]]],
ids: bidict[str, int],
reqids2txids: bidict[int, str],
acnt: Account,
table: PpTable,
# transaction records which will be updated
# on new trade clearing events (aka order "fills")
ledger: TransactionLedger,
# ledger_trans: dict[str, Transaction],
ledger_trans: dict[str, Transaction],
acctid: str,
acc_name: str,
token: str,
@ -658,7 +740,7 @@ async def handle_order_updates(
# TODO: turns out you get the fill events from the
# `openOrders` before you get this, so it might be better
# to do all fill/status/pos updates in that sub and just use
# to do all fill/status/pp updates in that sub and just use
# this one for ledger syncs?
# For eg. we could take the "last 50 trades" and do a diff
@ -700,8 +782,7 @@ async def handle_order_updates(
# if tid not in ledger_trans
}
for tid, trade in trades.items():
# assert tid not in ledger_trans
assert tid not in ledger
assert tid not in ledger_trans
txid = trade['ordertxid']
reqid = trade.get('userref')
@ -744,22 +825,12 @@ async def handle_order_updates(
)
await ems_stream.send(status_msg)
new_trans = await norm_trade_records(
trades,
client,
api_name_set='wsname',
new_trans = await norm_trade_records(trades)
ppmsgs = trades2pps(
table,
acctid,
new_trans,
)
ppmsgs: list[BrokerdPosition] = trades2pps(
acnt=acnt,
ledger=ledger,
acctid=acctid,
new_trans=new_trans,
)
# ppmsgs = trades2pps(
# acnt,
# acctid,
# new_trans,
# )
for pp_msg in ppmsgs:
await ems_stream.send(pp_msg)
@ -804,9 +875,8 @@ async def handle_order_updates(
# 'vol_exec': exec_vlm} # 0.0000
match update_msg:
# EMS-unknown pre-exising-submitted LIVE
# order that needs to be delivered and
# loaded on the client-side.
# EMS-unknown LIVE order that needs to be
# delivered and loaded on the client-side.
case {
'userref': reqid,
'descr': {
@ -825,7 +895,7 @@ async def handle_order_updates(
ids.inverse.get(reqid) is None
):
# parse out existing live order
fqme = pair.replace('/', '').lower() + '.spot'
fqme = pair.replace('/', '').lower()
price = float(price)
size = float(vol)
@ -859,7 +929,7 @@ async def handle_order_updates(
),
src='kraken',
)
apiflows.add_msg(reqid, status_msg.to_dict())
apiflows[reqid].maps.append(status_msg.to_dict())
await ems_stream.send(status_msg)
continue
@ -995,7 +1065,7 @@ async def handle_order_updates(
),
)
apiflows.add_msg(reqid, update_msg)
apiflows[reqid].maps.append(update_msg)
await ems_stream.send(resp)
# fill msg.
@ -1074,8 +1144,9 @@ async def handle_order_updates(
)
continue
# update the msg history
apiflows.add_msg(reqid, event)
# update the msg chain
chain = apiflows[reqid]
chain.maps.append(event)
if status == 'error':
# any of ``{'add', 'edit', 'cancel'}``
@ -1085,16 +1156,11 @@ async def handle_order_updates(
f'Failed to {action} order {reqid}:\n'
f'{errmsg}'
)
symbol: str = 'N/A'
if chain := apiflows.get(reqid):
symbol: str = chain.get('symbol', 'N/A')
await ems_stream.send(BrokerdError(
oid=oid,
# XXX: use old reqid in case it changed?
reqid=reqid,
symbol=symbol,
symbol=chain.get('symbol', 'N/A'),
reason=f'Failed {action}:\n{errmsg}',
broker_details=event
@ -1119,3 +1185,36 @@ async def handle_order_updates(
})
case _:
log.warning(f'Unhandled trades update msg: {msg}')
async def norm_trade_records(
ledger: dict[str, Any],
) -> dict[str, Transaction]:
records: dict[str, Transaction] = {}
for tid, record in ledger.items():
size = float(record.get('vol')) * {
'buy': 1,
'sell': -1,
}[record['type']]
# we normalize to kraken's `altname` always..
bs_mktid = Client.normalize_symbol(record['pair'])
fqme = f'{bs_mktid}.kraken'
mkt: MktPair = (await get_mkt_info(fqme))[0]
records[tid] = Transaction(
fqme=fqme,
sym=mkt,
tid=tid,
size=size,
price=float(record['price']),
cost=float(record['fee']),
dt=pendulum.from_timestamp(float(record['time'])),
bs_mktid=bs_mktid,
)
return records

View File

@ -24,38 +24,44 @@ from contextlib import (
)
from datetime import datetime
from typing import (
Any,
AsyncGenerator,
Callable,
Optional,
)
import time
from fuzzywuzzy import process as fuzzy
import numpy as np
import pendulum
from trio_typing import TaskStatus
import tractor
import trio
from piker.accounting._mktinfo import (
Asset,
MktPair,
)
from piker.brokers import (
from piker._cacheables import (
open_cached_client,
async_lifo_cache,
)
from piker.brokers._util import (
BrokerError,
DataThrottle,
DataUnavailable,
)
from piker.types import Struct
from piker.data.types import Struct
from piker.data.validate import FeedInit
from piker.data._web_bs import open_autorecon_ws, NoBsWs
from . import log
from .api import (
log,
Client,
Pair,
)
from .symbols import get_mkt_info
class OHLC(Struct, frozen=True):
class OHLC(Struct):
'''
Description of the flattened OHLC quote format.
@ -66,8 +72,6 @@ class OHLC(Struct, frozen=True):
chan_id: int # internal kraken id
chan_name: str # eg. ohlc-1 (name-interval)
pair: str # fx pair
# unpacked from array
time: float # Begin time of interval, in seconds since epoch
etime: float # End time of interval, in seconds since epoch
open: float # Open price of interval
@ -77,6 +81,8 @@ class OHLC(Struct, frozen=True):
vwap: float # Volume weighted average price within interval
volume: float # Accumulated volume **within interval**
count: int # Number of trades within interval
# (sampled) generated tick data
ticks: list[Any] = []
async def stream_messages(
@ -140,15 +146,14 @@ async def process_data_feed_msgs(
pair
]:
if 'ohlc' in chan_name:
array: list = payload_array[0]
ohlc = OHLC(
chan_id,
chan_name,
pair,
*map(float, array[:-1]),
count=array[-1],
*payload_array[0]
)
yield 'ohlc', ohlc.copy()
ohlc.typecast()
yield 'ohlc', ohlc
elif 'spread' in chan_name:
@ -188,18 +193,24 @@ async def process_data_feed_msgs(
# yield msg
def normalize(ohlc: OHLC) -> dict:
'''
Norm an `OHLC` msg to piker's minimal (live-)quote schema.
def normalize(
ohlc: OHLC,
'''
) -> dict:
quote = ohlc.to_dict()
quote['broker_ts'] = quote['time']
quote['brokerd_ts'] = time.time()
quote['symbol'] = quote['pair'] = quote['pair'].replace('/', '')
quote['last'] = quote['close']
quote['bar_wap'] = ohlc.vwap
return quote
# seriously eh? what's with this non-symmetry everywhere
# in subscription systems...
# XXX: piker style is always lowercases symbols.
topic = quote['pair'].replace('/', '').lower()
# print(quote)
return topic, quote
@acm
@ -208,7 +219,7 @@ async def open_history_client(
) -> AsyncGenerator[Callable, None]:
symbol: str = mkt.bs_mktid
symbol: str = mkt.bs_fqme
# TODO implement history getter for the new storage layer.
async with open_cached_client('kraken') as client:
@ -258,6 +269,44 @@ async def open_history_client(
yield get_ohlc, {'erlangs': 1, 'rate': 1}
@async_lifo_cache()
async def get_mkt_info(
fqme: str,
) -> tuple[MktPair, Pair]:
'''
Query for and return a `MktPair` and backend-native `Pair` (or
wtv else) info.
If more then one fqme is provided return a ``dict`` of native
key-strs to `MktPair`s.
'''
async with open_cached_client('kraken') as client:
# uppercase since kraken bs_mktid is always upper
bs_fqme, _, broker = fqme.partition('.')
pair_str: str = bs_fqme.upper()
bs_mktid: str = Client.normalize_symbol(pair_str)
pair: Pair = await client.pair_info(pair_str)
assets = client.assets
dst_asset: Asset = assets[pair.base]
src_asset: Asset = assets[pair.quote]
mkt = MktPair(
dst=dst_asset,
src=src_asset,
price_tick=pair.price_tick,
size_tick=pair.size_tick,
bs_mktid=bs_mktid,
broker='kraken',
)
return mkt, pair
async def stream_quotes(
send_chan: trio.abc.SendChannel,
@ -359,57 +408,76 @@ async def stream_quotes(
):
# pull a first quote and deliver
typ, ohlc_last = await anext(msg_gen)
quote = normalize(ohlc_last)
topic, quote = normalize(ohlc_last)
task_status.started((init_msgs, quote))
feed_is_live.set()
# keep start of last interval for volume tracking
last_interval_start: float = ohlc_last.etime
last_interval_start = ohlc_last.etime
# start streaming
topic: str = mkt.bs_fqme
async for typ, quote in msg_gen:
match typ:
async for typ, ohlc in msg_gen:
if typ == 'ohlc':
# TODO: can get rid of all this by using
# ``trades`` subscription..? Not sure why this
# wasn't used originally? (music queues) zoltannn..
# https://docs.kraken.com/websockets/#message-trade
case 'ohlc':
# generate tick values to match time & sales pane:
# https://trade.kraken.com/charts/KRAKEN:BTC-USD?period=1m
volume = quote.volume
# ``trades`` subscription...
# new OHLC sample interval
if quote.etime > last_interval_start:
last_interval_start: float = quote.etime
tick_volume: float = volume
# generate tick values to match time & sales pane:
# https://trade.kraken.com/charts/KRAKEN:BTC-USD?period=1m
volume = ohlc.volume
else:
# this is the tick volume *within the interval*
tick_volume: float = volume - ohlc_last.volume
# new OHLC sample interval
if ohlc.etime > last_interval_start:
last_interval_start = ohlc.etime
tick_volume = volume
ohlc_last = quote
last = quote.close
else:
# this is the tick volume *within the interval*
tick_volume = volume - ohlc_last.volume
quote = normalize(quote)
ticks = quote.setdefault(
'ticks',
[],
)
if tick_volume:
ticks.append({
'type': 'trade',
'price': last,
'size': tick_volume,
})
ohlc_last = ohlc
last = ohlc.close
case 'l1':
# passthrough quote msg
pass
if tick_volume:
ohlc.ticks.append({
'type': 'trade',
'price': last,
'size': tick_volume,
})
case _:
log.warning(f'Unknown WSS message: {typ}, {quote}')
topic, quote = normalize(ohlc)
elif typ == 'l1':
quote = ohlc
topic = quote['symbol'].lower()
await send_chan.send({topic: quote})
@tractor.context
async def open_symbol_search(
ctx: tractor.Context,
) -> Client:
async with open_cached_client('kraken') as client:
# load all symbols locally for fast search
cache = await client.cache_symbols()
await ctx.started(cache)
async with ctx.open_stream() as stream:
async for pattern in stream:
matches = fuzzy.extractBests(
pattern,
cache,
score_cutoff=50,
)
# repack in dict form
await stream.send({
pair[0].altname: pair[0]
for pair in matches
})

View File

@ -1,269 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Trade transaction accounting and normalization.
'''
import math
from pprint import pformat
from typing import (
Any,
)
import pendulum
from piker.accounting import (
Transaction,
Position,
Account,
get_likely_pair,
TransactionLedger,
# MktPair,
)
from piker.types import Struct
from piker.data import (
SymbologyCache,
)
from .api import (
log,
Client,
Pair,
)
# from .feed import get_mkt_info
def norm_trade(
tid: str,
record: dict[str, Any],
# this is the dict that was returned from
# `Client.get_mkt_pairs()` and when running offline ledger
# processing from `.accounting`, this will be the table loaded
# into `SymbologyCache.pairs`.
pairs: dict[str, Struct],
symcache: SymbologyCache | None = None,
) -> Transaction:
size: float = float(record.get('vol')) * {
'buy': 1,
'sell': -1,
}[record['type']]
# NOTE: this value may be either the websocket OR the rest schema
# so we need to detect the key format and then choose the
# correct symbol lookup table to evetually get a ``Pair``..
# See internals of `Client.asset_pairs()` for deats!
src_pair_key: str = record['pair']
# XXX: kraken's data engineering is soo bad they require THREE
# different pair schemas (more or less seemingly tied to
# transport-APIs)..LITERALLY they return different market id
# pairs in the ledger endpoints vs. the websocket event subs..
# lookup pair using appropriately provided tabled depending
# on API-key-schema..
pair: Pair = pairs[src_pair_key]
fqme: str = pair.bs_fqme.lower() + '.kraken'
return Transaction(
fqme=fqme,
tid=tid,
size=size,
price=float(record['price']),
cost=float(record['fee']),
dt=pendulum.from_timestamp(float(record['time'])),
bs_mktid=pair.bs_mktid,
)
async def norm_trade_records(
ledger: dict[str, Any],
client: Client,
api_name_set: str = 'xname',
) -> dict[str, Transaction]:
'''
Loop through an input ``dict`` of trade records
and convert them to ``Transactions``.
'''
records: dict[str, Transaction] = {}
for tid, record in ledger.items():
# manual_fqme: str = f'{bs_mktid.lower()}.kraken'
# mkt: MktPair = (await get_mkt_info(manual_fqme))[0]
# fqme: str = mkt.fqme
# assert fqme == manual_fqme
pairs: dict[str, Pair] = {
'xname': client._AssetPairs,
'wsname': client._wsnames,
'altname': client._altnames,
}[api_name_set]
records[tid] = norm_trade(
tid,
record,
pairs=pairs,
)
return records
def has_pp(
acnt: Account,
src_fiat: str,
dst: str,
size: float,
) -> Position | None:
src2dst: dict[str, str] = {}
for bs_mktid in acnt.pps:
likely_pair = get_likely_pair(
src_fiat,
dst,
bs_mktid,
)
if likely_pair:
src2dst[src_fiat] = dst
for src, dst in src2dst.items():
pair: str = f'{dst}{src_fiat}'
pos: Position = acnt.pps.get(pair)
if (
pos
and math.isclose(pos.size, size)
):
return pos
elif (
size == 0
and pos.size
):
log.warning(
f'`kraken` account says you have a ZERO '
f'balance for {bs_mktid}:{pair}\n'
f'but piker seems to think `{pos.size}`\n'
'This is likely a discrepancy in piker '
'accounting if the above number is'
"large,' though it's likely to due lack"
"f tracking xfers fees.."
)
return pos
return None # indicate no entry found
# TODO: factor most of this "account updating from txns" into the
# the `Account` impl so has to provide for hiding the mostly
# cross-provider updates from txn sets
async def verify_balances(
acnt: Account,
src_fiat: str,
balances: dict[str, float],
client: Client,
ledger: TransactionLedger,
ledger_trans: dict[str, Transaction], # from toml
api_trans: dict[str, Transaction], # from API
simulate_pp_update: bool = False,
) -> None:
for dst, size in balances.items():
# we don't care about tracking positions
# in the user's source fiat currency.
if (
dst == src_fiat
or not any(
dst in bs_mktid for bs_mktid in acnt.pps
)
):
log.warning(
f'Skipping balance `{dst}`:{size} for position calcs!'
)
continue
# we have a balance for which there is no pos entry
# - we have to likely update from the ledger?
if not has_pp(acnt, src_fiat, dst, size):
updated = acnt.update_from_ledger(
ledger_trans,
symcache=ledger.symcache,
)
log.info(f'Updated pps from ledger:\n{pformat(updated)}')
# FIRST try reloading from API records
if (
not has_pp(acnt, src_fiat, dst, size)
and not simulate_pp_update
):
acnt.update_from_ledger(
api_trans,
symcache=ledger.symcache,
)
# get transfers to make sense of abs
# balances.
# NOTE: we do this after ledger and API
# loading since we might not have an
# entry in the
# ``account.kraken.spot.toml`` for the
# necessary pair yet and thus this
# likely pair grabber will likely fail.
if not has_pp(acnt, src_fiat, dst, size):
for bs_mktid in acnt.pps:
likely_pair: str | None = get_likely_pair(
src_fiat,
dst,
bs_mktid,
)
if likely_pair:
break
else:
raise ValueError(
'Could not find a position pair in '
'ledger for likely widthdrawal '
f'candidate: {dst}'
)
# this was likely pos that had a withdrawal
# from the dst asset out of the account.
if likely_pair:
xfer_trans = await client.get_xfers(
dst,
# TODO: not all src assets are
# 3 chars long...
src_asset=likely_pair[3:],
)
if xfer_trans:
updated = acnt.update_from_ledger(
xfer_trans,
cost_scalar=1,
symcache=ledger.symcache,
)
log.info(
f'Updated {dst} from transfers:\n'
f'{pformat(updated)}'
)
if has_pp(acnt, src_fiat, dst, size):
raise ValueError(
'Could not reproduce balance:\n'
f'dst: {dst}, {size}\n'
)

View File

@ -1,206 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Symbology defs and search.
'''
from decimal import Decimal
import tractor
from rapidfuzz import process as fuzzy
from piker._cacheables import (
async_lifo_cache,
)
from piker.accounting._mktinfo import (
digits_to_dec,
)
from piker.brokers import (
open_cached_client,
SymbolNotFound,
)
from piker.types import Struct
from piker.accounting._mktinfo import (
Asset,
MktPair,
unpack_fqme,
)
# https://www.kraken.com/features/api#get-tradable-pairs
class Pair(Struct):
xname: str # idiotic bs_mktid equiv i guess?
altname: str # alternate pair name
wsname: str # WebSocket pair name (if available)
aclass_base: str # asset class of base component
base: str # asset id of base component
aclass_quote: str # asset class of quote component
quote: str # asset id of quote component
lot: str # volume lot size
cost_decimals: int
costmin: float
pair_decimals: int # scaling decimal places for pair
lot_decimals: int # scaling decimal places for volume
# amount to multiply lot volume by to get currency volume
lot_multiplier: float
# array of leverage amounts available when buying
leverage_buy: list[int]
# array of leverage amounts available when selling
leverage_sell: list[int]
# fee schedule array in [volume, percent fee] tuples
fees: list[tuple[int, float]]
# maker fee schedule array in [volume, percent fee] tuples (if on
# maker/taker)
fees_maker: list[tuple[int, float]]
fee_volume_currency: str # volume discount currency
margin_call: str # margin call level
margin_stop: str # stop-out/liquidation margin level
ordermin: float # minimum order volume for pair
tick_size: float # min price step size
status: str
short_position_limit: float = 0
long_position_limit: float = float('inf')
# TODO: should we make this a literal NamespacePath ref?
ns_path: str = 'piker.brokers.kraken:Pair'
@property
def bs_mktid(self) -> str:
'''
Kraken seems to index it's market symbol sets in
transaction ledgers using the key returned from rest
queries.. so use that since apparently they can't
make up their minds on a better key set XD
'''
return self.xname
@property
def price_tick(self) -> Decimal:
return digits_to_dec(self.pair_decimals)
@property
def size_tick(self) -> Decimal:
return digits_to_dec(self.lot_decimals)
@property
def bs_dst_asset(self) -> str:
dst, _ = self.wsname.split('/')
return dst
@property
def bs_src_asset(self) -> str:
_, src = self.wsname.split('/')
return src
@property
def bs_fqme(self) -> str:
'''
Basically the `.altname` but with special '.' handling and
`.SPOT` suffix appending (for future multi-venue support).
'''
dst, src = self.wsname.split('/')
# XXX: omg for stupid shite like ETH2.S/ETH..
dst = dst.replace('.', '-')
return f'{dst}{src}.SPOT'
@tractor.context
async def open_symbol_search(ctx: tractor.Context) -> None:
async with open_cached_client('kraken') as client:
# load all symbols locally for fast search
cache = await client.get_mkt_pairs()
await ctx.started(cache)
async with ctx.open_stream() as stream:
async for pattern in stream:
await stream.send(
await client.search_symbols(pattern)
)
@async_lifo_cache()
async def get_mkt_info(
fqme: str,
) -> tuple[MktPair, Pair]:
'''
Query for and return a `MktPair` and backend-native `Pair` (or
wtv else) info.
If more then one fqme is provided return a ``dict`` of native
key-strs to `MktPair`s.
'''
venue: str = 'spot'
expiry: str = ''
if '.kraken' not in fqme:
fqme += '.kraken'
broker, pair, venue, expiry = unpack_fqme(fqme)
venue: str = venue or 'spot'
if venue.lower() != 'spot':
raise SymbolNotFound(
'kraken only supports spot markets right now!\n'
f'{fqme}\n'
)
async with open_cached_client('kraken') as client:
# uppercase since kraken bs_mktid is always upper
# bs_fqme, _, broker = fqme.partition('.')
# pair_str: str = bs_fqme.upper()
pair_str: str = f'{pair}.{venue}'
pair: Pair | None = client._pairs.get(pair_str.upper())
if not pair:
bs_fqme: str = client.to_bs_fqme(pair_str)
pair: Pair = client._pairs[bs_fqme]
if not (assets := client._assets):
assets: dict[str, Asset] = await client.get_assets()
dst_asset: Asset = assets[pair.bs_dst_asset]
src_asset: Asset = assets[pair.bs_src_asset]
mkt = MktPair(
dst=dst_asset,
src=src_asset,
price_tick=pair.price_tick,
size_tick=pair.size_tick,
bs_mktid=pair.bs_mktid,
expiry=expiry,
venue=venue or 'spot',
# TODO: futes
# _atype=_atype,
broker='kraken',
)
return mkt, pair

View File

@ -16,9 +16,10 @@
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Kucoin cex API backend.
Kucoin broker backend
'''
from contextlib import (
asynccontextmanager as acm,
aclosing,
@ -40,8 +41,9 @@ from typing import (
import wsproto
from uuid import uuid4
from fuzzywuzzy import process as fuzzy
from trio_typing import TaskStatus
import httpx
import asks
from bidict import bidict
import numpy as np
import pendulum
@ -53,20 +55,14 @@ from piker.accounting._mktinfo import (
digits_to_dec,
MktPair,
)
from piker.data.validate import FeedInit
from piker import config
from piker.brokers import (
open_cached_client,
)
from piker._cacheables import (
open_cached_client,
async_lifo_cache,
)
from piker.log import get_logger
from piker.data.validate import FeedInit
from piker.types import Struct # NOTE, this is already a `tractor.msg.Struct`
from piker.data import (
def_iohlcv_fields,
match_from_pairs,
)
from piker.data.types import Struct
from piker.data._web_bs import (
open_autorecon_ws,
NoBsWs,
@ -75,7 +71,16 @@ from ._util import DataUnavailable
log = get_logger(__name__)
_no_symcache: bool = True
_ohlc_dtype = [
('index', int),
('time', int),
('open', float),
('high', float),
('low', float),
('close', float),
('volume', float),
('bar_wap', float), # will be zeroed by sampler if not filled
]
class KucoinMktPair(Struct, frozen=True):
@ -89,27 +94,18 @@ class KucoinMktPair(Struct, frozen=True):
@property
def price_tick(self) -> Decimal:
return Decimal(str(self.quoteIncrement))
return Decimal(str(self.baseIncrement))
baseMaxSize: float
baseMinSize: float
@property
def size_tick(self) -> Decimal:
return Decimal(str(self.quoteMinSize))
callauctionFirstStageStartTime: None|float
callauctionIsEnabled: bool
callauctionPriceCeiling: float|None
callauctionPriceFloor: float|None
callauctionSecondStageStartTime: float|None
callauctionThirdStageStartTime: float|None
return Decimal(str(self.baseMinSize))
enableTrading: bool
feeCategory: int
feeCurrency: str
isMarginEnabled: bool
makerFeeCoefficient: float
market: str
minFunds: float
name: str
@ -119,10 +115,7 @@ class KucoinMktPair(Struct, frozen=True):
quoteIncrement: float
quoteMaxSize: float
quoteMinSize: float
st: bool
symbol: str # our bs_mktid, kucoin's internal id
takerFeeCoefficient: float
tradingStartTime: float|None
class AccountTrade(Struct, frozen=True):
@ -222,13 +215,8 @@ def get_config() -> BrokerConfig | None:
class Client:
def __init__(
self,
httpx_client: httpx.AsyncClient,
) -> None:
self._http: httpx.AsyncClient = httpx_client
self._config: BrokerConfig|None = get_config()
def __init__(self) -> None:
self._config: BrokerConfig | None = get_config()
self._pairs: dict[str, KucoinMktPair] = {}
self._fqmes2mktids: bidict[str, str] = bidict()
self._bars: list[list[float]] = []
@ -242,24 +230,18 @@ class Client:
) -> dict[str, str | bytes]:
'''
Generate authenticated request headers:
Generate authenticated request headers
https://docs.kucoin.com/#authentication
https://www.kucoin.com/docs/basic-info/connection-method/authentication/creating-a-request
https://www.kucoin.com/docs/basic-info/connection-method/authentication/signing-a-message
'''
if not self._config:
raise ValueError(
'No config found when trying to send authenticated request'
)
'No config found when trying to send authenticated request')
str_to_sign = (
str(int(time.time() * 1000))
+
action
+
f'/api/{api}/{endpoint.lstrip("/")}'
+ action + f'/api/{api}/{endpoint.lstrip("/")}'
)
signature = base64.b64encode(
@ -270,7 +252,6 @@ class Client:
).digest()
)
# TODO: can we cache this between calls?
passphrase = base64.b64encode(
hmac.new(
self._config.key_secret.encode('utf-8'),
@ -292,10 +273,8 @@ class Client:
self,
action: Literal['POST', 'GET'],
endpoint: str,
api: str = 'v2',
headers: dict = {},
) -> Any:
'''
Generic request wrapper for Kucoin API
@ -308,19 +287,14 @@ class Client:
api,
)
req_meth: Callable = getattr(
self._http,
action.lower(),
)
res = await req_meth(
url=f'/{api}/{endpoint}',
headers=headers,
)
json: dict = res.json()
if (data := json.get('data')) is not None:
return data
api_url = f'https://api.kucoin.com/api/{api}/{endpoint}'
res = await asks.request(action, api_url, headers=headers)
json = res.json()
if 'data' in json:
return json['data']
else:
api_url: str = self._http.base_url
log.error(
f'Error making request to {api_url} ->\n'
f'{pformat(res)}'
@ -340,7 +314,7 @@ class Client:
'''
token_type = 'private' if private else 'public'
try:
data: dict[str, Any]|None = await self._request(
data: dict[str, Any] | None = await self._request(
'POST',
endpoint=f'bullet-{token_type}',
api='v1'
@ -378,8 +352,8 @@ class Client:
currencies: dict[str, Currency] = {}
entries: list[dict] = await self._request(
'GET',
endpoint='currencies',
api='v1',
endpoint='currencies',
)
for entry in entries:
curr = Currency(**entry).copy()
@ -395,29 +369,20 @@ class Client:
dict[str, KucoinMktPair],
bidict[str, KucoinMktPair],
]:
entries = await self._request(
'GET',
endpoint='symbols',
)
entries = await self._request('GET', 'symbols')
log.info(f' {len(entries)} Kucoin market pairs fetched')
pairs: dict[str, KucoinMktPair] = {}
fqmes2mktids: bidict[str, str] = bidict()
for item in entries:
try:
pair = pairs[item['name']] = KucoinMktPair(**item)
except TypeError as te:
raise TypeError(
'`KucoinMktPair` and reponse fields do not match ??\n'
f'{KucoinMktPair.fields_diff(item)}\n'
) from te
pair = pairs[item['name']] = KucoinMktPair(**item)
fqmes2mktids[
item['name'].lower().replace('-', '')
] = pair.name
return pairs, fqmes2mktids
async def get_mkt_pairs(
async def cache_pairs(
self,
update: bool = False,
@ -445,27 +410,16 @@ class Client:
) -> dict[str, KucoinMktPair]:
'''
Use fuzzy search engine to match against pairs, deliver
matching ones.
Use fuzzy search to match against all market names.
'''
if not len(self._pairs):
await self.get_mkt_pairs()
assert self._pairs, '`Client.get_mkt_pairs()` was never called!?'
data = await self.cache_pairs()
matches: dict[str, KucoinMktPair] = match_from_pairs(
pairs=self._pairs,
# query=pattern.upper(),
query=pattern.upper(),
score_cutoff=35,
limit=limit,
matches = fuzzy.extractBests(
pattern, data, score_cutoff=35, limit=limit
)
# repack in dict form
return {
pair.name: pair
for pair in matches.values()
}
return {item[0].name: item[0] for item in matches}
async def last_trades(self, sym: str) -> list[AccountTrade]:
trades = await self._request(
@ -511,27 +465,18 @@ class Client:
('low', float),
('close', float),
('volume', float),
('bar_wap', float), # will be zeroed by sampler if not filled
]
'''
# Generate generic end and start time if values not passed
# Currently gives us 12hrs of data
if (
end_dt is None
and start_dt is None
):
if end_dt is None:
end_dt = pendulum.now('UTC').add(minutes=1)
start_dt = end_dt.start_of('minute').subtract(minutes=limit)
if (
start_dt
and end_dt is None
):
# just set end to limit's worth in future
end_dt = start_dt.start_of('minute').add(minutes=limit)
else:
start_dt = end_dt.start_of('minute').subtract(minutes=limit)
if start_dt is None:
start_dt = end_dt.start_of(
'minute').subtract(minutes=limit)
start_dt = int(start_dt.timestamp())
end_dt = int(end_dt.timestamp())
@ -585,12 +530,12 @@ class Client:
# volume
float(bar[5]),
# bar_wap
# 0.0,
0.0,
)
)
array = np.array(
new_bars, dtype=def_iohlcv_fields) if as_np else bars
new_bars, dtype=_ohlc_dtype) if as_np else bars
return array
@ -605,21 +550,13 @@ def fqme_to_kucoin_sym(
@acm
async def get_client() -> AsyncGenerator[Client, None]:
'''
Load an API `Client` preconfigured from user settings
client = Client()
'''
async with (
httpx.AsyncClient(
base_url='https://api.kucoin.com/api',
) as trio_client,
):
client = Client(httpx_client=trio_client)
async with trio.open_nursery() as tn:
tn.start_soon(client.get_mkt_pairs)
await client.get_currencies()
async with trio.open_nursery() as n:
n.start_soon(client.cache_pairs)
await client.get_currencies()
yield client
yield client
@tractor.context
@ -628,7 +565,7 @@ async def open_symbol_search(
) -> None:
async with open_cached_client('kucoin') as client:
# load all symbols locally for fast search
await client.get_mkt_pairs()
await client.cache_pairs()
await ctx.started()
async with ctx.open_stream() as stream:
@ -655,7 +592,7 @@ async def open_ping_task(
await trio.sleep((ping_interval - 1000) / 1000)
await ws.send_msg({'id': connect_id, 'type': 'ping'})
log.warning('Starting ping task for kucoin ws connection')
log.info('Starting ping task for kucoin ws connection')
n.start_soon(ping_server)
yield
@ -667,21 +604,16 @@ async def open_ping_task(
async def get_mkt_info(
fqme: str,
) -> tuple[
MktPair,
KucoinMktPair,
]:
) -> tuple[MktPair, KucoinMktPair]:
'''
Query for and return both a `piker.accounting.MktPair` and
`KucoinMktPair` from provided `fqme: str`
(fully-qualified-market-endpoint).
Query for and return a `MktPair` and `KucoinMktPair`.
'''
async with open_cached_client('kucoin') as client:
# split off any fqme broker part
bs_fqme, _, broker = fqme.partition('.')
pairs: dict[str, KucoinMktPair] = await client.get_mkt_pairs()
pairs: dict[str, KucoinMktPair] = await client.cache_pairs()
try:
# likely search result key which is already in native mkt symbol form
@ -749,8 +681,6 @@ async def stream_quotes(
log.info(f'Starting up quote stream(s) for {symbols}')
for sym_str in symbols:
mkt: MktPair
pair: KucoinMktPair
mkt, pair = await get_mkt_info(sym_str)
init_msgs.append(
FeedInit(mkt_info=mkt)
@ -758,11 +688,7 @@ async def stream_quotes(
ws: NoBsWs
token, ping_interval = await client._get_ws_token()
log.info('API reported ping_interval: {ping_interval}\n')
connect_id: str = str(uuid4())
typ: str
quote: dict
connect_id = str(uuid4())
async with (
open_autorecon_ws(
(
@ -776,37 +702,20 @@ async def stream_quotes(
),
) as ws,
open_ping_task(ws, ping_interval, connect_id),
aclosing(
iter_normed_quotes(
ws, sym_str
)
) as iter_quotes,
aclosing(stream_messages(ws, sym_str)) as msg_gen,
):
typ, quote = await anext(iter_quotes)
typ, quote = await anext(msg_gen)
# take care to not unblock here until we get a real
# trade quote?
# ^TODO, remove this right?
# -[ ] what often blocks chart boot/new-feed switching
# since we'ere waiting for a live quote instead of just
# loading history afap..
# |_ XXX, not sure if we require a bit of rework to core
# feed init logic or if backends justg gotta be
# changed up.. feel like there was some causality
# dilema prolly only seen with IB too..
# while typ != 'trade':
# typ, quote = await anext(iter_quotes)
while typ != 'trade':
# take care to not unblock here until we get a real
# trade quote
typ, quote = await anext(msg_gen)
task_status.started((init_msgs, quote))
feed_is_live.set()
# XXX NOTE, DO NOT include the `.<backend>` suffix!
# OW the sampling loop will not broadcast correctly..
# since `bus._subscribers.setdefault(bs_fqme, set())`
# is used inside `.data.open_feed_bus()` !!!
topic: str = mkt.bs_fqme
async for typ, quote in iter_quotes:
await send_chan.send({topic: quote})
async for typ, msg in msg_gen:
await send_chan.send({sym_str: msg})
@acm
@ -861,7 +770,7 @@ async def subscribe(
)
async def iter_normed_quotes(
async def stream_messages(
ws: NoBsWs,
sym: str,
@ -892,9 +801,6 @@ async def iter_normed_quotes(
yield 'trade', {
'symbol': sym,
# TODO, is 'last' even used elsewhere/a-good
# semantic? can't we just read the ticks with our
# .data.ticktools.frame_ticks()`/
'last': trade_data.price,
'brokerd_ts': last_trade_ts,
'ticks': [
@ -987,7 +893,7 @@ async def open_history_client(
if end_dt is None:
inow = round(time.time())
log.debug(
print(
f'difference in time between load and processing'
f'{inow - times[-1]}'
)

View File

@ -40,8 +40,7 @@ import wrapt
import asks
from ..calc import humanize, percent_change
from . import open_cached_client
from piker._cacheables import async_lifo_cache
from .._cacheables import open_cached_client, async_lifo_cache
from .. import config
from ._util import resproc, BrokerError, SymbolNotFound
from ..log import (

View File

@ -1,49 +0,0 @@
piker.clearing
______________
trade execution-n-control subsys for both live and paper trading as
well as algo-trading manual override/interaction across any backend
broker and data provider.
avail UIs
*********
order ctl
---------
the `piker.clearing` subsys is exposed mainly though
the `piker chart` GUI as a "chart trader" style UX and
is automatically enabled whenever a chart is opened.
.. ^TODO, more prose here!
the "manual" order control features are exposed via the
`piker.ui.order_mode` API and can pretty much always be
used (at least) in simulated-trading mode, aka "paper"-mode, and
the micro-manual is as follows:
``order_mode`` (
edge triggered activation by any of the following keys,
``mouse-click`` on y-level to submit at that price
):
- ``f``/ ``ctl-f`` to stage buy
- ``d``/ ``ctl-d`` to stage sell
- ``a`` to stage alert
``search_mode`` (
``ctl-l`` or ``ctl-space`` to open,
``ctl-c`` or ``ctl-space`` to close
) :
- begin typing to have symbol search automatically lookup
symbols from all loaded backend (broker) providers
- arrow keys and mouse click to navigate selection
- vi-like ``ctl-[hjkl]`` for navigation
position (pp) mgmt
------------------
you can also configure your position allocation limits from the
sidepane.
.. ^TODO, explain and provide tut once more refined!

View File

@ -23,32 +23,11 @@ from ._client import (
open_ems,
OrderClient,
)
from ._ems import (
open_brokerd_dialog,
)
from ._util import OrderDialogs
from ._messages import(
Order,
Status,
Cancel,
# TODO: deprecate these and replace end-2-end with
# client-side-dialog set above B)
# https://github.com/pikers/piker/issues/514
BrokerdPosition
)
__all__ = [
'FeeModel',
'open_ems',
'OrderClient',
'open_brokerd_dialog',
'OrderDialogs',
'Order',
'Status',
'Cancel',
'BrokerdPosition'
]

View File

@ -30,13 +30,14 @@ from tractor.trionics import broadcast_receiver
from ._util import (
log, # sub-sys logger
)
from piker.types import Struct
from ..data.types import Struct
from ..service import maybe_open_emsd
from ._messages import (
Order,
Cancel,
BrokerdPosition,
)
from ..brokers import get_brokermod
if TYPE_CHECKING:
from ._messages import (
@ -131,8 +132,6 @@ class OrderClient(Struct):
f'Maybe there is a stale entry or line?\n'
f'You should report this as a bug!'
)
return
fqme = str(cmd.symbol)
return Cancel(
oid=uuid,
@ -216,8 +215,8 @@ async def open_ems(
loglevel: str = 'error',
) -> tuple[
OrderClient, # client
tractor.MsgStream, # order ctl stream
OrderClient,
tractor.MsgStream,
dict[
# brokername, acctid
tuple[str, str],
@ -245,6 +244,13 @@ async def open_ems(
loglevel=loglevel,
) as portal:
mod = get_brokermod(broker)
if (
not getattr(mod, 'trades_dialogue', None)
or mode == 'paper'
):
mode = 'paper'
from ._ems import _emsd_main
async with (
# connect to emsd

View File

@ -24,10 +24,9 @@ from collections import (
# ChainMap,
)
from contextlib import asynccontextmanager as acm
from decimal import Decimal
from math import isnan
from pprint import pformat
from time import time_ns
import time
from types import ModuleType
from typing import (
AsyncIterator,
@ -35,7 +34,6 @@ from typing import (
Callable,
Hashable,
Optional,
TYPE_CHECKING,
)
from bidict import bidict
@ -47,17 +45,22 @@ from ._util import (
log, # sub-sys logger
get_console_log,
)
from ..data._normalize import iterticks
from ..accounting._mktinfo import (
unpack_fqme,
dec_digits,
float_digits,
)
from ..data.feed import (
Feed,
Flume,
maybe_open_feed,
)
from piker.types import Struct
from ..ui._notify import notify_from_ems_status_msg
from ..data import iterticks
from ..data.types import Struct
from . import _paper_engine as paper
from ._messages import (
Order,
Status,
Error,
BrokerdCancel,
BrokerdOrder,
# BrokerdOrderAck,
@ -67,12 +70,6 @@ from ._messages import (
BrokerdPosition,
)
if TYPE_CHECKING:
from ..data import (
Feed,
Flume,
)
# TODO: numba all of this
def mk_check(
@ -132,16 +129,11 @@ class DarkBook(Struct):
triggers: dict[
str, # symbol
dict[
str, # uuid for triggerable execution
str, # uuid
tuple[
Callable[[float], bool], # predicate
tuple[str, ...], # tickfilter
dict | Order, # cmd / msg type
# live submission constraint parameters
float, # percent_away max price diff
float, # abs_diff_away max price diff
int, # min_tick_digits to round the clearable price
str, # name
dict, # cmd / msg type
]
]
] = {}
@ -184,8 +176,7 @@ async def clear_dark_triggers(
async for quotes in quote_stream:
# start = time.time()
for sym, quote in quotes.items():
# TODO: make this a msg-compat struct
execs: tuple = book.triggers.get(sym, {})
execs = book.triggers.get(sym, {})
for tick in iterticks(
quote,
# dark order price filter(s)
@ -208,8 +199,7 @@ async def clear_dark_triggers(
# TODO: send this msg instead?
cmd,
percent_away,
abs_diff_away,
price_tick_digits,
abs_diff_away
) in (
tuple(execs.items())
):
@ -242,11 +232,8 @@ async def clear_dark_triggers(
size=size,
):
bfqme: str = symbol.replace(f'.{broker}', '')
submit_price: float = round(
price + abs_diff_away,
ndigits=price_tick_digits,
)
resp: str = 'triggered' # hidden on client-side
submit_price = price + abs_diff_away
resp = 'triggered' # hidden on client-side
log.info(
f'Dark order triggered for price {price}\n'
@ -256,7 +243,7 @@ async def clear_dark_triggers(
action=action,
oid=oid,
account=account,
time_ns=time_ns(),
time_ns=time.time_ns(),
symbol=bfqme,
price=submit_price,
size=size,
@ -269,18 +256,18 @@ async def clear_dark_triggers(
# fallthrough logic
status = Status(
oid=oid, # ems dialog id
time_ns=time_ns(),
time_ns=time.time_ns(),
resp=resp,
req=cmd,
brokerd_msg=brokerd_msg,
)
# remove exec-condition from set
log.info(f'Removing trigger for {oid}')
trigger: tuple | None = execs.pop(oid, None)
if not trigger:
log.info(f'removing pred for {oid}')
pred = execs.pop(oid, None)
if not pred:
log.warning(
f'trigger for {oid} was already removed!?'
f'pred for {oid} was already removed!?'
)
# update actives
@ -320,177 +307,15 @@ class TradesRelay(Struct):
# map of symbols to dicts of accounts to pp msgs
positions: dict[
# brokername, acctid ->
# brokername, acctid
tuple[str, str],
# fqme -> msg
dict[str, BrokerdPosition],
list[BrokerdPosition],
]
# allowed account names
accounts: tuple[str]
@acm
async def open_brokerd_dialog(
brokermod: ModuleType,
portal: tractor.Portal,
exec_mode: str,
fqme: str | None = None,
loglevel: str | None = None,
) -> tuple[
tractor.MsgStream,
# {(brokername, accountname) -> {fqme -> msg}}
dict[(str, str), dict[str, BrokerdPosition]],
list[str],
]:
'''
Open either a live trades control dialog or a dialog with a new
paper engine instance depending on live trading support for the
broker backend, configuration, or client code usage.
'''
broker: str = brokermod.name
def mk_paper_ep():
from . import _paper_engine as paper_mod
nonlocal brokermod, exec_mode
# for logging purposes
brokermod = paper_mod
# for paper mode we need to mock this trades response feed
# so we load bidir stream to a new sub-actor running
# a paper-simulator clearing engine.
# load the paper trading engine
log.info(f'{broker}: Entering `paper` trading mode')
# load the paper trading engine as a subactor of this emsd
# actor to simulate the real IPC load it'll have when also
# pulling data from feeds
if not fqme:
log.warning(
f'Paper engine activate for {broker} but no fqme provided?'
)
return paper_mod.open_paperboi(
fqme=fqme,
broker=broker,
loglevel=loglevel,
)
# take the first supported ep we detect
# on the backend mod.
trades_endpoint: Callable
for ep_name in [
'open_trade_dialog', # probably final name?
'trades_dialogue', # legacy
]:
trades_endpoint = getattr(
brokermod,
ep_name,
None,
)
if trades_endpoint:
break
else:
log.warning(
f'No live trading EP found: {brokermod.name}?'
)
exec_mode: str = 'paper'
if (
trades_endpoint is not None
or exec_mode != 'paper'
):
# open live brokerd trades endpoint
open_trades_endpoint = portal.open_context(
trades_endpoint,
)
@acm
async def maybe_open_paper_ep():
if exec_mode == 'paper':
async with mk_paper_ep() as msg:
yield msg
return
# open trades-dialog endpoint with backend broker
async with open_trades_endpoint as msg:
ctx, first = msg
# runtime indication that the backend can't support live
# order ctrl yet, so boot the paperboi B0
if first == 'paper':
async with mk_paper_ep() as msg:
yield msg
return
else:
# working live ep case B)
yield msg
return
pps_by_broker_account: dict[(str, str), BrokerdPosition] = {}
async with (
maybe_open_paper_ep() as (
brokerd_ctx,
(position_msgs, accounts),
),
brokerd_ctx.open_stream() as brokerd_trades_stream,
):
# XXX: really we only want one stream per `emsd`
# actor to relay global `brokerd` order events
# unless we're going to expect each backend to
# relay only orders affiliated with a particular
# ``trades_dialogue()`` session (seems annoying
# for implementers). So, here we cache the relay
# task and instead of running multiple tasks
# (which will result in multiples of the same
# msg being relayed for each EMS client) we just
# register each client stream to this single
# relay loop in the dialog table.
# begin processing order events from the target
# brokerd backend by receiving order submission
# response messages, normalizing them to EMS
# messages and relaying back to the piker order
# client set.
# locally cache and track positions per account with
# a nested table of msgs:
# tuple(brokername, acctid) ->
# (fqme: str ->
# `BrokerdPosition`)
for msg in position_msgs:
msg = BrokerdPosition(**msg)
log.info(
f'loading pp for {brokermod.__name__}:\n'
f'{pformat(msg.to_dict())}',
)
# TODO: state any mismatch here?
account: str = msg.account
assert account in accounts
pps_by_broker_account.setdefault(
(broker, account),
{},
)[msg.symbol] = msg
# should be unique entries, verdad!
assert len(set(accounts)) == len(accounts)
yield (
brokerd_trades_stream,
pps_by_broker_account,
accounts,
)
class Router(Struct):
'''
Order router which manages and tracks per-broker dark book,
@ -522,7 +347,6 @@ class Router(Struct):
] = defaultdict(set)
# TODO: mapping of ems dialog ids to msg flow history
# - use the new ._util.OrderDialogs?
# msgflows: defaultdict[
# str,
# ChainMap[dict[str, dict]],
@ -583,25 +407,118 @@ class Router(Struct):
yield relay
return
async with open_brokerd_dialog(
brokermod=brokermod,
portal=portal,
exec_mode=exec_mode,
fqme=fqme,
loglevel=loglevel,
def mk_paper_ep():
nonlocal brokermod, exec_mode
) as (
brokerd_stream,
pp_msg_table,
accounts,
):
# create a new relay and sync it's state according
# to brokerd-backend reported position msgs.
relay = TradesRelay(
brokerd_stream=brokerd_stream,
positions=pp_msg_table,
accounts=tuple(accounts),
# for logging purposes
brokermod = paper
# for paper mode we need to mock this trades response feed
# so we load bidir stream to a new sub-actor running
# a paper-simulator clearing engine.
# load the paper trading engine
exec_mode = 'paper'
log.info(f'{broker}: Entering `paper` trading mode')
# load the paper trading engine as a subactor of this emsd
# actor to simulate the real IPC load it'll have when also
# pulling data from feeds
return paper.open_paperboi(
fqme=fqme,
loglevel=loglevel,
)
trades_endpoint = getattr(brokermod, 'trades_dialogue', None)
if (
trades_endpoint is not None
or exec_mode != 'paper'
):
# open live brokerd trades endpoint
open_trades_endpoint = portal.open_context(
trades_endpoint,
loglevel=loglevel,
)
else:
exec_mode: str = 'paper'
@acm
async def maybe_open_paper_ep():
if exec_mode == 'paper':
async with mk_paper_ep() as msg:
yield msg
return
# open trades-dialog endpoint with backend broker
async with open_trades_endpoint as msg:
ctx, first = msg
# runtime indication that the backend can't support live
# order ctrl yet, so boot the paperboi B0
if first == 'paper':
async with mk_paper_ep() as msg:
yield msg
return
else:
# working live ep case B)
yield msg
return
positions: list[BrokerdPosition]
accounts: tuple[str]
async with (
maybe_open_paper_ep() as (
brokerd_ctx,
(positions, accounts),
),
brokerd_ctx.open_stream() as brokerd_trades_stream,
):
# XXX: really we only want one stream per `emsd`
# actor to relay global `brokerd` order events
# unless we're going to expect each backend to
# relay only orders affiliated with a particular
# ``trades_dialogue()`` session (seems annoying
# for implementers). So, here we cache the relay
# task and instead of running multiple tasks
# (which will result in multiples of the same
# msg being relayed for each EMS client) we just
# register each client stream to this single
# relay loop in the dialog table.
# begin processing order events from the target
# brokerd backend by receiving order submission
# response messages, normalizing them to EMS
# messages and relaying back to the piker order
# client set.
# locally cache and track positions per account with
# a nested table of msgs:
# tuple(brokername, acctid) ->
# (fqme: str ->
# `BrokerdPosition`)
relay = TradesRelay(
brokerd_stream=brokerd_trades_stream,
positions={},
accounts=accounts,
)
for msg in positions:
msg = BrokerdPosition(**msg)
log.info(
f'loading pp for {brokermod.__name__}:\n'
f'{pformat(msg.to_dict())}',
)
# TODO: state any mismatch here?
account = msg.account
assert account in accounts
relay.positions.setdefault(
(broker, account),
{},
)[msg.symbol] = msg
self.relays[broker] = relay
# this context should block here indefinitely until
@ -633,17 +550,12 @@ class Router(Struct):
indefinitely.
'''
from ..data.feed import maybe_open_feed
async with (
maybe_open_feed(
[fqme],
loglevel=loglevel,
) as feed,
):
# extract expanded fqme in case input was of a less
# qualified form, eg. xbteur.kraken -> xbteur.spot.kraken
fqme: str = list(feed.flumes.keys())[0]
brokername, _, _, _ = unpack_fqme(fqme)
brokermod = feed.mods[brokername]
broker = brokermod.name
@ -678,7 +590,7 @@ class Router(Struct):
client_ready = trio.Event()
task_status.started(
(fqme, relay, feed, client_ready)
(relay, feed, client_ready)
)
# sync to the client side by waiting for the stream
@ -827,8 +739,8 @@ async def translate_and_relay_brokerd_events(
# keep pps per account up to date locally in ``emsd`` mem
# sym, broker = pos_msg.symbol, pos_msg.broker
# NOTE: translate to a FQME!
relay.positions.setdefault(
# NOTE: translate to a FQSN!
(broker, pos_msg.account),
{}
)[pos_msg.symbol] = pos_msg
@ -884,7 +796,7 @@ async def translate_and_relay_brokerd_events(
BrokerdCancel(
oid=oid,
reqid=reqid,
time_ns=time_ns(),
time_ns=time.time_ns(),
account=status_msg.req.account,
)
)
@ -899,75 +811,38 @@ async def translate_and_relay_brokerd_events(
continue
# BrokerdError
# TODO: figure out how this will interact with EMS clients
# for ex. on an error do we react with a dark orders
# management response, like cancelling all dark orders?
# This looks like a supervision policy for pending orders on
# some unexpected failure - something we need to think more
# about. In most default situations, with composed orders
# (ex. brackets), most brokers seem to use a oca policy.
case {
'name': 'error',
'oid': oid, # ems order-dialog id
'reqid': reqid, # brokerd generated order-request id
}:
if (
not oid
# try to lookup any order dialog by
# brokerd-side id..
and not (
oid := book._ems2brokerd_ids.inverse.get(reqid)
)
):
log.warning(
f'Rxed unusable error-msg:\n'
f'{brokerd_msg}'
)
continue
status_msg = book._active.get(oid)
msg = BrokerdError(**brokerd_msg)
log.error(fmsg) # XXX make one when it's blank?
# NOTE: retreive the last client-side response
# OR create an error when we have no last msg /dialog
# on record
status_msg: Status
if not (status_msg := book._active.get(oid)):
status_msg = Error(
time_ns=time_ns(),
oid=oid,
reqid=reqid,
brokerd_msg=msg,
)
else:
# only modify last status if we have an active
# ongoing dialog..
# TODO: figure out how this will interact with EMS clients
# for ex. on an error do we react with a dark orders
# management response, like cancelling all dark orders?
# This looks like a supervision policy for pending orders on
# some unexpected failure - something we need to think more
# about. In most default situations, with composed orders
# (ex. brackets), most brokers seem to use a oca policy.
# only relay to client side if we have an active
# ongoing dialog
if status_msg:
status_msg.resp = 'error'
status_msg.brokerd_msg = msg
book._active[oid] = status_msg
book._active[oid] = status_msg
log.error(
'Translating brokerd error to status:\n'
f'{fmsg}'
f'{status_msg.to_dict()}'
)
if req := status_msg.req:
fqme: str = req.symbol
else:
bdmsg: Struct = status_msg.brokerd_msg
fqme: str = (
bdmsg.symbol # might be None
or
bdmsg.broker_details['flow']
# NOTE: what happens in empty case in the
# broadcast below? it's a problem?
.get('symbol', '')
await router.client_broadcast(
status_msg.req.symbol,
status_msg,
)
await router.client_broadcast(
fqme,
status_msg,
)
else:
log.error(f'Error for unknown order flow:\n{msg}')
continue
# BrokerdStatus
case {
@ -1108,7 +983,7 @@ async def translate_and_relay_brokerd_events(
status_msg.req = order
assert status_msg.src # source tag?
oid: str = str(status_msg.reqid)
oid = str(status_msg.reqid)
# attempt to avoid collisions
status_msg.reqid = oid
@ -1125,28 +1000,38 @@ async def translate_and_relay_brokerd_events(
status_msg,
)
# don't fall through
continue
# brokerd error
case {
'name': 'status',
'status': 'error',
}:
log.error(f'Broker error:\n{fmsg}')
# XXX: we presume the brokerd cancels its own order
continue
# TOO FAST ``BrokerdStatus`` that arrives
# before the ``BrokerdAck``.
# NOTE XXX: sometimes there is a race with the backend (like
# `ib` where the pending status will be relayed *before*
# the ack msg, in which case we just ignore the faster
# pending msg and wait for our expected ack to arrive
# later (i.e. the first block below should enter).
case {
# XXX: sometimes there is a race with the backend (like
# `ib` where the pending stauts will be related before
# the ack, in which case we just ignore the faster
# pending msg and wait for our expected ack to arrive
# later (i.e. the first block below should enter).
'name': 'status',
'status': status,
'reqid': reqid,
}:
msg = (
f'Unhandled broker status for dialog {reqid}:\n'
f'{pformat(brokerd_msg)}'
)
if (
oid := book._ems2brokerd_ids.inverse.get(reqid)
):
oid = book._ems2brokerd_ids.inverse.get(reqid)
msg = f'Unhandled broker status for dialog {reqid}:\n'
if oid:
status_msg = book._active.get(oid)
# status msg may not have been set yet or popped?
# NOTE: have seen a key error here on kraken
# clearable limits..
if status_msg := book._active.get(oid):
if status_msg:
msg += (
f'last status msg: {pformat(status_msg)}\n\n'
f'this msg:{fmsg}\n'
@ -1242,7 +1127,7 @@ async def process_client_order_cmds(
BrokerdCancel(
oid=oid,
reqid=reqid,
time_ns=time_ns(),
time_ns=time.time_ns(),
account=order.account,
)
)
@ -1256,15 +1141,14 @@ async def process_client_order_cmds(
and status.resp == 'dark_open'
):
# remove from dark book clearing
entry: tuple | None = dark_book.triggers[fqme].pop(oid, None)
entry = dark_book.triggers[fqme].pop(oid, None)
if entry:
(
pred,
tickfilter,
cmd,
percent_away,
abs_diff_away,
min_tick_digits,
abs_diff_away
) = entry
# tell client side that we've cancelled the
@ -1317,7 +1201,7 @@ async def process_client_order_cmds(
msg = BrokerdOrder(
oid=oid, # no ib support for oids...
time_ns=time_ns(),
time_ns=time.time_ns(),
# if this is None, creates a new order
# otherwise will modify any existing one
@ -1335,7 +1219,7 @@ async def process_client_order_cmds(
oid=oid,
reqid=reqid,
resp='pending',
time_ns=time_ns(),
time_ns=time.time_ns(),
brokerd_msg=msg,
req=req,
)
@ -1399,36 +1283,33 @@ async def process_client_order_cmds(
# TODO: make this configurable from our top level
# config, prolly in a .clearing` section?
spread_slap: float = 5
min_tick = Decimal(flume.mkt.price_tick)
min_tick_digits: int = dec_digits(min_tick)
tickfilter: tuple[str, ...]
percent_away: float
min_tick = float(flume.mkt.size_tick)
min_tick_digits = float_digits(min_tick)
if action == 'buy':
tickfilter = ('ask', 'last', 'trade')
percent_away: float = 0.005
percent_away = 0.005
# TODO: we probably need to scale this based
# on some near term historical spread
# measure?
abs_diff_away = float(round(
abs_diff_away = round(
spread_slap * min_tick,
ndigits=min_tick_digits,
))
)
elif action == 'sell':
tickfilter = ('bid', 'last', 'trade')
percent_away: float = -0.005
abs_diff_away: float = float(round(
percent_away = -0.005
abs_diff_away = round(
-spread_slap * min_tick,
ndigits=min_tick_digits,
))
)
else: # alert
tickfilter = ('trade', 'utrade', 'last')
percent_away: float = 0
abs_diff_away: float = 0
percent_away = 0
abs_diff_away = 0
# submit execution/order to EMS scan loop
# NOTE: this may result in an override of an existing
@ -1440,8 +1321,7 @@ async def process_client_order_cmds(
tickfilter,
req,
percent_away,
abs_diff_away,
min_tick_digits,
abs_diff_away
)
resp = 'dark_open'
@ -1452,7 +1332,7 @@ async def process_client_order_cmds(
status = Status(
resp=resp,
oid=oid,
time_ns=time_ns(),
time_ns=time.time_ns(),
req=req,
src='dark',
)
@ -1498,13 +1378,13 @@ async def maybe_open_trade_relays(
loglevel: str = 'info',
):
fqme, relay, feed, client_ready = await _router.nursery.start(
relay, feed, client_ready = await _router.nursery.start(
_router.open_trade_relays,
fqme,
exec_mode,
loglevel,
)
yield fqme, relay, feed, client_ready
yield relay, feed, client_ready
async with tractor.trionics.maybe_open_context(
acm_func=cached_mngr,
@ -1517,13 +1397,13 @@ async def maybe_open_trade_relays(
key=cache_on_fqme_unless_paper,
) as (
cache_hit,
(fqme, relay, feed, client_ready)
(relay, feed, client_ready)
):
if cache_hit:
log.info(f'Reusing existing trades relay for {fqme}:\n'
f'{relay}\n')
yield fqme, relay, feed, client_ready
yield relay, feed, client_ready
@tractor.context
@ -1557,34 +1437,30 @@ async def _emsd_main(
received in a stream from that client actor and then responses are
streamed back up to the original calling task in the same client.
The primary ``emsd`` task tree is:
The primary ``emsd`` task trees are:
- ``_setup_persistent_emsd()``:
is the ``emsd`` actor's primary *service-fixture* task which
is opened by the `pikerd` service manager and sets up
a process-global (actor-local) ``Router`` instance and opens
a service nursery which lives until the backend broker is
shutdown or the ems is terminated; all tasks are
*dynamically* started (and persisted) within this service
nursery when the below endpoint context is opened:
|
- ``_emsd_main()``:
attaches a real-time quote feed and trades dialogue with
a `brokerd` actor which connects to the backend broker's
trading api for every connecting client.
|
- ``clear_dark_triggers()``:
run (dark order) conditions on inputs and trigger brokerd
"live" order submissions.
|
- ``process_client_order_cmds()``:
accepts order cmds from requesting clients, registers
dark orders and alerts with above (dark) clearing loop.
|
- (maybe) ``translate_and_relay_brokerd_events()``:
accept normalized trades responses from brokerd, process and
relay to ems client(s); this is a effectively a "trade event
reponse" proxy-broker.
is the ``emsd`` actor's primary root task which sets up an
actor-global ``Router`` instance and starts a relay loop task
which lives until the backend broker is shutdown or the ems is
terminated.
|
- (maybe) ``translate_and_relay_brokerd_events()``:
accept normalized trades responses from brokerd, process and
relay to ems client(s); this is a effectively a "trade event
reponse" proxy-broker.
- ``_emsd_main()``:
attaches a brokerd real-time quote feed and trades dialogue with
brokderd trading api for every connecting client.
|
- ``clear_dark_triggers()``:
run (dark order) conditions on inputs and trigger brokerd "live"
order submissions.
|
- ``process_client_order_cmds()``:
accepts order cmds from requesting clients, registers dark orders and
alerts with clearing loop.
'''
global _router
@ -1592,9 +1468,9 @@ async def _emsd_main(
broker, _, _, _ = unpack_fqme(fqme)
# TODO: would be nice if in tractor we can require either a ctx
# arg, or a named arg with ctx in it and a type annotation of
# `tractor.Context` instead of strictly requiring a ctx arg.
# TODO: would be nice if in tractor we can require either a ctx arg,
# or a named arg with ctx in it and a type annotation of
# tractor.Context instead of strictly requiring a ctx arg.
ems_ctx = ctx
# spawn one task per broker feed
@ -1610,7 +1486,7 @@ async def _emsd_main(
fqme,
exec_mode,
loglevel,
) as (fqme, relay, feed, client_ready):
) as (relay, feed, client_ready):
brokerd_stream = relay.brokerd_stream
dark_book = _router.get_dark_book(broker)

View File

@ -18,14 +18,40 @@
Clearing sub-system message and protocols.
"""
from __future__ import annotations
# from collections import (
# ChainMap,
# deque,
# )
from typing import (
Optional,
Literal,
)
from msgspec import field
from piker.types import Struct
from ..data.types import Struct
# TODO: a composite for tracking msg flow on 2-legged
# dialogs.
# class Dialog(ChainMap):
# '''
# Msg collection abstraction to easily track the state changes of
# a msg flow in one high level, query-able and immutable construct.
# The main use case is to query data from a (long-running)
# msg-transaction-sequence
# '''
# def update(
# self,
# msg,
# ) -> None:
# self.maps.insert(0, msg.to_dict())
# def flatten(self) -> dict:
# return dict(self)
# TODO: ``msgspec`` stuff worth paying attention to:
@ -114,7 +140,7 @@ class Status(Struct):
# this maps normally to the ``BrokerdOrder.reqid`` below, an id
# normally allocated internally by the backend broker routing system
reqid: int | str | None = None
reqid: Optional[int | str] = None
# the (last) source order/request msg if provided
# (eg. the Order/Cancel which causes this msg) and
@ -127,7 +153,7 @@ class Status(Struct):
# event that wasn't originated by piker's emsd (eg. some external
# trading system which does it's own order control but that you
# might want to "track" using piker UIs/systems).
src: str | None = None
src: Optional[str] = None
# set when a cancel request msg was set for this order flow dialog
# but the brokerd dialog isn't yet in a cancelled state.
@ -138,18 +164,6 @@ class Status(Struct):
brokerd_msg: dict = {}
class Error(Status):
resp: str = 'error'
# TODO: allow re-wrapping from existing (last) status?
@classmethod
def from_status(
cls,
msg: Status,
) -> Error:
...
# ---------------
# emsd -> brokerd
# ---------------
@ -167,7 +181,7 @@ class BrokerdCancel(Struct):
# for setting a unique order id then this value will be relayed back
# on the emsd order request stream as the ``BrokerdOrderAck.reqid``
# field
reqid: int | str | None = None
reqid: Optional[int | str] = None
action: str = 'cancel'
@ -191,7 +205,7 @@ class BrokerdOrder(Struct):
# for setting a unique order id then this value will be relayed back
# on the emsd order request stream as the ``BrokerdOrderAck.reqid``
# field
reqid: int | str | None = None
reqid: Optional[int | str] = None
# ---------------
@ -213,27 +227,24 @@ class BrokerdOrderAck(Struct):
# emsd id originally sent in matching request msg
oid: str
# TODO: do we need this?
account: str = ''
name: str = 'ack'
class BrokerdStatus(Struct):
time_ns: int
reqid: int | str
time_ns: int
status: Literal[
'open',
'canceled',
'fill',
'pending',
# 'error', # NOTE: use `BrokerdError`
'closed',
'error',
]
name: str = 'status'
oid: str = ''
# TODO: do we need this?
account: str | None = None,
account: str
name: str = 'status'
filled: float = 0.0
reason: str = ''
remaining: float = 0.0
@ -248,24 +259,24 @@ class BrokerdStatus(Struct):
class BrokerdFill(Struct):
'''
A single message indicating a "fill-details" event from the
broker if avaiable.
A single message indicating a "fill-details" event from the broker
if avaiable.
'''
# brokerd timestamp required for order mode arrow placement on x-axis
# TODO: maybe int if we force ns?
# we need to normalize this somehow since backends will use their
# own format and likely across many disparate epoch clocks...
time_ns: int
broker_time: float
reqid: int | str
time_ns: int
# order exeuction related
size: float
price: float
name: str = 'fill'
action: str | None = None
action: Optional[str] = None
broker_details: dict = {} # meta-data (eg. commisions etc.)
@ -276,22 +287,18 @@ class BrokerdError(Struct):
This is still a TODO thing since we're not sure how to employ it yet.
'''
oid: str
symbol: str
reason: str
# TODO: drop this right?
symbol: str | None = None
oid: str | None = None
# if no brokerd order request was actually submitted (eg. we errored
# at the ``pikerd`` layer) then there will be ``reqid`` allocated.
reqid: str | None = None
reqid: Optional[int | str] = None
name: str = 'error'
broker_details: dict = {}
# TODO: yeah, so we REALLY need to completely deprecate
# this and use the `.accounting.Position` msg-type instead..
class BrokerdPosition(Struct):
'''
Position update event from brokerd.

View File

@ -26,12 +26,10 @@ from contextlib import asynccontextmanager as acm
from datetime import datetime
from operator import itemgetter
import itertools
from pprint import pformat
import time
from typing import (
Callable,
)
from types import ModuleType
import uuid
from bidict import bidict
@ -39,29 +37,24 @@ import pendulum
import trio
import tractor
from piker.brokers import get_brokermod
from piker.service import find_service
from piker.accounting import (
Account,
from ..brokers import get_brokermod
from .. import data
from ..data.types import Struct
from ..accounting._mktinfo import (
MktPair,
)
from ..accounting import (
Position,
PpTable,
Transaction,
TransactionLedger,
open_account,
open_trade_ledger,
unpack_fqme,
open_pps,
)
from piker.data import (
Feed,
SymbologyCache,
iterticks,
open_feed,
open_symcache,
)
from piker.types import Struct
from ..data._normalize import iterticks
from ..accounting import unpack_fqme
from ._util import (
log, # sub-sys logger
get_console_log,
)
from ._messages import (
BrokerdCancel,
@ -83,10 +76,11 @@ class PaperBoi(Struct):
'''
broker: str
ems_trades_stream: tractor.MsgStream
acnt: Account
ppt: PpTable
ledger: TransactionLedger
fees: Callable
# map of paper "live" orders which be used
# to simulate fills based on paper engine settings
@ -130,7 +124,7 @@ class PaperBoi(Struct):
# for dark orders since we want the dark_executed
# to trigger first thus creating a lookup entry
# in the broker trades event processing loop
await trio.sleep(0.01)
await trio.sleep(0.05)
if (
action == 'sell'
@ -197,7 +191,7 @@ class PaperBoi(Struct):
self._sells[symbol].pop(oid, None)
# TODO: net latency model
await trio.sleep(0.01)
await trio.sleep(0.05)
msg = BrokerdStatus(
status='canceled',
@ -230,7 +224,7 @@ class PaperBoi(Struct):
'''
# TODO: net latency model
await trio.sleep(0.01)
await trio.sleep(0.05)
fill_time_ns = time.time_ns()
fill_time_s = time.time()
@ -268,42 +262,29 @@ class PaperBoi(Struct):
# we don't actually have any unique backend symbol ourselves
# other then this thing, our fqme address.
bs_mktid: str = fqme
if fees := self.fees:
cost: float = fees(price, size)
else:
cost: float = 0
t = Transaction(
fqme=fqme,
sym=self._mkts[fqme],
tid=oid,
size=size,
price=price,
cost=cost,
cost=0, # TODO: cost model
dt=pendulum.from_timestamp(fill_time_s),
bs_mktid=bs_mktid,
)
# update in-mem ledger and pos table
self.ledger.update_from_t(t)
self.acnt.update_from_ledger(
{oid: t},
symcache=self.ledger._symcache,
# XXX when a backend has no symcache support yet we can
# simply pass in the gmi() retreived table created
# during init :o
_mktmap_table=self._mkts,
)
self.ppt.update_from_trans({oid: t})
# transmit pp msg to ems
pp: Position = self.acnt.pps[bs_mktid]
pp = self.ppt.pps[bs_mktid]
pp_msg = BrokerdPosition(
broker=self.broker,
account='paper',
symbol=fqme,
size=pp.cumsize,
size=pp.size,
avg_price=pp.ppu,
# TODO: we need to look up the asset currency from
@ -314,7 +295,7 @@ class PaperBoi(Struct):
# write all updates to filesys immediately
# (adds latency but that works for simulation anyway)
self.ledger.write_config()
self.acnt.write_config()
self.ppt.write_config()
await self.ems_trades_stream.send(pp_msg)
@ -343,7 +324,6 @@ async def simulate_fills(
# this stream may eventually contain multiple symbols
async for quotes in quote_stream:
for sym, quote in quotes.items():
# print(sym)
for tick in iterticks(
quote,
# dark order price filter(s)
@ -547,7 +527,7 @@ _sells: defaultdict[
@tractor.context
async def open_trade_dialog(
async def trades_dialogue(
ctx: tractor.Context,
broker: str,
@ -556,188 +536,141 @@ async def open_trade_dialog(
) -> None:
# enable piker.clearing console log for *this* subactor
get_console_log(loglevel)
tractor.log.get_console_log(loglevel)
symcache: SymbologyCache
async with open_symcache(get_brokermod(broker)) as symcache:
ppt: PpTable
ledger: TransactionLedger
with (
open_pps(
broker,
'paper',
write_on_exit=True,
) as ppt,
acnt: Account
ledger: TransactionLedger
with (
open_trade_ledger(
broker,
'paper',
) as ledger
):
# NOTE: retreive market(pair) info from the backend broker
# since ledger entries (in their backend native format) often
# don't contain necessary market info per trade record entry..
# - if no fqme was passed in, we presume we're running in
# "ledger-sync-only mode" and thus we load mkt info for
# each symbol found in the ledger to a ppt table manually.
# TODO: probably do the symcache and ledger loading
# implicitly behind this? Deliver an account, and ledger
# pair or make the ledger an attr of the account?
open_account(
broker,
'paper',
write_on_exit=True,
) as acnt,
# TODO: how to process ledger info from backends?
# - should we be rolling our own actor-cached version of these
# client API refs or using portal IPC to send requests to the
# existing brokerd daemon?
# - alternatively we can possibly expect and use
# a `.broker.norm_trade_records()` ep?
brokermod = get_brokermod(broker)
gmi = getattr(brokermod, 'get_mkt_info', None)
open_trade_ledger(
broker,
'paper',
symcache=symcache,
) as ledger
):
# NOTE: WE MUST retreive market(pair) info from each
# backend broker since ledger entries (in their
# provider-native format) often don't contain necessary
# market info per trade record entry..
# FURTHER, if no fqme was passed in, we presume we're
# running in "ledger-sync-only mode" and thus we load
# mkt info for each symbol found in the ledger to
# an acnt table manually.
# update all transactions with mkt info before
# loading any pps
mkt_by_fqme: dict[str, MktPair] = {}
if fqme:
bs_fqme, _, broker = fqme.rpartition('.')
mkt, _ = await brokermod.get_mkt_info(bs_fqme)
mkt_by_fqme[fqme] = mkt
# TODO: how to process ledger info from backends?
# - should we be rolling our own actor-cached version of these
# client API refs or using portal IPC to send requests to the
# existing brokerd daemon?
# - alternatively we can possibly expect and use
# a `.broker.ledger.norm_trade()` ep?
brokermod: ModuleType = get_brokermod(broker)
gmi: Callable = getattr(brokermod, 'get_mkt_info', None)
# for each sym in the ledger load it's `MktPair` info
for tid, txdict in ledger.data.items():
l_fqme: str = txdict.get('fqme') or txdict['fqsn']
# update all transactions with mkt info before
# loading any pps
mkt_by_fqme: dict[str, MktPair] = {}
if (
fqme
and fqme not in symcache.mktmaps
gmi
and l_fqme not in mkt_by_fqme
):
log.warning(
f'Symcache for {broker} has no `{fqme}` entry?\n'
'Manually requesting mkt map data via `.get_mkt_info()`..'
mkt, pair = await brokermod.get_mkt_info(
l_fqme.rstrip(f'.{broker}'),
)
mkt_by_fqme[l_fqme] = mkt
bs_fqme, _, broker = fqme.rpartition('.')
mkt, pair = await gmi(bs_fqme)
mkt_by_fqme[mkt.fqme] = mkt
# if an ``fqme: str`` input was provided we only
# need a ``MktPair`` for that one market, since we're
# running in real simulated-clearing mode, not just ledger
# syncing.
if (
fqme is not None
and fqme in mkt_by_fqme
):
break
# for each sym in the ledger load its `MktPair` info
for tid, txdict in ledger.data.items():
l_fqme: str = txdict.get('fqme') or txdict['fqsn']
# update pos table from ledger history and provide a ``MktPair``
# lookup for internal position accounting calcs.
ppt.update_from_trans(ledger.to_trans(mkt_by_fqme=mkt_by_fqme))
if (
gmi
and l_fqme not in symcache.mktmaps
and l_fqme not in mkt_by_fqme
):
log.warning(
f'Symcache for {broker} has no `{l_fqme}` entry?\n'
'Manually requesting mkt map data via `.get_mkt_info()`..'
)
mkt, pair = await gmi(
l_fqme.rstrip(f'.{broker}'),
)
mkt_by_fqme[l_fqme] = mkt
# if an ``fqme: str`` input was provided we only
# need a ``MktPair`` for that one market, since we're
# running in real simulated-clearing mode, not just ledger
# syncing.
if (
fqme is not None
and fqme in mkt_by_fqme
):
break
# update pos table from ledger history and provide a ``MktPair``
# lookup for internal position accounting calcs.
acnt.update_from_ledger(
ledger,
# NOTE: if the symcache fails on fqme lookup
# (either sycache not yet supported or not filled
# in) use manually constructed table from calling
# the `.get_mkt_info()` provider EP above.
_mktmap_table=mkt_by_fqme,
)
pp_msgs: list[BrokerdPosition] = []
pos: Position
token: str # f'{symbol}.{self.broker}'
for token, pos in acnt.pps.items():
pp_msgs.append(BrokerdPosition(
broker=broker,
account='paper',
symbol=pos.mkt.fqme,
size=pos.cumsize,
avg_price=pos.ppu,
))
await ctx.started((
pp_msgs,
['paper'],
pp_msgs: list[BrokerdPosition] = []
pos: Position
token: str # f'{symbol}.{self.broker}'
for token, pos in ppt.pps.items():
pp_msgs.append(BrokerdPosition(
broker=broker,
account='paper',
symbol=pos.mkt.fqme,
size=pos.size,
avg_price=pos.ppu,
))
# write new positions state in case ledger was
# newer then that tracked in pps.toml
acnt.write_config()
await ctx.started((
pp_msgs,
['paper'],
))
# exit early since no fqme was passed,
# normally this case is just to load
# positions "offline".
if fqme is None:
log.warning(
'Paper engine only running in position delivery mode!\n'
'NO SIMULATED CLEARING LOOP IS ACTIVE!'
)
await trio.sleep_forever()
return
# write new positions state in case ledger was
# newer then that tracked in pps.toml
ppt.write_config()
# exit early since no fqme was passed,
# normally this case is just to load
# positions "offline".
if fqme is None:
log.warning(
'Paper engine only running in position delivery mode!\n'
'NO SIMULATED CLEARING LOOP IS ACTIVE!'
)
await trio.sleep_forever()
return
async with (
data.open_feed(
[fqme],
loglevel=loglevel,
) as feed,
):
# sanity check all the mkt infos
for fqme, flume in feed.flumes.items():
assert mkt_by_fqme[fqme] == flume.mkt
feed: Feed
async with (
open_feed(
[fqme],
loglevel=loglevel,
) as feed,
ctx.open_stream() as ems_stream,
trio.open_nursery() as n,
):
# sanity check all the mkt infos
for fqme, flume in feed.flumes.items():
mkt: MktPair = symcache.mktmaps.get(fqme) or mkt_by_fqme[fqme]
if mkt != flume.mkt:
diff: tuple = mkt - flume.mkt
log.warning(
'MktPair sig mismatch?\n'
f'{pformat(diff)}'
)
client = PaperBoi(
broker=broker,
ems_trades_stream=ems_stream,
ppt=ppt,
ledger=ledger,
_buys=_buys,
_sells=_sells,
_reqids=_reqids,
_mkts=mkt_by_fqme,
get_cost: Callable = getattr(
brokermod,
'get_cost',
None,
)
async with (
ctx.open_stream() as ems_stream,
trio.open_nursery() as n,
):
client = PaperBoi(
broker=broker,
ems_trades_stream=ems_stream,
acnt=acnt,
ledger=ledger,
fees=get_cost,
n.start_soon(
handle_order_requests,
client,
ems_stream,
)
_buys=_buys,
_sells=_sells,
_reqids=_reqids,
_mkts=mkt_by_fqme,
)
n.start_soon(
handle_order_requests,
client,
ems_stream,
)
# paper engine simulator clearing task
await simulate_fills(feed.streams[broker], client)
# paper engine simulator clearing task
await simulate_fills(feed.streams[broker], client)
@acm
@ -761,22 +694,22 @@ async def open_paperboi(
service_name = f'paperboi.{broker}'
async with (
find_service(service_name) as portal,
tractor.open_nursery() as an,
tractor.find_actor(service_name) as portal,
tractor.open_nursery() as tn,
):
# NOTE: only spawn if no paperboi already is up since we likely
# don't need more then one actor for simulated order clearing
# per broker-backend.
if portal is None:
log.info('Starting new paper-engine actor')
portal = await an.start_actor(
portal = await tn.start_actor(
service_name,
enable_modules=[__name__]
)
we_spawned = True
async with portal.open_context(
open_trade_dialog,
trades_dialogue,
broker=broker,
fqme=fqme,
loglevel=loglevel,
@ -784,59 +717,7 @@ async def open_paperboi(
) as (ctx, first):
yield ctx, first
# ALWAYS tear down connection AND any newly spawned
# paperboi actor on exit!
# tear down connection and any spawned actor on exit
await ctx.cancel()
if we_spawned:
await portal.cancel_actor()
def norm_trade(
tid: str,
txdict: dict,
pairs: dict[str, Struct],
symcache: SymbologyCache | None = None,
brokermod: ModuleType | None = None,
) -> Transaction:
from pendulum import (
DateTime,
parse,
)
# special field handling for datetimes
# to ensure pendulum is used!
dt: DateTime = parse(txdict['dt'])
expiry: str | None = txdict.get('expiry')
fqme: str = txdict.get('fqme') or txdict.pop('fqsn')
price: float = txdict['price']
size: float = txdict['size']
cost: float = txdict.get('cost', 0)
if (
brokermod
and (get_cost := getattr(
brokermod,
'get_cost',
False,
))
):
cost = get_cost(
price,
size,
is_taker=True,
)
return Transaction(
fqme=fqme,
tid=txdict['tid'],
dt=dt,
price=price,
size=size,
cost=cost,
bs_mktid=txdict['bs_mktid'],
expiry=parse(expiry) if expiry else None,
etype='clear',
)

View File

@ -17,15 +17,12 @@
Sub-sys module commons.
"""
from collections import ChainMap
from functools import partial
from typing import Any
from ..log import (
get_logger,
get_console_log,
)
from piker.types import Struct
subsys: str = 'piker.clearing'
log = get_logger(subsys)
@ -34,60 +31,3 @@ get_console_log = partial(
get_console_log,
name=subsys,
)
class OrderDialogs(Struct):
'''
Order control dialog (and thus transaction) tracking via
message recording.
Allows easily recording messages associated with a given set of
order control transactions and looking up the latest field
state using the entire (reverse chronological) msg flow.
'''
_flows: dict[str, ChainMap] = {}
def add_msg(
self,
oid: str,
msg: dict,
) -> None:
# NOTE: manually enter a new map on the first msg add to
# avoid creating one with an empty dict first entry in
# `ChainMap.maps` which is the default if none passed at
# init.
cm: ChainMap = self._flows.get(oid)
if cm:
cm.maps.insert(0, msg)
else:
cm = ChainMap(msg)
self._flows[oid] = cm
# TODO: wrap all this in the `collections.abc.Mapping` interface?
def get(
self,
oid: str,
) -> ChainMap[str, Any]:
'''
Return the dialog `ChainMap` for provided id.
'''
return self._flows.get(oid, None)
def pop(
self,
oid: str,
) -> ChainMap[str, Any]:
'''
Pop and thus remove the `ChainMap` containing the msg flow
for the given order id.
'''
if (flow := self._flows.pop(oid, None)) is None:
log.warning(f'No flow found for oid: {oid}')
return flow

View File

@ -1,33 +1,29 @@
# piker: trading gear for hackers
# Copyright (C) 2018-present Tyler Goodlet
# (in stewardship for pikers, everywhere.)
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of pikers)
# This program is free software: you can redistribute it and/or
# modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either
# version 3 of the License, or (at your option) any later version.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Affero General Public License for more details.
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public
# License along with this program. If not, see
# <https://www.gnu.org/licenses/>.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
CLI commons.
'''
import os
# from contextlib import AsyncExitStack
from types import ModuleType
from contextlib import AsyncExitStack
import click
import trio
import tractor
from tractor._multiaddr import parse_maddr
from ..log import (
get_console_log,
@ -42,178 +38,93 @@ from ..service import (
from .. import config
log = get_logger('piker.cli')
def load_trans_eps(
network: dict | None = None,
maddrs: list[tuple] | None = None,
) -> dict[str, dict[str, dict]]:
# transport-oriented endpoint multi-addresses
eps: dict[
str, # service name, eg. `pikerd`, `emsd`..
# libp2p style multi-addresses parsed into prot layers
list[dict[str, str | int]]
] = {}
if (
network
and not maddrs
):
# load network section and (attempt to) connect all endpoints
# which are reachable B)
for key, maddrs in network.items():
match key:
# TODO: resolve table across multiple discov
# prots Bo
case 'resolv':
pass
case 'pikerd':
dname: str = key
for maddr in maddrs:
layers: dict = parse_maddr(maddr)
eps.setdefault(
dname,
[],
).append(layers)
elif maddrs:
# presume user is manually specifying the root actor ep.
eps['pikerd'] = [parse_maddr(maddr)]
return eps
log = get_logger('cli')
@click.command()
@click.option('--loglevel', '-l', default='warning', help='Logging level')
@click.option('--tl', is_flag=True, help='Enable tractor logging')
@click.option('--pdb', is_flag=True, help='Enable tractor debug mode')
@click.option('--host', '-h', default=None, help='Host addr to bind')
@click.option('--port', '-p', default=None, help='Port number to bind')
@click.option(
'--loglevel',
'-l',
default='warning',
help='Logging level',
)
@click.option(
'--tl',
'--tsdb',
is_flag=True,
help='Enable tractor-runtime logs',
help='Enable local ``marketstore`` instance'
)
@click.option(
'--pdb',
'--es',
is_flag=True,
help='Enable tractor debug mode',
help='Enable local ``elasticsearch`` instance'
)
@click.option(
'--maddr',
'-m',
default=None,
help='Multiaddrs to bind or contact',
)
# @click.option(
# '--tsdb',
# is_flag=True,
# help='Enable local ``marketstore`` instance'
# )
# @click.option(
# '--es',
# is_flag=True,
# help='Enable local ``elasticsearch`` instance'
# )
def pikerd(
maddr: list[str] | None,
loglevel: str,
host: str,
port: int,
tl: bool,
pdb: bool,
# tsdb: bool,
# es: bool,
tsdb: bool,
es: bool,
):
'''
Spawn the piker broker-daemon.
'''
from tractor.devx import maybe_open_crash_handler
with maybe_open_crash_handler(pdb=pdb):
log = get_console_log(loglevel, name='cli')
from .. import service
if pdb:
log.warning((
"\n"
"!!! YOU HAVE ENABLED DAEMON DEBUG MODE !!!\n"
"When a `piker` daemon crashes it will block the "
"task-thread until resumed from console!\n"
"\n"
))
log = get_console_log(loglevel)
# service-actor registry endpoint socket-address set
regaddrs: list[tuple[str, int]] = []
if pdb:
log.warning((
"\n"
"!!! You have enabled daemon DEBUG mode !!!\n"
"If a daemon crashes it will likely block"
" the service until resumed from console!\n"
"\n"
))
conf, _ = config.load(
conf_name='conf',
reg_addr: None | tuple[str, int] = None
if host or port:
reg_addr = (
host or _default_registry_host,
int(port) or _default_registry_port,
)
network: dict = conf.get('network')
if (
network is None
and not maddr
async def main():
service_mngr: service.Services
async with (
service.open_pikerd(
loglevel=loglevel,
debug_mode=pdb,
registry_addr=reg_addr,
) as service_mngr, # normally delivers a ``Services`` handle
trio.open_nursery() as n,
AsyncExitStack() as stack,
):
regaddrs = [(
_default_registry_host,
_default_registry_port,
)]
if tsdb:
dname, conf = await stack.enter_async_context(
service.marketstore.start_ahab_daemon(
service_mngr,
loglevel=loglevel,
)
)
log.info(f'TSDB `{dname}` up with conf:\n{conf}')
else:
eps: dict = load_trans_eps(
network,
maddr,
)
for layers in eps['pikerd']:
regaddrs.append((
layers['ipv4']['addr'],
layers['tcp']['port'],
))
if es:
dname, conf = await stack.enter_async_context(
service.elastic.start_ahab_daemon(
service_mngr,
loglevel=loglevel,
)
)
log.info(f'DB `{dname}` up with conf:\n{conf}')
from .. import service
await trio.sleep_forever()
async def main():
service_mngr: service.Services
async with (
service.open_pikerd(
registry_addrs=regaddrs,
loglevel=loglevel,
debug_mode=pdb,
) as service_mngr, # normally delivers a ``Services`` handle
# AsyncExitStack() as stack,
):
# TODO: spawn all other sub-actor daemons according to
# multiaddress endpoint spec defined by user config
assert service_mngr
# if tsdb:
# dname, conf = await stack.enter_async_context(
# service.marketstore.start_ahab_daemon(
# service_mngr,
# loglevel=loglevel,
# )
# )
# log.info(f'TSDB `{dname}` up with conf:\n{conf}')
# if es:
# dname, conf = await stack.enter_async_context(
# service.elastic.start_ahab_daemon(
# service_mngr,
# loglevel=loglevel,
# )
# )
# log.info(f'DB `{dname}` up with conf:\n{conf}')
await trio.sleep_forever()
trio.run(main)
trio.run(main)
@click.group(context_settings=config._context_defaults)
@ -226,24 +137,8 @@ def pikerd(
@click.option('--loglevel', '-l', default='warning', help='Logging level')
@click.option('--tl', is_flag=True, help='Enable tractor logging')
@click.option('--configdir', '-c', help='Configuration directory')
@click.option(
'--pdb',
is_flag=True,
help='Enable runtime debug mode ',
)
@click.option(
'--maddr',
'-m',
default=None,
multiple=True,
help='Multiaddr to bind',
)
@click.option(
'--regaddr',
'-r',
default=None,
help='Registrar addr to contact',
)
@click.option('--host', '-h', default=None, help='Host addr to bind')
@click.option('--port', '-p', default=None, help='Port number to bind')
@click.pass_context
def cli(
ctx: click.Context,
@ -251,19 +146,14 @@ def cli(
loglevel: str,
tl: bool,
configdir: str,
pdb: bool,
# TODO: make these list[str] with multiple -m maddr0 -m maddr1
maddr: list[str],
regaddr: str,
host: str,
port: int,
) -> None:
if configdir is not None:
assert os.path.isdir(configdir), f"`{configdir}` is not a valid path"
config._override_config_dir(configdir)
# TODO: for typer see
# https://typer.tiangolo.com/tutorial/commands/context/
ctx.ensure_object(dict)
if not brokers:
@ -271,25 +161,15 @@ def cli(
from piker.brokers import __brokers__
brokers = __brokers__
brokermods: dict[str, ModuleType] = {
broker: get_brokermod(broker) for broker in brokers
}
brokermods = [get_brokermod(broker) for broker in brokers]
assert brokermods
# TODO: load endpoints from `conf::[network].pikerd`
# - pikerd vs. regd, separate registry daemon?
# - expose datad vs. brokerd?
# - bind emsd with certain perms on public iface?
regaddrs: list[tuple[str, int]] = regaddr or [(
_default_registry_host,
_default_registry_port,
)]
# TODO: factor [network] section parsing out from pikerd
# above and call it here as well.
# if maddr:
# for addr in maddr:
# layers: dict = parse_maddr(addr)
reg_addr: None | tuple[str, int] = None
if host or port:
reg_addr = (
host or _default_registry_host,
int(port) or _default_registry_port,
)
ctx.obj.update({
'brokers': brokers,
@ -299,12 +179,7 @@ def cli(
'log': get_console_log(loglevel),
'confdir': config._config_dir,
'wl_path': config._watchlists_data_path,
'registry_addrs': regaddrs,
'pdb': pdb, # debug mode flag
# TODO: endpoint parsing, pinging and binding
# on no existing server.
# 'maddrs': maddr,
'registry_addr': reg_addr,
})
# allow enabling same loglevel in ``tractor`` machinery
@ -351,15 +226,11 @@ def services(config, tl, ports):
def _load_clis() -> None:
# from ..service import elastic # noqa
from ..data import cli # noqa
from ..brokers import cli # noqa
from ..ui import cli # noqa
from ..watchlists import cli # noqa
# typer implemented
from ..storage import cli # noqa
from ..accounting import cli # noqa
# load downstream cli modules
_load_clis()

View File

@ -22,6 +22,7 @@ import platform
import sys
import os
import shutil
import time
from typing import (
Callable,
MutableMapping,
@ -104,15 +105,14 @@ def get_app_dir(
# `tractor`) with the testing dir and check for it whenever we
# detect `pytest` is being used (which it isn't under normal
# operation).
# if "pytest" in sys.modules:
# import tractor
# actor = tractor.current_actor(err_on_no_runtime=False)
# if actor: # runtime is up
# rvs = tractor._state._runtime_vars
# import pdbp; pdbp.set_trace()
# testdirpath = Path(rvs['piker_vars']['piker_test_dir'])
# assert testdirpath.exists(), 'piker test harness might be borked!?'
# app_name = str(testdirpath)
if "pytest" in sys.modules:
import tractor
actor = tractor.current_actor(err_on_no_runtime=False)
if actor: # runtime is up
rvs = tractor._state._runtime_vars
testdirpath = Path(rvs['piker_vars']['piker_test_dir'])
assert testdirpath.exists(), 'piker test harness might be borked!?'
app_name = str(testdirpath)
if platform.system() == 'Windows':
key = "APPDATA" if roaming else "LOCALAPPDATA"
@ -135,19 +135,14 @@ def get_app_dir(
_click_config_dir: Path = Path(get_app_dir('piker'))
_config_dir: Path = _click_config_dir
_parent_user: str = os.environ.get('SUDO_USER')
# NOTE: when using `sudo` we attempt to determine the non-root user
# and still use their normal config dir.
if (
(_parent_user := os.environ.get('SUDO_USER'))
and
_parent_user != 'root'
):
if _parent_user:
non_root_user_dir = Path(
os.path.expanduser(f'~{_parent_user}')
)
root: str = 'root'
_ccds: str = str(_click_config_dir) # click config dir as string
_ccds: str = str(_click_config_dir) # click config dir string
i_tail: int = int(_ccds.rfind(root) + len(root))
_config_dir = (
non_root_user_dir
@ -178,14 +173,6 @@ _context_defaults = dict(
)
class ConfigurationError(Exception):
'Misconfigured settings, likely in a TOML file.'
class NoSignature(ConfigurationError):
'No credentials setup for broker backend!'
def _override_config_dir(
path: str
) -> None:
@ -200,15 +187,6 @@ def _conf_fn_w_ext(
return f'{name}.toml'
def get_conf_dir() -> Path:
'''
Return the user configuration directory ``Path``
on the local filesystem.
'''
return _config_dir
def get_conf_path(
conf_name: str = 'brokers',
@ -252,8 +230,7 @@ def repodir() -> Path:
def load(
# NOTE: always appended with .toml suffix
conf_name: str = 'conf',
conf_name: str = 'brokers', # appended with .toml suffix
path: Path | None = None,
decode: Callable[
@ -316,6 +293,92 @@ def load(
return config, path
def load_account(
brokername: str,
acctid: str,
) -> tuple[dict, Path]:
'''
Load a accounting (with positions) file from
$PIKER_CONFIG_DIR/accounting/account.<brokername>.<acctid>.toml.
Where normally $PIKER_CONFIG_DIR = ~/.config/piker/
and we implicitly create a accounting subdir which should
normally be linked to a git repo managed by the user B)
'''
legacy_fn: str = f'pps.{brokername}.{acctid}.toml'
fn: str = f'account.{brokername}.{acctid}.toml'
dirpath: Path = _config_dir / 'accounting'
if not dirpath.is_dir():
dirpath.mkdir()
config, path = load(
path=dirpath / fn,
decode=tomlkit.parse,
touch_if_dne=True,
)
if not config:
legacypath = dirpath / legacy_fn
log.warning(
f'Your account file is using the legacy `pps.` prefix..\n'
f'Rewriting contents to new name -> {path}\n'
'Please delete the old file!\n'
f'|-> {legacypath}\n'
)
if legacypath.is_file():
legacy_config, _ = load(
path=legacypath,
# TODO: move to tomlkit:
# - needs to be fixed to support bidict?
# https://github.com/sdispater/tomlkit/issues/289
# - we need to use or fork's fix to do multiline array
# indenting.
decode=tomlkit.parse,
)
config.update(legacy_config)
# XXX: override the presumably previously non-existant
# file with legacy's contents.
write(
config,
path=path,
fail_empty=False,
)
return config, path
def load_ledger(
brokername: str,
acctid: str,
) -> tuple[dict, Path]:
ldir: Path = _config_dir / 'accounting' / 'ledgers'
if not ldir.is_dir():
ldir.mkdir()
fname = f'trades_{brokername}_{acctid}.toml'
fpath: Path = ldir / fname
if not fpath.is_file():
log.info(
f'Creating new local trades ledger: {fpath}'
)
fpath.touch()
with fpath.open(mode='rb') as cf:
start = time.time()
ledger_dict = tomllib.load(cf)
log.debug(f'Ledger load took {time.time() - start}s')
return ledger_dict, fpath
def write(
config: dict, # toml config as dict
@ -364,9 +427,7 @@ def load_accounts(
) -> bidict[str, str | None]:
conf, path = load(
conf_name='brokers',
)
conf, path = load(touch_if_dne=True)
accounts = bidict()
for provider_name, section in conf.items():
accounts_section = section.get('accounts')

View File

@ -22,7 +22,13 @@ and storing data from your brokers as well as
sharing live streams over a network.
"""
from .ticktools import iterticks
import tractor
import trio
from ._util import (
get_console_log,
)
from ._normalize import iterticks
from ._sharedmem import (
maybe_open_shm_array,
attach_shm_array,
@ -30,42 +36,17 @@ from ._sharedmem import (
get_shm_token,
ShmArray,
)
from ._source import (
def_iohlcv_fields,
def_ohlcv_fields,
)
from .feed import (
Feed,
open_feed,
)
from .flows import Flume
from ._symcache import (
SymbologyCache,
open_symcache,
get_symcache,
match_from_pairs,
)
from ._sampling import open_sample_stream
from ..types import Struct
__all__: list[str] = [
'Flume',
'Feed',
__all__ = [
'open_feed',
'ShmArray',
'iterticks',
'maybe_open_shm_array',
'match_from_pairs',
'attach_shm_array',
'open_shm_array',
'get_shm_token',
'def_iohlcv_fields',
'def_ohlcv_fields',
'open_symcache',
'open_sample_stream',
'get_symcache',
'Struct',
'SymbologyCache',
'types',
]

View File

@ -1,5 +1,5 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of piker0)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
@ -13,10 +13,10 @@
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
"""
Pre-(path)-graphics formatted x/y nd/1d rendering subsystem.
'''
"""
from __future__ import annotations
from typing import (
Optional,
@ -39,12 +39,7 @@ if TYPE_CHECKING:
from ._dataviz import (
Viz,
)
from piker.toolz import Profiler
# default gap between bars: "bar gap multiplier"
# - 0.5 is no overlap between OC arms,
# - 1.0 is full overlap on each neighbor sample
BGM: float = 0.16
from .._profile import Profiler
class IncrementalFormatter(msgspec.Struct):
@ -227,7 +222,6 @@ class IncrementalFormatter(msgspec.Struct):
profiler: Profiler,
slice_to_inview: bool = True,
force_full_realloc: bool = False,
) -> tuple[
np.ndarray,
@ -254,10 +248,7 @@ class IncrementalFormatter(msgspec.Struct):
# we first need to allocate xy data arrays
# from the source data.
if (
self.y_nd is None
or force_full_realloc
):
if self.y_nd is None:
self.xy_nd_start = shm._first.value
self.xy_nd_stop = shm._last.value
self.x_nd, self.y_nd = self.allocate_xy_nd(
@ -518,7 +509,6 @@ class IncrementalFormatter(msgspec.Struct):
class OHLCBarsFmtr(IncrementalFormatter):
x_offset: np.ndarray = np.array([
-0.5,
0,
@ -610,9 +600,8 @@ class OHLCBarsFmtr(IncrementalFormatter):
vr: tuple[int, int],
start: int = 0, # XXX: do we need this?
# 0.5 is no overlap between arms, 1.0 is full overlap
gap: float = BGM,
w: float = 0.16,
) -> tuple[
np.ndarray,
@ -629,7 +618,7 @@ class OHLCBarsFmtr(IncrementalFormatter):
array[:-1],
start,
bar_w=self.index_step_size,
bar_gap=gap * self.index_step_size,
bar_gap=w * self.index_step_size,
# XXX: don't ask, due to a ``numba`` bug..
use_time_index=(self.index_field == 'time'),

View File

@ -0,0 +1,82 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for piker0)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Stream format enforcement.
'''
from itertools import chain
from typing import AsyncIterator
def iterticks(
quote: dict,
types: tuple[str] = (
'trade',
'dark_trade',
),
deduplicate_darks: bool = False,
) -> AsyncIterator:
'''
Iterate through ticks delivered per quote cycle.
'''
if deduplicate_darks:
assert 'dark_trade' in types
# print(f"{quote}\n\n")
ticks = quote.get('ticks', ())
trades = {}
darks = {}
if ticks:
# do a first pass and attempt to remove duplicate dark
# trades with the same tick signature.
if deduplicate_darks:
for tick in ticks:
ttype = tick.get('type')
time = tick.get('time', None)
if time:
sig = (
time,
tick['price'],
tick.get('size')
)
if ttype == 'dark_trade':
darks[sig] = tick
elif ttype == 'trade':
trades[sig] = tick
# filter duplicates
for sig, tick in trades.items():
tick = darks.pop(sig, None)
if tick:
ticks.remove(tick)
# print(f'DUPLICATE {tick}')
# re-insert ticks
ticks.extend(list(chain(trades.values(), darks.values())))
for tick in ticks:
# print(f"{quote['symbol']}: {tick}")
ttype = tick.get('type')
if ttype in types:
yield tick

View File

@ -1,5 +1,5 @@
# piker: trading gear for hackers
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of pikers)
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of piker0)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
@ -17,6 +17,11 @@
Super fast ``QPainterPath`` generation related operator routines.
"""
from math import (
ceil,
floor,
)
import numpy as np
from numpy.lib import recfunctions as rfn
from numba import (
@ -30,6 +35,11 @@ from numba import (
# TODO: for ``numba`` typing..
# from ._source import numba_ohlc_dtype
from ._m4 import ds_m4
from .._profile import (
Profiler,
pg_profile_enabled,
ms_slower_then,
)
def xy_downsample(
@ -125,7 +135,7 @@ def path_arrays_from_ohlc(
half_w: float = bar_w/2
# TODO: report bug for assert @
# ../piker/env/lib/python3.8/site-packages/numba/core/typing/builtins.py:991
# /home/goodboy/repos/piker/env/lib/python3.8/site-packages/numba/core/typing/builtins.py:991
for i, q in enumerate(data[start:], start):
open = q['open']
@ -227,20 +237,20 @@ def trace_hl(
for i in range(hl.size):
row = hl[i]
lo, hi = row['low'], row['high']
l, h = row['low'], row['high']
up_diff = hi - last_l
down_diff = last_h - lo
up_diff = h - last_l
down_diff = last_h - l
if up_diff > down_diff:
out[2*i + 1] = hi
out[2*i + 1] = h
out[2*i] = last_l
else:
out[2*i + 1] = lo
out[2*i + 1] = l
out[2*i] = last_h
last_l = lo
last_h = hi
last_l = l
last_h = h
x[2*i] = int(i) - margin
x[2*i + 1] = int(i) + margin
@ -279,3 +289,158 @@ def ohlc_flatten(
num=len(flat),
)
return x, flat
def slice_from_time(
arr: np.ndarray,
start_t: float,
stop_t: float,
step: float, # sampler period step-diff
) -> slice:
'''
Calculate array indices mapped from a time range and return them in
a slice.
Given an input array with an epoch `'time'` series entry, calculate
the indices which span the time range and return in a slice. Presume
each `'time'` step increment is uniform and when the time stamp
series contains gaps (the uniform presumption is untrue) use
``np.searchsorted()`` binary search to look up the appropriate
index.
'''
profiler = Profiler(
msg='slice_from_time()',
disabled=not pg_profile_enabled(),
ms_threshold=ms_slower_then,
)
times = arr['time']
t_first = floor(times[0])
t_last = ceil(times[-1])
# the greatest index we can return which slices to the
# end of the input array.
read_i_max = arr.shape[0]
# compute (presumed) uniform-time-step index offsets
i_start_t = floor(start_t)
read_i_start = floor(((i_start_t - t_first) // step)) - 1
i_stop_t = ceil(stop_t)
# XXX: edge case -> always set stop index to last in array whenever
# the input stop time is detected to be greater then the equiv time
# stamp at that last entry.
if i_stop_t >= t_last:
read_i_stop = read_i_max
else:
read_i_stop = ceil((i_stop_t - t_first) // step) + 1
# always clip outputs to array support
# for read start:
# - never allow a start < the 0 index
# - never allow an end index > the read array len
read_i_start = min(
max(0, read_i_start),
read_i_max - 1,
)
read_i_stop = max(
0,
min(read_i_stop, read_i_max),
)
# check for larger-then-latest calculated index for given start
# time, in which case we do a binary search for the correct index.
# NOTE: this is usually the result of a time series with time gaps
# where it is expected that each index step maps to a uniform step
# in the time stamp series.
t_iv_start = times[read_i_start]
if (
t_iv_start > i_start_t
):
# do a binary search for the best index mapping to ``start_t``
# given we measured an overshoot using the uniform-time-step
# calculation from above.
# TODO: once we start caching these per source-array,
# we can just overwrite ``read_i_start`` directly.
new_read_i_start = np.searchsorted(
times,
i_start_t,
side='left',
)
# TODO: minimize binary search work as much as possible:
# - cache these remap values which compensate for gaps in the
# uniform time step basis where we calc a later start
# index for the given input ``start_t``.
# - can we shorten the input search sequence by heuristic?
# up_to_arith_start = index[:read_i_start]
if (
new_read_i_start <= read_i_start
):
# t_diff = t_iv_start - start_t
# print(
# f"WE'RE CUTTING OUT TIME - STEP:{step}\n"
# f'start_t:{start_t} -> 0index start_t:{t_iv_start}\n'
# f'diff: {t_diff}\n'
# f'REMAPPED START i: {read_i_start} -> {new_read_i_start}\n'
# )
read_i_start = new_read_i_start
t_iv_stop = times[read_i_stop - 1]
if (
t_iv_stop > i_stop_t
):
# t_diff = stop_t - t_iv_stop
# print(
# f"WE'RE CUTTING OUT TIME - STEP:{step}\n"
# f'calced iv stop:{t_iv_stop} -> stop_t:{stop_t}\n'
# f'diff: {t_diff}\n'
# # f'SHOULD REMAP STOP: {read_i_start} -> {new_read_i_start}\n'
# )
new_read_i_stop = np.searchsorted(
times[read_i_start:],
# times,
i_stop_t,
side='right',
)
if (
new_read_i_stop <= read_i_stop
):
read_i_stop = read_i_start + new_read_i_stop + 1
# sanity checks for range size
# samples = (i_stop_t - i_start_t) // step
# index_diff = read_i_stop - read_i_start + 1
# if index_diff > (samples + 3):
# breakpoint()
# read-relative indexes: gives a slice where `shm.array[read_slc]`
# will be the data spanning the input time range `start_t` ->
# `stop_t`
read_slc = slice(
int(read_i_start),
int(read_i_stop),
)
profiler(
'slicing complete'
# f'{start_t} -> {abs_slc.start} | {read_slc.start}\n'
# f'{stop_t} -> {abs_slc.stop} | {read_slc.stop}\n'
)
# NOTE: if caller needs absolute buffer indices they can
# slice the buffer abs index like so:
# index = arr['index']
# abs_indx = index[read_slc]
# abs_slc = slice(
# int(abs_indx[0]),
# int(abs_indx[-1]),
# )
return read_slc

View File

@ -27,27 +27,17 @@ from collections import (
from contextlib import asynccontextmanager as acm
import time
from typing import (
Any,
AsyncIterator,
TYPE_CHECKING,
)
import tractor
from tractor import (
Context,
MsgStream,
Channel,
)
from tractor.trionics import (
maybe_open_nursery,
)
import trio
from trio_typing import TaskStatus
from .ticktools import (
frame_ticks,
_tick_groups,
)
from ._util import (
log,
get_console_log,
@ -58,10 +48,7 @@ if TYPE_CHECKING:
from ._sharedmem import (
ShmArray,
)
from .feed import (
_FeedsBus,
Sub,
)
from .feed import _FeedsBus
# highest frequency sample step is 1 second by default, though in
@ -102,7 +89,7 @@ class Sampler:
float,
list[
float,
set[MsgStream]
set[tractor.MsgStream]
],
] = defaultdict(
lambda: [
@ -243,7 +230,6 @@ class Sampler:
self,
period_s: float,
time_stamp: float | None = None,
info: dict | None = None,
) -> None:
'''
@ -266,20 +252,16 @@ class Sampler:
f'broadcasting {period_s} -> {last_ts}\n'
# f'consumers: {subs}'
)
borked: set[MsgStream] = set()
sent: set[MsgStream] = set()
borked: set[tractor.MsgStream] = set()
sent: set[tractor.MsgStream] = set()
while True:
try:
for stream in (subs - sent):
try:
msg = {
await stream.send({
'index': time_stamp or last_ts,
'period': period_s,
}
if info:
msg.update(info)
await stream.send(msg)
})
sent.add(stream)
except (
@ -305,24 +287,14 @@ class Sampler:
)
@classmethod
async def broadcast_all(
self,
info: dict | None = None,
) -> None:
# NOTE: take a copy of subs since removals can happen
# during the broadcast checkpoint which can cause
# a `RuntimeError` on interation of the underlying `dict`.
for period_s in list(self.subscribers):
await self.broadcast(
period_s,
info=info,
)
async def broadcast_all(self) -> None:
for period_s in self.subscribers:
await self.broadcast(period_s)
@tractor.context
async def register_with_sampler(
ctx: Context,
ctx: tractor.Context,
period_s: float,
shms_by_period: dict[float, dict] | None = None,
@ -387,21 +359,14 @@ async def register_with_sampler(
# except broadcast requests from the subscriber
async for msg in stream:
if 'broadcast_all' in msg:
await Sampler.broadcast_all(
info=msg['broadcast_all'],
)
if msg == 'broadcast_all':
await Sampler.broadcast_all()
finally:
if (
sub_for_broadcasts
and subs
):
try:
subs.remove(stream)
except KeyError:
log.warning(
f'{stream._ctx.chan.uid} sub already removed!?'
)
subs.remove(stream)
else:
# if no shms are passed in we just wait until cancelled
# by caller.
@ -498,8 +463,6 @@ async def open_sample_stream(
cache_key: str | None = None,
allow_new_sampler: bool = True,
ensure_is_active: bool = False,
) -> AsyncIterator[dict[str, float]]:
'''
Subscribe to OHLC sampling "step" events: when the time aggregation
@ -542,20 +505,11 @@ async def open_sample_stream(
},
) as (ctx, first)
):
if ensure_is_active:
assert len(first) > 1
async with (
ctx.open_stream(
allow_overruns=True,
) as istream,
ctx.open_stream() as istream,
# TODO: we DO need this task-bcasting so that
# for eg. the history chart update loop eventually
# receceives all backfilling event msgs such that
# the underlying graphics format arrays are
# re-allocated until all history is loaded!
istream.subscribe() as istream,
# TODO: we don't need this task-bcasting right?
# istream.subscribe() as istream,
):
yield istream
@ -600,9 +554,9 @@ async def sample_and_broadcast(
# TODO: we should probably not write every single
# value to an OHLC sample stream XD
# for a tick stream sure.. but this is excessive..
ticks: list[dict] = quote['ticks']
ticks = quote['ticks']
for tick in ticks:
ticktype: str = tick['type']
ticktype = tick['type']
# write trade events to shm last OHLC sample
if ticktype in ('trade', 'utrade'):
@ -612,14 +566,13 @@ async def sample_and_broadcast(
# more compact inline-way to do this assignment
# to both buffers?
for shm in [rt_shm, hist_shm]:
# update last entry
# benchmarked in the 4-5 us range
o, high, low, v = shm.array[-1][
['open', 'high', 'low', 'volume']
]
new_v: float = tick.get('size', 0)
new_v = tick.get('size', 0)
if v == 0 and new_v:
# no trades for this bar yet so the open
@ -638,14 +591,14 @@ async def sample_and_broadcast(
'high',
'low',
'close',
# 'bar_wap', # can be optionally provided
'bar_wap', # can be optionally provided
'volume',
]][-1] = (
o,
max(high, last),
min(low, last),
last,
# quote.get('bar_wap', 0),
quote.get('bar_wap', 0),
volume,
)
@ -657,49 +610,48 @@ async def sample_and_broadcast(
# eventually block this producer end of the feed and
# thus other consumers still attached.
sub_key: str = broker_symbol.lower()
subs: set[Sub] = bus.get_subs(sub_key)
subs: list[
tuple[
tractor.MsgStream | trio.MemorySendChannel,
float | None, # tick throttle in Hz
]
] = bus.get_subs(sub_key)
# NOTE: by default the broker backend doesn't append
# it's own "name" into the fqme schema (but maybe it
# should?) so we have to manually generate the correct
# key here.
fqme: str = f'{broker_symbol}.{brokername}'
fqme = f'{broker_symbol}.{brokername}'
lags: int = 0
# XXX TODO XXX: speed up this loop in an AOT compiled
# lang (like rust or nim or zig)!
# AND/OR instead of doing a fan out to TCP sockets
# here, we add a shm-style tick queue which readers can
# pull from instead of placing the burden of broadcast
# on solely on this `brokerd` actor. see issues:
# TODO: speed up this loop in an AOT compiled lang (like
# rust or nim or zig) and/or instead of doing a fan out to
# TCP sockets here, we add a shm-style tick queue which
# readers can pull from instead of placing the burden of
# broadcast on solely on this `brokerd` actor. see issues:
# - https://github.com/pikers/piker/issues/98
# - https://github.com/pikers/piker/issues/107
# for (stream, tick_throttle) in subs.copy():
for sub in subs.copy():
ipc: MsgStream = sub.ipc
throttle: float = sub.throttle_rate
for (stream, tick_throttle) in subs.copy():
try:
with trio.move_on_after(0.2) as cs:
if throttle:
send_chan: trio.abc.SendChannel = sub.send_chan
if tick_throttle:
# this is a send mem chan that likely
# pushes to the ``uniform_rate_send()`` below.
try:
send_chan.send_nowait(
stream.send_nowait(
(fqme, quote)
)
except trio.WouldBlock:
overruns[sub_key] += 1
ctx: Context = ipc._ctx
chan: Channel = ctx.chan
ctx = stream._ctx
chan = ctx.chan
log.warning(
f'Feed OVERRUN {sub_key}'
'@{bus.brokername} -> \n'
f'feed @ {chan.uid}\n'
f'throttle = {throttle} Hz'
f'throttle = {tick_throttle} Hz'
)
if overruns[sub_key] > 6:
@ -716,33 +668,33 @@ async def sample_and_broadcast(
f'{sub_key}:'
f'{ctx.cid}@{chan.uid}'
)
await ipc.aclose()
await stream.aclose()
raise trio.BrokenResourceError
else:
await ipc.send(
await stream.send(
{fqme: quote}
)
if cs.cancelled_caught:
lags += 1
if lags > 10:
await tractor.pause()
await tractor.breakpoint()
except (
trio.BrokenResourceError,
trio.ClosedResourceError,
trio.EndOfChannel,
):
ctx: Context = ipc._ctx
chan: Channel = ctx.chan
ctx = stream._ctx
chan = ctx.chan
if ctx:
log.warning(
'Dropped `brokerd`-quotes-feed connection:\n'
f'{broker_symbol}:'
f'{ctx.cid}@{chan.uid}'
)
if sub.throttle_rate:
assert ipc._closed
if tick_throttle:
assert stream._closed
# XXX: do we need to deregister here
# if it's done in the fee bus code?
@ -751,15 +703,69 @@ async def sample_and_broadcast(
# since there seems to be some kinda race..
bus.remove_subs(
sub_key,
{sub},
{(stream, tick_throttle)},
)
# a working tick-type-classes template
_tick_groups = {
'clears': {'trade', 'dark_trade', 'last'},
'bids': {'bid', 'bsize'},
'asks': {'ask', 'asize'},
}
def frame_ticks(
first_quote: dict,
last_quote: dict,
ticks_by_type: dict,
) -> None:
# append quotes since last iteration into the last quote's
# tick array/buffer.
ticks = last_quote.get('ticks')
# TODO: once we decide to get fancy really we should
# have a shared mem tick buffer that is just
# continually filled and the UI just ready from it
# at it's display rate.
if ticks:
# TODO: do we need this any more or can we just
# expect the receiver to unwind the below
# `ticks_by_type: dict`?
# => undwinding would potentially require a
# `dict[str, set | list]` instead with an
# included `'types' field which is an (ordered)
# set of tick type fields in the order which
# types arrived?
first_quote['ticks'].extend(ticks)
# XXX: build a tick-by-type table of lists
# of tick messages. This allows for less
# iteration on the receiver side by allowing for
# a single "latest tick event" look up by
# indexing the last entry in each sub-list.
# tbt = {
# 'types': ['bid', 'asize', 'last', .. '<type_n>'],
# 'bid': [tick0, tick1, tick2, .., tickn],
# 'asize': [tick0, tick1, tick2, .., tickn],
# 'last': [tick0, tick1, tick2, .., tickn],
# ...
# '<type_n>': [tick0, tick1, tick2, .., tickn],
# }
# append in reverse FIFO order for in-order iteration on
# receiver side.
for tick in ticks:
ttype = tick['type']
ticks_by_type[ttype].append(tick)
async def uniform_rate_send(
rate: float,
quote_stream: trio.abc.ReceiveChannel,
stream: MsgStream,
stream: tractor.MsgStream,
task_status: TaskStatus = trio.TASK_STATUS_IGNORED,
@ -788,10 +794,10 @@ async def uniform_rate_send(
diff = 0
task_status.started()
ticks_by_type: dict[
ticks_by_type: defaultdict[
str,
list[dict[str, Any]],
] = {}
list[dict],
] = defaultdict(list)
clear_types = _tick_groups['clears']
@ -819,9 +825,9 @@ async def uniform_rate_send(
# expired we aren't supposed to send yet so append
# to the tick frame.
frame_ticks(
first_quote,
last_quote,
ticks_in_order=first_quote['ticks'],
ticks_by_type=ticks_by_type,
ticks_by_type,
)
# send cycle isn't due yet so continue waiting
@ -841,8 +847,8 @@ async def uniform_rate_send(
frame_ticks(
first_quote,
ticks_in_order=first_quote['ticks'],
ticks_by_type=ticks_by_type,
first_quote,
ticks_by_type,
)
# we have a quote already so send it now.
@ -858,9 +864,9 @@ async def uniform_rate_send(
break
frame_ticks(
first_quote,
last_quote,
ticks_in_order=first_quote['ticks'],
ticks_by_type=ticks_by_type,
ticks_by_type,
)
# measured_rate = 1 / (time.time() - last_send)

View File

@ -33,8 +33,17 @@ from numpy.lib import recfunctions as rfn
import tractor
from ._util import log
from ._source import def_iohlcv_fields
from piker.types import Struct
from ._source import base_iohlc_dtype
from .types import Struct
# how much is probably dependent on lifestyle
_secs_in_day = int(60 * 60 * 24)
# we try for a buncha times, but only on a run-every-other-day kinda week.
_days_worth = 16
_default_size = _days_worth * _secs_in_day
# where to start the new data append index
_rt_buffer_start = int((_days_worth - 1) * _secs_in_day)
def cuckoff_mantracker():
@ -61,6 +70,7 @@ def cuckoff_mantracker():
mantracker._resource_tracker = ManTracker()
mantracker.register = mantracker._resource_tracker.register
mantracker.ensure_running = mantracker._resource_tracker.ensure_running
# ensure_running = mantracker._resource_tracker.ensure_running
mantracker.unregister = mantracker._resource_tracker.unregister
mantracker.getfd = mantracker._resource_tracker.getfd
@ -158,7 +168,7 @@ def _make_token(
to access a shared array.
'''
dtype = def_iohlcv_fields if dtype is None else dtype
dtype = base_iohlc_dtype if dtype is None else dtype
return _Token(
shm_name=key,
shm_first_index_name=key + "_first",
@ -248,6 +258,7 @@ class ShmArray:
# to load an empty array..
if len(a) == 0 and self._post_init:
raise RuntimeError('Empty array race condition hit!?')
# breakpoint()
return a
@ -312,7 +323,7 @@ class ShmArray:
field_map: Optional[dict[str, str]] = None,
prepend: bool = False,
update_first: bool = True,
start: int | None = None,
start: Optional[int] = None,
) -> int:
'''
@ -354,11 +365,7 @@ class ShmArray:
# tries to access ``.array`` (which due to the index
# overlap will be empty). Pretty sure we've fixed it now
# but leaving this here as a reminder.
if (
prepend
and update_first
and length
):
if prepend and update_first and length:
assert index < self._first.value
if (
@ -432,10 +439,10 @@ class ShmArray:
def open_shm_array(
size: int,
key: str | None = None,
dtype: np.dtype | None = None,
append_start_index: int | None = None,
key: Optional[str] = None,
size: int = _default_size, # see above
dtype: Optional[np.dtype] = None,
readonly: bool = False,
) -> ShmArray:
@ -500,13 +507,10 @@ def open_shm_array(
# ``ShmArray._start.value: int = 0`` and the yet-to-be written
# real-time section will start at ``ShmArray.index: int``.
# this sets the index to nearly 2/3rds into the the length of
# the buffer leaving at least a "days worth of second samples"
# for the real-time section.
if append_start_index is None:
append_start_index = round(size * 0.616)
last.value = first.value = append_start_index
# this sets the index to 3/4 of the length of the buffer
# leaving a "days worth of second samples" for the real-time
# section.
last.value = first.value = _rt_buffer_start
shmarr = ShmArray(
array,
@ -520,6 +524,7 @@ def open_shm_array(
# "unlink" created shm on process teardown by
# pushing teardown calls onto actor context stack
stack = tractor.current_actor().lifetime_stack
stack.callback(shmarr.close)
stack.callback(shmarr.destroy)
@ -614,10 +619,7 @@ def attach_shm_array(
def maybe_open_shm_array(
key: str,
size: int,
dtype: np.dtype | None = None,
append_start_index: int | None = None,
readonly: bool = False,
dtype: Optional[np.dtype] = None,
**kwargs,
) -> tuple[ShmArray, bool]:
@ -638,16 +640,11 @@ def maybe_open_shm_array(
use ``attach_shm_array``.
'''
size = kwargs.pop('size', _default_size)
try:
# see if we already know this key
token = _known_tokens[key]
return (
attach_shm_array(
token=token,
readonly=readonly,
),
False,
)
return attach_shm_array(token=token, **kwargs), False
except KeyError:
log.debug(f"Could not find {key} in shms cache")
if dtype:
@ -666,16 +663,8 @@ def maybe_open_shm_array(
# Attempt to open a block and expect
# to fail if a block has been allocated
# on the OS by someone else.
return (
open_shm_array(
key=key,
size=size,
dtype=dtype,
append_start_index=append_start_index,
readonly=readonly,
),
True,
)
return open_shm_array(key=key, dtype=dtype, **kwargs), True
def try_read(
array: np.ndarray

View File

@ -23,42 +23,26 @@ from bidict import bidict
import numpy as np
def_iohlcv_fields: list[tuple[str, type]] = [
# YES WE KNOW, this isn't needed in polars but we use it for doing
# ring-buffer like pre/append ops our our `ShmArray` real-time
# numpy-array buffering system such that there is a master index
# that can be used for index-arithmetic when write data to the
# "middle" of the array. See the ``tractor.ipc.shm`` pkg for more
# details.
('index', int),
# presume int for epoch stamps since it's most common
# and makes the most sense to avoid float rounding issues.
# TODO: if we want higher reso we should use the new
# ``time.time_ns()`` in python 3.10+
('time', int),
ohlc_fields = [
('time', float),
('open', float),
('high', float),
('low', float),
('close', float),
('volume', float),
# TODO: can we elim this from default field set to save on mem?
# i think only kraken really uses this in terms of what we get from
# their ohlc history API?
# ('bar_wap', float), # shouldn't be default right?
('bar_wap', float),
]
# remove index field
def_ohlcv_fields: list[tuple[str, type]] = def_iohlcv_fields.copy()
def_ohlcv_fields.pop(0)
assert (len(def_iohlcv_fields) - len(def_ohlcv_fields)) == 1
ohlc_with_index = ohlc_fields.copy()
ohlc_with_index.insert(0, ('index', int))
# our minimum structured array layout for ohlc data
base_iohlc_dtype = np.dtype(ohlc_with_index)
base_ohlc_dtype = np.dtype(ohlc_fields)
# TODO: for now need to construct this manually for readonly arrays, see
# https://github.com/numba/numba/issues/4511
# from numba import from_dtype
# base_ohlc_dtype = np.dtype(def_ohlc_fields)
# numba_ohlc_dtype = from_dtype(base_ohlc_dtype)
# map time frame "keys" to seconds values

View File

@ -1,510 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Mega-simple symbology cache via TOML files.
Allow backend data providers and/or brokers to stash their
symbology sets (aka the meta data we normalize into our
`.accounting.MktPair` type) to the filesystem for faster lookup and
offline usage.
'''
from __future__ import annotations
from contextlib import (
asynccontextmanager as acm,
)
from pathlib import Path
from pprint import pformat
from typing import (
Any,
Sequence,
Hashable,
TYPE_CHECKING,
)
from types import ModuleType
from rapidfuzz import process as fuzzy
import tomli_w # for fast symbol cache writing
import tractor
import trio
try:
import tomllib
except ModuleNotFoundError:
import tomli as tomllib
from msgspec import field
from piker.log import get_logger
from piker import config
from piker.types import Struct
from piker.brokers import (
open_cached_client,
get_brokermod,
)
if TYPE_CHECKING:
from ..accounting import (
Asset,
MktPair,
)
log = get_logger('data.cache')
class SymbologyCache(Struct):
'''
Asset meta-data cache which holds lookup tables for 3 sets of
market-symbology related struct-types required by the
`.accounting` and `.data` subsystems.
'''
mod: ModuleType
fp: Path
# all asset-money-systems descriptions as minimally defined by
# in `.accounting.Asset`
assets: dict[str, Asset] = field(default_factory=dict)
# backend-system pairs loaded in provider (schema) specific
# structs.
pairs: dict[str, Struct] = field(default_factory=dict)
# serialized namespace path to the backend's pair-info-`Struct`
# defn B)
pair_ns_path: tractor.msg.NamespacePath | None = None
# TODO: piker-normalized `.accounting.MktPair` table?
# loaded from the `.pairs` and a normalizer
# provided by the backend pkg.
mktmaps: dict[str, MktPair] = field(default_factory=dict)
def write_config(self) -> None:
# put the backend's pair-struct type ref at the top
# of file if possible.
cachedict: dict[str, Any] = {
'pair_ns_path': str(self.pair_ns_path) or '',
}
# serialize all tables as dicts for TOML.
for key, table in {
'assets': self.assets,
'pairs': self.pairs,
'mktmaps': self.mktmaps,
}.items():
if not table:
log.warning(
f'Asset cache table for `{key}` is empty?'
)
continue
dct = cachedict[key] = {}
for key, struct in table.items():
dct[key] = struct.to_dict(include_non_members=False)
try:
with self.fp.open(mode='wb') as fp:
tomli_w.dump(cachedict, fp)
except TypeError:
self.fp.unlink()
raise
async def load(self) -> None:
'''
Explicitly load the "symbology set" for this provider by using
2 required `Client` methods:
- `.get_assets()`: returning a table of `Asset`s
- `.get_mkt_pairs()`: returning a table of pair-`Struct`
types, custom defined by the particular backend.
AND, the required `.get_mkt_info()` module-level endpoint
which maps `fqme: str` -> `MktPair`s.
These tables are then used to fill out the `.assets`, `.pairs` and
`.mktmaps` tables on this cache instance, respectively.
'''
async with open_cached_client(self.mod.name) as client:
if get_assets := getattr(client, 'get_assets', None):
assets: dict[str, Asset] = await get_assets()
for bs_mktid, asset in assets.items():
self.assets[bs_mktid] = asset
else:
log.warning(
'No symbology cache `Asset` support for `{provider}`..\n'
'Implement `Client.get_assets()`!'
)
if get_mkt_pairs := getattr(client, 'get_mkt_pairs', None):
pairs: dict[str, Struct] = await get_mkt_pairs()
for bs_fqme, pair in pairs.items():
# NOTE: every backend defined pair should
# declare it's ns path for roundtrip
# serialization lookup.
if not getattr(pair, 'ns_path', None):
raise TypeError(
f'Pair-struct for {self.mod.name} MUST define a '
'`.ns_path: str`!\n'
f'{pair}'
)
entry = await self.mod.get_mkt_info(pair.bs_fqme)
if not entry:
continue
mkt: MktPair
pair: Struct
mkt, _pair = entry
assert _pair is pair, (
f'`{self.mod.name}` backend probably has a '
'keying-symmetry problem between the pair-`Struct` '
'returned from `Client.get_mkt_pairs()`and the '
'module level endpoint: `.get_mkt_info()`\n\n'
"Here's the struct diff:\n"
f'{_pair - pair}'
)
# NOTE XXX: this means backends MUST implement
# a `Struct.bs_mktid: str` field to provide
# a native-keyed map to their own symbol
# set(s).
self.pairs[pair.bs_mktid] = pair
# NOTE: `MktPair`s are keyed here using piker's
# internal FQME schema so that search,
# accounting and feed init can be accomplished
# a sane, uniform, normalized basis.
self.mktmaps[mkt.fqme] = mkt
self.pair_ns_path: str = tractor.msg.NamespacePath.from_ref(
pair,
)
else:
log.warning(
'No symbology cache `Pair` support for `{provider}`..\n'
'Implement `Client.get_mkt_pairs()`!'
)
return self
@classmethod
def from_dict(
cls: type,
data: dict,
**kwargs,
) -> SymbologyCache:
# normal init inputs
cache = cls(**kwargs)
# XXX WARNING: this may break if backend namespacing
# changes (eg. `Pair` class def is moved to another
# module) in which case you can manually update the
# `pair_ns_path` in the symcache file and try again.
# TODO: probably a verbose error about this?
Pair: type = tractor.msg.NamespacePath(
str(data['pair_ns_path'])
).load_ref()
pairtable = data.pop('pairs')
for key, pairtable in pairtable.items():
# allow each serialized pair-dict-table to declare its
# specific struct type's path in cases where a backend
# supports multiples (normally with different
# schemas..) and we are storing them in a flat `.pairs`
# table.
ThisPair = Pair
if this_pair_type := pairtable.get('ns_path'):
ThisPair: type = tractor.msg.NamespacePath(
str(this_pair_type)
).load_ref()
pair: Struct = ThisPair(**pairtable)
cache.pairs[key] = pair
from ..accounting import (
Asset,
MktPair,
)
# load `dict` -> `Asset`
assettable = data.pop('assets')
for name, asdict in assettable.items():
cache.assets[name] = Asset.from_msg(asdict)
# load `dict` -> `MktPair`
dne: list[str] = []
mkttable = data.pop('mktmaps')
for fqme, mktdict in mkttable.items():
mkt = MktPair.from_msg(mktdict)
assert mkt.fqme == fqme
# sanity check asset refs from those (presumably)
# loaded asset set above.
src: Asset = cache.assets[mkt.src.name]
assert src == mkt.src
dst: Asset
if not (dst := cache.assets.get(mkt.dst.name)):
dne.append(mkt.dst.name)
continue
else:
assert dst.name == mkt.dst.name
cache.mktmaps[fqme] = mkt
log.warning(
f'These `MktPair.dst: Asset`s DNE says `{cache.mod.name}`?\n'
f'{pformat(dne)}'
)
return cache
@staticmethod
async def from_scratch(
mod: ModuleType,
fp: Path,
**kwargs,
) -> SymbologyCache:
'''
Generate (a) new symcache (contents) entirely from scratch
including all (TOML) serialized data and file.
'''
log.info(f'GENERATING symbology cache for `{mod.name}`')
cache = SymbologyCache(
mod=mod,
fp=fp,
**kwargs,
)
await cache.load()
cache.write_config()
return cache
def search(
self,
pattern: str,
table: str = 'mktmaps'
) -> dict[str, Struct]:
'''
(Fuzzy) search this cache's `.mktmaps` table, which is
keyed by FQMEs, for `pattern: str` and return the best
matches in a `dict` including the `MktPair` values.
'''
matches = fuzzy.extract(
pattern,
getattr(self, table),
score_cutoff=50,
)
# repack in dict[fqme, MktPair] form
return {
item[0].fqme: item[0]
for item in matches
}
# actor-process-local in-mem-cache of symcaches (by backend).
_caches: dict[str, SymbologyCache] = {}
def mk_cachefile(
provider: str,
) -> Path:
cachedir: Path = config.get_conf_dir() / '_cache'
if not cachedir.is_dir():
log.info(f'Creating `nativedb` director: {cachedir}')
cachedir.mkdir()
cachefile: Path = cachedir / f'{str(provider)}.symcache.toml'
cachefile.touch()
return cachefile
@acm
async def open_symcache(
mod_or_name: ModuleType | str,
reload: bool = False,
only_from_memcache: bool = False, # no API req
_no_symcache: bool = False, # no backend support
) -> SymbologyCache:
if isinstance(mod_or_name, str):
mod = get_brokermod(mod_or_name)
else:
mod: ModuleType = mod_or_name
provider: str = mod.name
cachefile: Path = mk_cachefile(provider)
# NOTE: certain backends might not support a symbology cache
# (easily) and thus we allow for an empty instance to be loaded
# and manually filled in at the whim of the caller presuming
# the backend pkg-module is annotated appropriately.
if (
getattr(mod, '_no_symcache', False)
or _no_symcache
):
yield SymbologyCache(
mod=mod,
fp=cachefile,
)
# don't do nuttin
return
# actor-level cache-cache XD
global _caches
if not reload:
try:
yield _caches[provider]
except KeyError:
msg: str = (
f'No asset info cache exists yet for `{provider}`'
)
if only_from_memcache:
raise RuntimeError(msg)
else:
log.warning(msg)
# if no cache exists or an explicit reload is requested, load
# the provider API and call appropriate endpoints to populate
# the mkt and asset tables.
if (
reload
or not cachefile.is_file()
):
cache = await SymbologyCache.from_scratch(
mod=mod,
fp=cachefile,
)
else:
log.info(
f'Loading EXISTING `{mod.name}` symbology cache:\n'
f'> {cachefile}'
)
import time
now = time.time()
with cachefile.open('rb') as existing_fp:
data: dict[str, dict] = tomllib.load(existing_fp)
log.runtime(f'SYMCACHE TOML LOAD TIME: {time.time() - now}')
# if there's an empty file for some reason we need
# to do a full reload as well!
if not data:
cache = await SymbologyCache.from_scratch(
mod=mod,
fp=cachefile,
)
else:
cache = SymbologyCache.from_dict(
data,
mod=mod,
fp=cachefile,
)
# TODO: use a real profiling sys..
# https://github.com/pikers/piker/issues/337
log.info(f'SYMCACHE LOAD TIME: {time.time() - now}')
yield cache
# TODO: write only when changes detected? but that should
# never happen right except on reload?
# cache.write_config()
def get_symcache(
provider: str,
force_reload: bool = False,
) -> SymbologyCache:
'''
Get any available symbology/assets cache from sync code by
(maybe) manually running `trio` to do the work.
'''
# spawn tractor runtime and generate cache
# if not existing.
async def sched_gen_symcache():
async with (
# only for runtime's debug mode
tractor.open_nursery(debug_mode=True),
open_symcache(
get_brokermod(provider),
reload=force_reload,
) as symcache,
):
return symcache
try:
symcache: SymbologyCache = trio.run(sched_gen_symcache)
assert symcache
except BaseException:
import pdbp
pdbp.xpm()
return symcache
def match_from_pairs(
pairs: dict[str, Struct],
query: str,
score_cutoff: int = 50,
**extract_kwargs,
) -> dict[str, Struct]:
'''
Fuzzy search over a "pairs table" maintained by most backends
as part of their symbology-info caching internals.
Scan the native symbol key set and return best ranked
matches back in a new `dict`.
'''
# TODO: somehow cache this list (per call) like we were in
# `open_symbol_search()`?
keys: list[str] = list(pairs)
matches: list[tuple[
Sequence[Hashable], # matching input key
Any, # scores
Any,
]] = fuzzy.extract(
# NOTE: most backends provide keys uppercased
query=query,
choices=keys,
score_cutoff=score_cutoff,
**extract_kwargs,
)
# pop and repack pairs in output dict
matched_pairs: dict[str, Struct] = {}
for item in matches:
pair_key: str = item[0]
matched_pairs[pair_key] = pairs[pair_key]
return matched_pairs

View File

@ -50,8 +50,8 @@ from trio_websocket._impl import (
ConnectionTimeout,
)
from piker.types import Struct
from ._util import log
from .types import Struct
class NoBsWs:
@ -234,13 +234,10 @@ async def _reconnect_forever(
f'{url} trying (RE)CONNECT'
)
ws: WebSocketConnection
try:
async with (
trio.open_nursery() as n,
open_websocket_url(url) as ws,
):
cs = nobsws._cs = n.cancel_scope
async with trio.open_nursery() as n:
cs = nobsws._cs = n.cancel_scope
ws: WebSocketConnection
async with open_websocket_url(url) as ws:
nobsws._ws = ws
log.info(
f'{src_mod}\n'
@ -272,11 +269,9 @@ async def _reconnect_forever(
# to let tasks run **inside** the ws open block above.
nobsws._connected.set()
await trio.sleep_forever()
except HandshakeError:
log.exception('Retrying connection')
# ws & nursery block ends
# ws open block end
# nursery block end
nobsws._connected = trio.Event()
if cs.cancelled_caught:
log.cancel(
@ -289,8 +284,7 @@ async def _reconnect_forever(
and not nobsws._connected.is_set()
)
# -> from here, move to next reconnect attempt iteration
# in the while loop above Bp
# -> from here, move to next reconnect attempt
else:
log.exception(
@ -359,8 +353,8 @@ async def open_autorecon_ws(
'''
JSONRPC response-request style machinery for transparent multiplexing
of msgs over a `NoBsWs`.
JSONRPC response-request style machinery for transparent multiplexing of msgs
over a NoBsWs.
'''
@ -377,82 +371,43 @@ async def open_jsonrpc_session(
url: str,
start_id: int = 0,
response_type: type = JSONRPCResult,
msg_recv_timeout: float = float('inf'),
# ^NOTE, since only `deribit` is using this jsonrpc stuff atm
# and options mkts are generally "slow moving"..
#
# FURTHER if we break the underlying ws connection then since we
# don't pass a `fixture` to the task that manages `NoBsWs`, i.e.
# `_reconnect_forever()`, the jsonrpc "transport pipe" get's
# broken and never restored with wtv init sequence is required to
# re-establish a working req-resp session.
request_type: Optional[type] = None,
request_hook: Optional[Callable] = None,
error_hook: Optional[Callable] = None,
) -> Callable[[str, dict], dict]:
'''
Init a json-RPC-over-websocket connection to the provided `url`.
A `json_rpc: Callable[[str, dict], dict` is delivered to the
caller for sending requests and a bg-`trio.Task` handles
processing of response msgs including error reporting/raising in
the parent/caller task.
'''
# NOTE, store all request msgs so we can raise errors on the
# caller side!
req_msgs: dict[int, dict] = {}
async with (
trio.open_nursery() as tn,
open_autorecon_ws(
url=url,
msg_recv_timeout=msg_recv_timeout,
) as ws
trio.open_nursery() as n,
open_autorecon_ws(url) as ws
):
rpc_id: Iterable[int] = count(start_id)
rpc_id: Iterable = count(start_id)
rpc_results: dict[int, dict] = {}
async def json_rpc(
method: str,
params: dict,
) -> dict:
async def json_rpc(method: str, params: dict) -> dict:
'''
perform a json rpc call and wait for the result, raise exception in
case of error field present on response
'''
nonlocal req_msgs
req_id: int = next(rpc_id)
msg = {
'jsonrpc': '2.0',
'id': req_id,
'id': next(rpc_id),
'method': method,
'params': params
}
_id = msg['id']
result = rpc_results[_id] = {
rpc_results[_id] = {
'result': None,
'error': None,
'event': trio.Event(), # signal caller resp arrived
'event': trio.Event()
}
req_msgs[_id] = msg
await ws.send_msg(msg)
# wait for reponse before unblocking requester code
await rpc_results[_id]['event'].wait()
if (maybe_result := result['result']):
ret = maybe_result
del rpc_results[_id]
ret = rpc_results[_id]['result']
else:
err = result['error']
raise Exception(
f'JSONRPC request failed\n'
f'req: {msg}\n'
f'resp: {err}\n'
)
del rpc_results[_id]
if ret.error is not None:
raise Exception(json.dumps(ret.error, indent=4))
@ -467,7 +422,6 @@ async def open_jsonrpc_session(
the server side.
'''
nonlocal req_msgs
async for msg in ws:
match msg:
case {
@ -491,28 +445,19 @@ async def open_jsonrpc_session(
'params': _,
}:
log.debug(f'Recieved\n{msg}')
if request_hook:
await request_hook(request_type(**msg))
case {
'error': error
}:
# retreive orig request msg, set error
# response in original "result" msg,
# THEN FINALLY set the event to signal caller
# to raise the error in the parent task.
req_id: int = error['id']
req_msg: dict = req_msgs[req_id]
result: dict = rpc_results[req_id]
result['error'] = error
result['event'].set()
log.error(
f'JSONRPC request failed\n'
f'req: {req_msg}\n'
f'resp: {error}\n'
)
log.warning(f'Recieved\n{error}')
if error_hook:
await error_hook(response_type(**msg))
case _:
log.warning(f'Unhandled JSON-RPC msg!?\n{msg}')
tn.start_soon(recv_task)
n.start_soon(recv_task)
yield json_rpc
tn.cancel_scope.cancel()
n.cancel_scope.cancel()

255
piker/data/cli.py 100644
View File

@ -0,0 +1,255 @@
# piker: trading gear for hackers
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of piker0)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
marketstore cli.
"""
import trio
import tractor
import click
# from ..service.marketstore import (
# # get_client,
# # stream_quotes,
# ingest_quote_stream,
# # _url,
# # _tick_tbk_ids,
# # mk_tbk,
# )
from ..cli import cli
from .. import watchlists as wl
from ._util import (
log,
)
@cli.command()
@click.option(
'--url',
default='ws://localhost:5993/ws',
help='HTTP URL of marketstore instance'
)
@click.argument('names', nargs=-1)
@click.pass_obj
def ms_stream(
config: dict,
names: list[str],
url: str,
) -> None:
'''
Connect to a marketstore time bucket stream for (a set of) symbols(s)
and print to console.
'''
async def main():
# async for quote in stream_quotes(symbols=names):
# log.info(f"Received quote:\n{quote}")
...
trio.run(main)
# @cli.command()
# @click.option(
# '--url',
# default=_url,
# help='HTTP URL of marketstore instance'
# )
# @click.argument('names', nargs=-1)
# @click.pass_obj
# def ms_destroy(config: dict, names: list[str], url: str) -> None:
# """Destroy symbol entries in the local marketstore instance.
# """
# async def main():
# nonlocal names
# async with get_client(url) as client:
#
# if not names:
# names = await client.list_symbols()
#
# # default is to wipe db entirely.
# answer = input(
# "This will entirely wipe you local marketstore db @ "
# f"{url} of the following symbols:\n {pformat(names)}"
# "\n\nDelete [N/y]?\n")
#
# if answer == 'y':
# for sym in names:
# # tbk = _tick_tbk.format(sym)
# tbk = tuple(sym, *_tick_tbk_ids)
# print(f"Destroying {tbk}..")
# await client.destroy(mk_tbk(tbk))
# else:
# print("Nothing deleted.")
#
# tractor.run(main)
@cli.command()
@click.option(
'--tsdb_host',
default='localhost'
)
@click.option(
'--tsdb_port',
default=5993
)
@click.argument('symbols', nargs=-1)
@click.pass_obj
def storesh(
config,
tl,
host,
port,
symbols: list[str],
):
'''
Start an IPython shell ready to query the local marketstore db.
'''
from piker.data.marketstore import open_tsdb_client
from piker.service import open_piker_runtime
async def main():
nonlocal symbols
async with open_piker_runtime(
'storesh',
enable_modules=['piker.service._ahab'],
):
symbol = symbols[0]
async with open_tsdb_client(symbol):
# TODO: ask if user wants to write history for detected
# available shm buffers?
from tractor.trionics import ipython_embed
await ipython_embed()
trio.run(main)
@cli.command()
@click.option(
'--host',
default='localhost'
)
@click.option(
'--port',
default=5993
)
@click.option(
'--delete',
'-d',
is_flag=True,
help='Delete history (1 Min) for symbol(s)',
)
@click.argument('symbols', nargs=-1)
@click.pass_obj
def storage(
config,
host,
port,
symbols: list[str],
delete: bool,
):
'''
Start an IPython shell ready to query the local marketstore db.
'''
from piker.service.marketstore import open_tsdb_client
from piker.service import open_piker_runtime
async def main():
nonlocal symbols
async with open_piker_runtime(
'tsdb_storage',
enable_modules=['piker.service._ahab'],
):
symbol = symbols[0]
async with open_tsdb_client(symbol) as storage:
if delete:
for fqme in symbols:
syms = await storage.client.list_symbols()
resp60s = await storage.delete_ts(fqme, 60)
msgish = resp60s.ListFields()[0][1]
if 'error' in str(msgish):
# TODO: MEGA LOL, apparently the symbols don't
# flush out until you refresh something or other
# (maybe the WALFILE)... #lelandorlulzone, classic
# alpaca(Rtm) design here ..
# well, if we ever can make this work we
# probably want to dogsplain the real reason
# for the delete errurz..llululu
if fqme not in syms:
log.error(f'Pair {fqme} dne in DB')
log.error(f'Deletion error: {fqme}\n{msgish}')
resp1s = await storage.delete_ts(fqme, 1)
msgish = resp1s.ListFields()[0][1]
if 'error' in str(msgish):
log.error(f'Deletion error: {fqme}\n{msgish}')
trio.run(main)
# @cli.command()
# @click.option('--test-file', '-t', help='Test quote stream file')
# @click.option('--tl', is_flag=True, help='Enable tractor logging')
# @click.argument('name', nargs=1, required=True)
# @click.pass_obj
# def ingest(config, name, test_file, tl):
# '''
# Ingest real-time broker quotes and ticks to a marketstore instance.
# '''
# # global opts
# loglevel = config['loglevel']
# tractorloglevel = config['tractorloglevel']
# # log = config['log']
# watchlist_from_file = wl.ensure_watchlists(config['wl_path'])
# watchlists = wl.merge_watchlist(watchlist_from_file, wl._builtins)
# symbols = watchlists[name]
# grouped_syms = {}
# for sym in symbols:
# symbol, _, provider = sym.rpartition('.')
# if provider not in grouped_syms:
# grouped_syms[provider] = []
# grouped_syms[provider].append(symbol)
# async def entry_point():
# async with tractor.open_nursery() as n:
# for provider, symbols in grouped_syms.items():
# await n.run_in_actor(
# ingest_quote_stream,
# name='ingest_marketstore',
# symbols=symbols,
# brokername=provider,
# tries=1,
# actorloglevel=loglevel,
# loglevel=tractorloglevel
# )
# tractor.run(entry_point)

View File

@ -28,7 +28,6 @@ module.
from __future__ import annotations
from collections import (
defaultdict,
abc,
)
from contextlib import asynccontextmanager as acm
from functools import partial
@ -37,70 +36,51 @@ from types import ModuleType
from typing import (
Any,
AsyncContextManager,
Optional,
Awaitable,
Sequence,
Union,
)
import trio
from trio.abc import ReceiveChannel
from trio_typing import TaskStatus
import tractor
from tractor import trionics
from tractor.trionics import (
maybe_open_context,
gather_contexts,
)
from piker.accounting import (
MktPair,
unpack_fqme,
)
from piker.types import Struct
from piker.brokers import get_brokermod
from piker.service import (
maybe_spawn_brokerd,
)
from piker.calc import humanize
from ..brokers import get_brokermod
from ..calc import humanize
from ._util import (
log,
get_console_log,
)
from ..service import (
maybe_spawn_brokerd,
)
from .flows import Flume
from .validate import (
FeedInit,
validate_backend,
)
from ..tsp import (
from .history import (
manage_history,
)
from .ingest import get_ingestormod
from .types import Struct
from ..accounting import (
MktPair,
unpack_fqme,
)
from ..ui import _search
from ._sampling import (
sample_and_broadcast,
uniform_rate_send,
)
class Sub(Struct, frozen=True):
'''
A live feed subscription entry.
Contains meta-data on the remote-actor type (in functionality
terms) as well as refs to IPC streams and sampler runtime
params.
'''
ipc: tractor.MsgStream
send_chan: trio.abc.SendChannel | None = None
# tick throttle rate in Hz; determines how live
# quotes/ticks should be downsampled before relay
# to the receiving remote consumer (process).
throttle_rate: float | None = None
_throttle_cs: trio.CancelScope | None = None
# TODO: actually stash comms info for the far end to allow
# `.tsp`, `.fsp` and `.data._sampling` sub-systems to re-render
# the data view as needed via msging with the `._remote_ctl`
# ipc ctx.
rc_ui: bool = False
class _FeedsBus(Struct):
'''
Data feeds broadcaster and persistence management.
@ -125,7 +105,13 @@ class _FeedsBus(Struct):
_subscribers: defaultdict[
str,
set[Sub]
set[
tuple[
tractor.MsgStream | trio.MemorySendChannel,
# tractor.Context,
float | None, # tick throttle in Hz
]
]
] = defaultdict(set)
async def start_task(
@ -140,8 +126,6 @@ class _FeedsBus(Struct):
trio.CancelScope] = trio.TASK_STATUS_IGNORED,
) -> None:
with trio.CancelScope() as cs:
# TODO: shouldn't this be a direct await to avoid
# cancellation contagion to the bus nursery!?!?!
await self.nursery.start(
target,
*args,
@ -159,28 +143,33 @@ class _FeedsBus(Struct):
def get_subs(
self,
key: str,
) -> set[Sub]:
) -> set[
tuple[
Union[tractor.MsgStream, trio.MemorySendChannel],
# tractor.Context,
float | None, # tick throttle in Hz
]
]:
'''
Get the ``set`` of consumer subscription entries for the given key.
'''
return self._subscribers[key]
def subs_items(self) -> abc.ItemsView[str, set[Sub]]:
return self._subscribers.items()
def add_subs(
self,
key: str,
subs: set[Sub],
) -> set[Sub]:
subs: set[tuple[
tractor.MsgStream | trio.MemorySendChannel,
# tractor.Context,
float | None, # tick throttle in Hz
]],
) -> set[tuple]:
'''
Add a ``set`` of consumer subscription entries for the given key.
'''
_subs: set[Sub] = self._subscribers.setdefault(key, set())
_subs = self._subscribers[key]
_subs.update(subs)
return _subs
@ -194,7 +183,7 @@ class _FeedsBus(Struct):
Remove a ``set`` of consumer subscription entries for key.
'''
_subs: set[tuple] = self.get_subs(key)
_subs = self.get_subs(key)
_subs.difference_update(subs)
return _subs
@ -204,7 +193,7 @@ _bus: _FeedsBus = None
def get_feed_bus(
brokername: str,
nursery: trio.Nursery | None = None,
nursery: Optional[trio.Nursery] = None,
) -> _FeedsBus:
'''
@ -237,7 +226,6 @@ async def allocate_persistent_feed(
loglevel: str,
start_stream: bool = True,
init_timeout: float = 616,
task_status: TaskStatus[FeedInit] = trio.TASK_STATUS_IGNORED,
@ -279,23 +267,22 @@ async def allocate_persistent_feed(
# TODO: probably make a struct msg type for this as well
# since eventually we do want to have more efficient IPC..
first_quote: dict[str, Any]
with trio.fail_after(init_timeout):
(
init_msgs,
first_quote,
) = await bus.nursery.start(
partial(
mod.stream_quotes,
send_chan=send,
feed_is_live=feed_is_live,
(
init_msgs,
first_quote,
) = await bus.nursery.start(
partial(
mod.stream_quotes,
send_chan=send,
feed_is_live=feed_is_live,
# NOTE / TODO: eventualy we may support providing more then
# one input here such that a datad daemon can multiplex
# multiple live feeds from one task, instead of getting
# a new request (and thus new task) for each subscription.
symbols=[symstr],
)
# NOTE / TODO: eventualy we may support providing more then
# one input here such that a datad daemon can multiplex
# multiple live feeds from one task, instead of getting
# a new request (and thus new task) for each subscription.
symbols=[symstr],
)
)
# TODO: this is indexed by symbol for now since we've planned (for
# some time) to expect backends to handle single
@ -345,6 +332,7 @@ async def allocate_persistent_feed(
) = await bus.nursery.start(
manage_history,
mod,
bus,
mkt,
some_data_ready,
feed_is_live,
@ -352,7 +340,7 @@ async def allocate_persistent_feed(
# yield back control to starting nursery once we receive either
# some history or a real-time quote.
log.info(f'loading OHLCV history: {fqme}')
log.info(f'waiting on history to load: {fqme}')
await some_data_ready.wait()
flume = Flume(
@ -382,8 +370,7 @@ async def allocate_persistent_feed(
mkt.bs_fqme: flume,
})
# signal the ``open_feed_bus()`` caller task to continue since
# we now have (some) history pushed to the shm buffer.
# signal the ``open_feed_bus()`` caller task to continue
task_status.started(init)
if not start_stream:
@ -421,13 +408,7 @@ async def allocate_persistent_feed(
rt_shm.array['time'][1] = ts + 1
elif hist_shm.array.size == 0:
for i in range(100):
await trio.sleep(0.1)
if hist_shm.array.size > 0:
break
else:
await tractor.pause()
raise RuntimeError(f'History (1m) Shm for {fqme} is empty!?')
raise RuntimeError(f'History (1m) Shm for {fqme} is empty!?')
# wait the spawning parent task to register its subscriber
# send-stream entry before we start the sample loop.
@ -457,9 +438,8 @@ async def open_feed_bus(
symbols: list[str], # normally expected to the broker-specific fqme
loglevel: str = 'error',
tick_throttle: float | None = None,
tick_throttle: Optional[float] = None,
start_stream: bool = True,
allow_remote_ctl_ui: bool = False,
) -> dict[
str, # fqme
@ -474,12 +454,8 @@ async def open_feed_bus(
if loglevel is None:
loglevel = tractor.current_actor().loglevel
# XXX: required to propagate ``tractor`` loglevel to piker
# logging
get_console_log(
loglevel
or tractor.current_actor().loglevel
)
# XXX: required to propagate ``tractor`` loglevel to piker logging
get_console_log(loglevel or tractor.current_actor().loglevel)
# local state sanity checks
# TODO: check for any stale shm entries for this symbol
@ -489,7 +465,7 @@ async def open_feed_bus(
assert 'brokerd' in servicename
assert brokername in servicename
bus: _FeedsBus = get_feed_bus(brokername)
bus = get_feed_bus(brokername)
sub_registered = trio.Event()
flumes: dict[str, Flume] = {}
@ -536,10 +512,10 @@ async def open_feed_bus(
# pack for ``.started()`` sync msg
flumes[fqme] = flume
# we use the broker-specific fqme (bs_fqme) for the sampler
# subscription since the backend isn't (yet) expected to
# append it's own name to the fqme, so we filter on keys
# which *do not* include that name (e.g .ib) .
# we use the broker-specific fqme (bs_fqme) for the
# sampler subscription since the backend isn't (yet) expected to
# append it's own name to the fqme, so we filter on keys which
# *do not* include that name (e.g .ib) .
bus._subscribers.setdefault(bs_fqme, set())
# sync feed subscribers with flume handles
@ -578,60 +554,49 @@ async def open_feed_bus(
# that the ``sample_and_broadcast()`` task (spawned inside
# ``allocate_persistent_feed()``) will push real-time quote
# (ticks) to this new consumer.
cs: trio.CancelScope | None = None
send: trio.MemorySendChannel | None = None
if tick_throttle:
flume.throttle_rate = tick_throttle
# open a bg task which receives quotes over a mem
# chan and only pushes them to the target
# actor-consumer at a max ``tick_throttle``
# (instantaneous) rate.
# open a bg task which receives quotes over a mem chan
# and only pushes them to the target actor-consumer at
# a max ``tick_throttle`` instantaneous rate.
send, recv = trio.open_memory_channel(2**10)
# NOTE: the ``.send`` channel here is a swapped-in
# trio mem chan which gets `.send()`-ed by the normal
# sampler task but instead of being sent directly
# over the IPC msg stream it's the throttle task
# does the work of incrementally forwarding to the
# IPC stream at the throttle rate.
cs: trio.CancelScope = await bus.start_task(
cs = await bus.start_task(
uniform_rate_send,
tick_throttle,
recv,
stream,
)
# NOTE: so the ``send`` channel here is actually a swapped
# in trio mem chan which gets pushed by the normal sampler
# task but instead of being sent directly over the IPC msg
# stream it's the throttle task does the work of
# incrementally forwarding to the IPC stream at the throttle
# rate.
send._ctx = ctx # mock internal ``tractor.MsgStream`` ref
sub = (send, tick_throttle)
sub = Sub(
ipc=stream,
send_chan=send,
throttle_rate=tick_throttle,
_throttle_cs=cs,
rc_ui=allow_remote_ctl_ui,
)
else:
sub = (stream, tick_throttle)
# TODO: add an api for this on the bus?
# maybe use the current task-id to key the sub list that's
# added / removed? Or maybe we can add a general
# pause-resume by sub-key api?
bs_fqme = fqme.removesuffix(f'.{brokername}')
local_subs.setdefault(
bs_fqme,
set()
).add(sub)
bus.add_subs(
bs_fqme,
{sub}
)
local_subs.setdefault(bs_fqme, set()).add(sub)
bus.add_subs(bs_fqme, {sub})
# sync caller with all subs registered state
sub_registered.set()
uid: tuple[str, str] = ctx.chan.uid
uid = ctx.chan.uid
try:
# ctrl protocol for start/stop of live quote streams
# based on UI state (eg. don't need a stream when
# a symbol isn't being displayed).
# ctrl protocol for start/stop of quote streams based on UI
# state (eg. don't need a stream when a symbol isn't being
# displayed).
async for msg in stream:
if msg == 'pause':
@ -677,12 +642,9 @@ class Feed(Struct):
'''
mods: dict[str, ModuleType] = {}
portals: dict[ModuleType, tractor.Portal] = {}
flumes: dict[
str, # FQME
Flume,
] = {}
flumes: dict[str, Flume] = {}
streams: dict[
str, # broker name
str,
trio.abc.ReceiveChannel[dict[str, Any]],
] = {}
@ -756,7 +718,7 @@ async def install_brokerd_search(
async with portal.open_context(
brokermod.open_symbol_search
) as (ctx, _):
) as (ctx, cache):
# shield here since we expect the search rpc to be
# cancellable by the user as they see fit.
@ -769,7 +731,6 @@ async def install_brokerd_search(
except trio.EndOfChannel:
return {}
from piker.ui import _search
async with _search.register_symbol_search(
provider_name=brokermod.name,
@ -788,7 +749,7 @@ async def install_brokerd_search(
async def maybe_open_feed(
fqmes: list[str],
loglevel: str | None = None,
loglevel: Optional[str] = None,
**kwargs,
@ -804,7 +765,7 @@ async def maybe_open_feed(
'''
fqme = fqmes[0]
async with trionics.maybe_open_context(
async with maybe_open_context(
acm_func=open_feed,
kwargs={
'fqmes': fqmes,
@ -824,7 +785,7 @@ async def maybe_open_feed(
# add a new broadcast subscription for the quote stream
# if this feed is likely already in use
async with trionics.gather_contexts(
async with gather_contexts(
mngrs=[stream.subscribe() for stream in feed.streams.values()]
) as bstreams:
for bstream, flume in zip(bstreams, feed.flumes.values()):
@ -848,8 +809,6 @@ async def open_feed(
start_stream: bool = True,
tick_throttle: float | None = None, # Hz
allow_remote_ctl_ui: bool = False,
) -> Feed:
'''
Open a "data feed" which provides streamed real-time quotes.
@ -886,7 +845,7 @@ async def open_feed(
)
portals: tuple[tractor.Portal]
async with trionics.gather_contexts(
async with gather_contexts(
brokerd_ctxs,
) as portals:
@ -932,19 +891,13 @@ async def open_feed(
# of these stream open sequences sequentially per
# backend? .. need some thot!
allow_overruns=True,
# NOTE: UI actors (like charts) can allow
# remote control of certain graphics rendering
# capabilities via the
# `.ui._remote_ctl.remote_annotate()` msg loop.
allow_remote_ctl_ui=allow_remote_ctl_ui,
)
)
assert len(feed.mods) == len(feed.portals)
async with (
trionics.gather_contexts(bus_ctxs) as ctxs,
gather_contexts(bus_ctxs) as ctxs,
):
stream_ctxs: list[tractor.MsgStream] = []
for (
@ -954,7 +907,6 @@ async def open_feed(
for fqme, flume_msg in flumes_msg_dict.items():
flume = Flume.from_msg(flume_msg)
# assert flume.mkt.fqme == fqme
feed.flumes[fqme] = flume
@ -986,7 +938,7 @@ async def open_feed(
brokermod: ModuleType
fqmes: list[str]
async with (
trionics.gather_contexts(stream_ctxs) as streams,
gather_contexts(stream_ctxs) as streams,
):
for (
stream,
@ -1002,12 +954,6 @@ async def open_feed(
if brokermod.name == flume.mkt.broker:
flume.stream = stream
assert (
len(feed.mods)
==
len(feed.portals)
==
len(feed.streams)
)
assert len(feed.mods) == len(feed.portals) == len(feed.streams)
yield feed

View File

@ -30,27 +30,53 @@ import tractor
import pendulum
import numpy as np
from piker.types import Struct
from ..accounting import MktPair
from ._util import log
from .types import Struct
from ._sharedmem import (
attach_shm_array,
ShmArray,
_Token,
)
# from .._profile import (
# Profiler,
# pg_profile_enabled,
# )
if TYPE_CHECKING:
from ..accounting import MktPair
# from pyqtgraph import PlotItem
from .feed import Feed
# TODO: ideas for further abstractions as per
# https://github.com/pikers/piker/issues/216 and
# https://github.com/pikers/piker/issues/270:
# - a ``Cascade`` would be the minimal "connection" of 2 ``Flumes``
# as per circuit parlance:
# https://en.wikipedia.org/wiki/Two-port_network#Cascade_connection
# - could cover the combination of our `FspAdmin` and the
# backend `.fsp._engine` related machinery to "connect" one flume
# to another?
# - a (financial signal) ``Flow`` would be the a "collection" of such
# minmial cascades. Some engineering based jargon concepts:
# - https://en.wikipedia.org/wiki/Signal_chain
# - https://en.wikipedia.org/wiki/Daisy_chain_(electrical_engineering)
# - https://en.wikipedia.org/wiki/Audio_signal_flow
# - https://en.wikipedia.org/wiki/Digital_signal_processing#Implementation
# - https://en.wikipedia.org/wiki/Dataflow_programming
# - https://en.wikipedia.org/wiki/Signal_programming
# - https://en.wikipedia.org/wiki/Incremental_computing
class Flume(Struct):
'''
Composite reference type which points to all the addressing
handles and other meta-data necessary for the read, measure and
management of a set of real-time updated data flows.
Composite reference type which points to all the addressing handles
and other meta-data necessary for the read, measure and management
of a set of real-time updated data flows.
Can be thought of as a "flow descriptor" or "flow frame" which
describes the high level properties of a set of data flows that
can be used seamlessly across process-memory boundaries.
describes the high level properties of a set of data flows that can
be used seamlessly across process-memory boundaries.
Each instance's sub-components normally includes:
- a msg oriented quote stream provided via an IPC transport
@ -73,7 +99,6 @@ class Flume(Struct):
# private shm refs loaded dynamically from tokens
_hist_shm: ShmArray | None = None
_rt_shm: ShmArray | None = None
_readonly: bool = True
stream: tractor.MsgStream | None = None
izero_hist: int = 0
@ -90,7 +115,7 @@ class Flume(Struct):
if self._rt_shm is None:
self._rt_shm = attach_shm_array(
token=self._rt_shm_token,
readonly=self._readonly,
readonly=True,
)
return self._rt_shm
@ -103,10 +128,12 @@ class Flume(Struct):
'No shm token has been set for the history buffer?'
)
if self._hist_shm is None:
if (
self._hist_shm is None
):
self._hist_shm = attach_shm_array(
token=self._hist_shm_token,
readonly=self._readonly,
readonly=True,
)
return self._hist_shm
@ -125,10 +152,10 @@ class Flume(Struct):
period and ratio between them.
'''
times: np.ndarray = self.hist_shm.array['time']
end: float | int = pendulum.from_timestamp(times[-1])
start: float | int = pendulum.from_timestamp(times[times != times[-1]][-1])
hist_step_size_s: float = (end - start).seconds
times = self.hist_shm.array['time']
end = pendulum.from_timestamp(times[-1])
start = pendulum.from_timestamp(times[times != times[-1]][-1])
hist_step_size_s = (end - start).seconds
times = self.rt_shm.array['time']
end = pendulum.from_timestamp(times[-1])
@ -148,25 +175,17 @@ class Flume(Struct):
msg = self.to_dict()
msg['mkt'] = self.mkt.to_dict()
# NOTE: pop all un-msg-serializable fields:
# - `tractor.MsgStream`
# - `Feed`
# - `Shmarray`
# it's expected the `.from_msg()` on the other side
# will get instead some kind of msg-compat version
# that it can load.
# can't serialize the stream or feed objects, it's expected
# you'll have a ref to it since this msg should be rxed on
# a stream on whatever far end IPC..
msg.pop('stream')
msg.pop('feed')
msg.pop('_rt_shm')
msg.pop('_hist_shm')
return msg
@classmethod
def from_msg(
cls,
msg: dict,
readonly: bool = True,
) -> dict:
'''
@ -175,13 +194,8 @@ class Flume(Struct):
'''
mkt_msg = msg.pop('mkt')
from ..accounting import MktPair # cycle otherwise..
mkt = MktPair.from_msg(mkt_msg)
msg |= {'_readonly': readonly}
return cls(
mkt=mkt,
**msg,
)
return cls(mkt=mkt, **msg)
def get_index(
self,
@ -219,3 +233,5 @@ class Flume(Struct):
np.all(np.isin(vlm, -1))
or np.all(np.isnan(vlm))
)

View File

@ -0,0 +1,810 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Historical data business logic for load, backfill and tsdb storage.
'''
from __future__ import annotations
from collections import (
Counter,
)
from datetime import datetime
from functools import partial
import time
from types import ModuleType
from typing import (
Callable,
Optional,
TYPE_CHECKING,
)
import trio
from trio_typing import TaskStatus
import tractor
import pendulum
import numpy as np
from .. import config
from ..accounting import (
MktPair,
)
from ._util import (
log,
)
from ..service import (
check_for_service,
)
from ._sharedmem import (
maybe_open_shm_array,
ShmArray,
_secs_in_day,
)
from ._source import base_iohlc_dtype
from ._sampling import (
open_sample_stream,
)
from ..brokers._util import (
DataUnavailable,
)
if TYPE_CHECKING:
from ..service.marketstore import Storage
from .feed import _FeedsBus
def diff_history(
array: np.ndarray,
timeframe: int,
start_dt: datetime,
end_dt: datetime,
last_tsdb_dt: datetime | None = None
) -> np.ndarray:
# no diffing with tsdb dt index possible..
if last_tsdb_dt is None:
return array
time = array['time']
return array[time > last_tsdb_dt.timestamp()]
async def start_backfill(
mod: ModuleType,
mkt: MktPair,
shm: ShmArray,
timeframe: float,
sampler_stream: tractor.MsgStream,
feed_is_live: trio.Event,
last_tsdb_dt: Optional[datetime] = None,
storage: Optional[Storage] = None,
write_tsdb: bool = True,
tsdb_is_up: bool = False,
task_status: TaskStatus[tuple] = trio.TASK_STATUS_IGNORED,
) -> int:
hist: Callable[
[int, datetime, datetime],
tuple[np.ndarray, str]
]
config: dict[str, int]
async with mod.open_history_client(
mkt,
) as (hist, config):
log.info(f'{mod} history client returned backfill config: {config}')
# get latest query's worth of history all the way
# back to what is recorded in the tsdb
array, start_dt, end_dt = await hist(
timeframe,
end_dt=None,
)
times = array['time']
# sample period step size in seconds
step_size_s = (
pendulum.from_timestamp(times[-1])
- pendulum.from_timestamp(times[-2])
).seconds
# if the market is open (aka we have a live feed) but the
# history sample step index seems off we report the surrounding
# data and drop into a bp. this case shouldn't really ever
# happen if we're doing history retrieval correctly.
if (
step_size_s == 60
and feed_is_live.is_set()
):
inow = round(time.time())
diff = inow - times[-1]
if abs(diff) > 60:
surr = array[-6:]
diff_in_mins = round(diff/60., ndigits=2)
log.warning(
f'STEP ERROR `{mkt.fqme}` for period {step_size_s}s:\n'
f'Off by `{diff}` seconds (or `{diff_in_mins}` mins)\n'
'Surrounding 6 time stamps:\n'
f'{list(surr["time"])}\n'
'Here is surrounding 6 samples:\n'
f'{surr}\nn'
)
# uncomment this for a hacker who wants to investigate
# this case manually..
# await tractor.breakpoint()
# frame's worth of sample-period-steps, in seconds
frame_size_s = len(array) * step_size_s
to_push = diff_history(
array,
timeframe,
start_dt,
end_dt,
last_tsdb_dt=last_tsdb_dt,
)
log.info(f'Pushing {to_push.size} to shm!')
shm.push(to_push, prepend=True)
# TODO: *** THIS IS A BUG ***
# we need to only broadcast to subscribers for this fqme..
# otherwise all fsps get reset on every chart..
await sampler_stream.send('broadcast_all')
# signal that backfilling to tsdb's end datum is complete
bf_done = trio.Event()
# let caller unblock and deliver latest history frame
task_status.started((
start_dt,
end_dt,
bf_done,
))
# based on the sample step size, maybe load a certain amount history
if last_tsdb_dt is None:
if step_size_s not in (1, 60):
raise ValueError(
'`piker` only needs to support 1m and 1s sampling '
'but ur api is trying to deliver a longer '
f'timeframe of {step_size_s} seconds..\n'
'So yuh.. dun do dat brudder.'
)
# when no tsdb "last datum" is provided, we just load
# some near-term history.
periods = {
1: {'days': 1},
60: {'days': 14},
}
if tsdb_is_up:
# do a decently sized backfill and load it into storage.
periods = {
1: {'days': 6},
60: {'years': 6},
}
period_duration = periods[step_size_s]
# NOTE: manually set the "latest" datetime which we intend to
# backfill history "until" so as to adhere to the history
# settings above when the tsdb is detected as being empty.
last_tsdb_dt = start_dt.subtract(**period_duration)
# configure async query throttling
# rate = config.get('rate', 1)
# XXX: legacy from ``trimeter`` code but unsupported now.
# erlangs = config.get('erlangs', 1)
# avoid duplicate history frames with a set of datetime frame
# starts and associated counts of how many duplicates we see
# per time stamp.
starts: Counter[datetime] = Counter()
# inline sequential loop where we simply pass the
# last retrieved start dt to the next request as
# it's end dt.
while end_dt > last_tsdb_dt:
log.debug(
f'Requesting {step_size_s}s frame ending in {start_dt}'
)
try:
array, next_start_dt, end_dt = await hist(
timeframe,
end_dt=start_dt,
)
# broker says there never was or is no more history to pull
except DataUnavailable:
log.warning(
f'NO-MORE-DATA: backend {mod.name} halted history!?'
)
# ugh, what's a better way?
# TODO: fwiw, we probably want a way to signal a throttle
# condition (eg. with ib) so that we can halt the
# request loop until the condition is resolved?
return
if (
next_start_dt in starts
and starts[next_start_dt] <= 6
):
start_dt = min(starts)
log.warning(
f"{mkt.fqme}: skipping duplicate frame @ {next_start_dt}"
)
starts[start_dt] += 1
continue
elif starts[next_start_dt] > 6:
log.warning(
f'NO-MORE-DATA: backend {mod.name} before {next_start_dt}?'
)
return
# only update new start point if not-yet-seen
start_dt = next_start_dt
starts[start_dt] += 1
assert array['time'][0] == start_dt.timestamp()
diff = end_dt - start_dt
frame_time_diff_s = diff.seconds
expected_frame_size_s = frame_size_s + step_size_s
if frame_time_diff_s > expected_frame_size_s:
# XXX: query result includes a start point prior to our
# expected "frame size" and thus is likely some kind of
# history gap (eg. market closed period, outage, etc.)
# so just report it to console for now.
log.warning(
f'History frame ending @ {end_dt} appears to have a gap:\n'
f'{diff} ~= {frame_time_diff_s} seconds'
)
to_push = diff_history(
array,
timeframe,
start_dt,
end_dt,
last_tsdb_dt=last_tsdb_dt,
)
ln = len(to_push)
if ln:
log.info(f'{ln} bars for {start_dt} -> {end_dt}')
else:
log.warning(
f'{ln} BARS TO PUSH after diff?!: {start_dt} -> {end_dt}'
)
# bail gracefully on shm allocation overrun/full condition
try:
shm.push(to_push, prepend=True)
except ValueError:
log.info(
f'Shm buffer overrun on: {start_dt} -> {end_dt}?'
)
# can't push the entire frame? so
# push only the amount that can fit..
break
log.info(
f'Shm pushed {ln} frame:\n'
f'{start_dt} -> {end_dt}'
)
if (
storage is not None
and write_tsdb
):
log.info(
f'Writing {ln} frame to storage:\n'
f'{start_dt} -> {end_dt}'
)
if mkt.dst.atype not in {'crypto', 'crypto_currency'}:
# for now, our table key schema is not including
# the dst[/src] source asset token.
col_sym_key: str = mkt.get_fqme(
delim_char='',
without_src=True,
)
else:
col_sym_key: str = mkt.get_fqme(delim_char='')
await storage.write_ohlcv(
col_sym_key,
to_push,
timeframe,
)
# TODO: can we only trigger this if the respective
# history in "in view"?!?
# XXX: extremely important, there can be no checkpoints
# in the block above to avoid entering new ``frames``
# values while we're pipelining the current ones to
# memory...
await sampler_stream.send('broadcast_all')
# short-circuit (for now)
bf_done.set()
async def basic_backfill(
bus: _FeedsBus,
mod: ModuleType,
mkt: MktPair,
shms: dict[int, ShmArray],
sampler_stream: tractor.MsgStream,
feed_is_live: trio.Event,
) -> None:
# do a legacy incremental backfill from the provider.
log.info('No TSDB (marketstored) found, doing basic backfill..')
# start history backfill task ``backfill_bars()`` is
# a required backend func this must block until shm is
# filled with first set of ohlc bars
for timeframe, shm in shms.items():
try:
await bus.nursery.start(
partial(
start_backfill,
mod,
mkt,
shm,
timeframe,
sampler_stream,
feed_is_live,
)
)
except DataUnavailable:
# XXX: timeframe not supported for backend
continue
async def tsdb_backfill(
mod: ModuleType,
marketstore: ModuleType,
bus: _FeedsBus,
storage: Storage,
mkt: MktPair,
shms: dict[int, ShmArray],
sampler_stream: tractor.MsgStream,
feed_is_live: trio.Event,
task_status: TaskStatus[
tuple[ShmArray, ShmArray]
] = trio.TASK_STATUS_IGNORED,
) -> None:
# TODO: this should be used verbatim for the pure
# shm backfiller approach below.
dts_per_tf: dict[int, datetime] = {}
fqme: str = mkt.fqme
# start history anal and load missing new data via backend.
for timeframe, shm in shms.items():
# loads a (large) frame of data from the tsdb depending
# on the db's query size limit.
tsdb_history, first_tsdb_dt, last_tsdb_dt = await storage.load(
fqme,
timeframe=timeframe,
)
try:
(
latest_start_dt,
latest_end_dt,
bf_done,
) = await bus.nursery.start(
partial(
start_backfill,
mod,
mkt,
shm,
timeframe,
sampler_stream,
feed_is_live,
last_tsdb_dt=last_tsdb_dt,
tsdb_is_up=True,
storage=storage,
)
)
except DataUnavailable:
# XXX: timeframe not supported for backend
dts_per_tf[timeframe] = (
tsdb_history,
last_tsdb_dt,
None,
None,
None,
)
continue
# tsdb_history = series.get(timeframe)
dts_per_tf[timeframe] = (
tsdb_history,
last_tsdb_dt,
latest_start_dt,
latest_end_dt,
bf_done,
)
# if len(hist_shm.array) < 2:
# TODO: there's an edge case here to solve where if the last
# frame before market close (at least on ib) was pushed and
# there was only "1 new" row pushed from the first backfill
# query-iteration, then the sample step sizing calcs will
# break upstream from here since you can't diff on at least
# 2 steps... probably should also add logic to compute from
# the tsdb series and stash that somewhere as meta data on
# the shm buffer?.. no se.
# unblock the feed bus management task
# assert len(shms[1].array)
task_status.started()
async def back_load_from_tsdb(
timeframe: int,
shm: ShmArray,
):
(
tsdb_history,
last_tsdb_dt,
latest_start_dt,
latest_end_dt,
bf_done,
) = dts_per_tf[timeframe]
# sync to backend history task's query/load completion
if bf_done:
await bf_done.wait()
# TODO: eventually it'd be nice to not require a shm array/buffer
# to accomplish this.. maybe we can do some kind of tsdb direct to
# graphics format eventually in a child-actor?
# TODO: see if there's faster multi-field reads:
# https://numpy.org/doc/stable/user/basics.rec.html#accessing-multiple-fields
# re-index with a `time` and index field
prepend_start = shm._first.value
array = shm.array
if len(array):
shm_last_dt = pendulum.from_timestamp(shm.array[0]['time'])
else:
shm_last_dt = None
if last_tsdb_dt:
assert shm_last_dt >= last_tsdb_dt
# do diff against start index of last frame of history and only
# fill in an amount of datums from tsdb allows for most recent
# to be loaded into mem *before* tsdb data.
if (
last_tsdb_dt
and latest_start_dt
):
backfilled_size_s = (
latest_start_dt - last_tsdb_dt
).seconds
# if the shm buffer len is not large enough to contain
# all missing data between the most recent backend-queried frame
# and the most recent dt-index in the db we warn that we only
# want to load a portion of the next tsdb query to fill that
# space.
log.info(
f'{backfilled_size_s} seconds worth of {timeframe}s loaded'
)
# Load TSDB history into shm buffer (for display) if there is
# remaining buffer space.
if (
len(tsdb_history)
):
# load the first (smaller) bit of history originally loaded
# above from ``Storage.load()``.
to_push = tsdb_history[-prepend_start:]
shm.push(
to_push,
# insert the history pre a "days worth" of samples
# to leave some real-time buffer space at the end.
prepend=True,
# update_first=False,
# start=prepend_start,
field_map=marketstore.ohlc_key_map,
)
tsdb_last_frame_start = tsdb_history['Epoch'][0]
if timeframe == 1:
times = shm.array['time']
assert (times[1] - times[0]) == 1
# load as much from storage into shm possible (depends on
# user's shm size settings).
while shm._first.value > 0:
tsdb_history = await storage.read_ohlcv(
fqme,
timeframe=timeframe,
end=tsdb_last_frame_start,
)
# empty query
if not len(tsdb_history):
break
next_start = tsdb_history['Epoch'][0]
if next_start >= tsdb_last_frame_start:
# no earlier data detected
break
else:
tsdb_last_frame_start = next_start
prepend_start = shm._first.value
to_push = tsdb_history[-prepend_start:]
# insert the history pre a "days worth" of samples
# to leave some real-time buffer space at the end.
shm.push(
to_push,
prepend=True,
field_map=marketstore.ohlc_key_map,
)
log.info(f'Loaded {to_push.shape} datums from storage')
# manually trigger step update to update charts/fsps
# which need an incremental update.
# NOTE: the way this works is super duper
# un-intuitive right now:
# - the broadcaster fires a msg to the fsp subsystem.
# - fsp subsys then checks for a sample step diff and
# possibly recomputes prepended history.
# - the fsp then sends back to the parent actor
# (usually a chart showing graphics for said fsp)
# which tells the chart to conduct a manual full
# graphics loop cycle.
await sampler_stream.send('broadcast_all')
# TODO: write new data to tsdb to be ready to for next read.
# backload from db (concurrently per timeframe) once backfilling of
# recent dat a loaded from the backend provider (see
# ``bf_done.wait()`` call).
async with trio.open_nursery() as nurse:
for timeframe, shm in shms.items():
nurse.start_soon(
back_load_from_tsdb,
timeframe,
shm,
)
async def manage_history(
mod: ModuleType,
bus: _FeedsBus,
mkt: MktPair,
some_data_ready: trio.Event,
feed_is_live: trio.Event,
timeframe: float = 60, # in seconds
task_status: TaskStatus[
tuple[ShmArray, ShmArray]
] = trio.TASK_STATUS_IGNORED,
) -> None:
'''
Load and manage historical data including the loading of any
available series from `marketstore` as well as conducting real-time
update of both that existing db and the allocated shared memory
buffer.
'''
# TODO: is there a way to make each shm file key
# actor-tree-discovery-addr unique so we avoid collisions
# when doing tests which also allocate shms for certain instruments
# that may be in use on the system by some other running daemons?
# from tractor._state import _runtime_vars
# port = _runtime_vars['_root_mailbox'][1]
uid = tractor.current_actor().uid
name, uuid = uid
service = name.rstrip(f'.{mod.name}')
fqme: str = mkt.get_fqme(delim_char='')
# (maybe) allocate shm array for this broker/symbol which will
# be used for fast near-term history capture and processing.
hist_shm, opened = maybe_open_shm_array(
key=f'piker.{service}[{uuid[:16]}].{fqme}.hist',
# use any broker defined ohlc dtype:
dtype=getattr(mod, '_ohlc_dtype', base_iohlc_dtype),
# we expect the sub-actor to write
readonly=False,
)
hist_zero_index = hist_shm.index - 1
# TODO: history validation
if not opened:
raise RuntimeError(
"Persistent shm for sym was already open?!"
)
rt_shm, opened = maybe_open_shm_array(
key=f'piker.{service}[{uuid[:16]}].{fqme}.rt',
# use any broker defined ohlc dtype:
dtype=getattr(mod, '_ohlc_dtype', base_iohlc_dtype),
# we expect the sub-actor to write
readonly=False,
size=3*_secs_in_day,
)
# (for now) set the rt (hft) shm array with space to prepend
# only a few days worth of 1s history.
days = 2
start_index = days*_secs_in_day
rt_shm._first.value = start_index
rt_shm._last.value = start_index
rt_zero_index = rt_shm.index - 1
if not opened:
raise RuntimeError(
"Persistent shm for sym was already open?!"
)
# register 1s and 1m buffers with the global incrementer task
async with open_sample_stream(
period_s=1.,
shms_by_period={
1.: rt_shm.token,
60.: hist_shm.token,
},
# NOTE: we want to only open a stream for doing broadcasts on
# backfill operations, not receive the sample index-stream
# (since there's no code in this data feed layer that needs to
# consume it).
open_index_stream=True,
sub_for_broadcasts=False,
) as sample_stream:
open_history_client = getattr(
mod,
'open_history_client',
None,
)
assert open_history_client
tsdb_is_up: bool = False
try_remote_tsdb: bool = False
conf, path = config.load('conf', touch_if_dne=True)
net = conf.get('network')
if net:
tsdbconf = net.get('tsdb')
# lookup backend tsdb module by name and load any user service
# settings for connecting to the tsdb service.
tsdb_backend: str = tsdbconf.pop('backend')
tsdb_host: str = tsdbconf['host']
# TODO: import and load storagemod by name
# mod = get_storagemod(tsdb_backend)
from ..service import marketstore
if tsdb_host == 'localhost':
log.info('Scanning for existing `{tsbd_backend}`')
tsdb_is_up: bool = await check_for_service(f'{tsdb_backend}d')
else:
try_remote_tsdb: bool = True
if (
tsdb_is_up
or try_remote_tsdb
and (
opened
and open_history_client
)
):
log.info('Found existing `marketstored`')
async with (
marketstore.open_storage_client(
**tsdbconf
) as storage,
):
# TODO: drop returning the output that we pass in?
await bus.nursery.start(
tsdb_backfill,
mod,
marketstore,
bus,
storage,
mkt,
{
1: rt_shm,
60: hist_shm,
},
sample_stream,
feed_is_live,
)
# yield back after client connect with filled shm
task_status.started((
hist_zero_index,
hist_shm,
rt_zero_index,
rt_shm,
))
# indicate to caller that feed can be delivered to
# remote requesting client since we've loaded history
# data that can be used.
some_data_ready.set()
# history retreival loop depending on user interaction
# and thus a small RPC-prot for remotely controllinlg
# what data is loaded for viewing.
await trio.sleep_forever()
# load less history if no tsdb can be found
elif (
not tsdb_is_up
and opened
):
await basic_backfill(
bus,
mod,
mkt,
{
1: rt_shm,
60: hist_shm,
},
sample_stream,
feed_is_live,
)
task_status.started((
hist_zero_index,
hist_shm,
rt_zero_index,
rt_shm,
))
some_data_ready.set()
await trio.sleep_forever()

View File

@ -1,173 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Tick event stream processing, filter-by-types, format-normalization.
'''
from itertools import chain
from typing import (
Any,
AsyncIterator,
)
# tick-type-classes template for all possible "lowest level" events
# that can can be emitted by the "top of book" L1 queues and
# price-matching (with eventual clearing) in a double auction
# market (queuing) system.
_tick_groups: dict[str, set[str]] = {
'clears': {'trade', 'dark_trade', 'last'},
'bids': {'bid', 'bsize'},
'asks': {'ask', 'asize'},
}
# XXX alo define the flattened set of all such "fundamental ticks"
# so that it can be used as filter, eg. in the graphics display
# loop to compute running windowed y-ranges B)
_auction_ticks: set[str] = set.union(*_tick_groups.values())
def frame_ticks(
quote: dict[str, Any],
ticks_by_type: dict | None = None,
ticks_in_order: list[dict[str, Any]] | None = None
) -> dict[
str,
list[dict[str, Any]]
]:
'''
XXX: build a tick-by-type table of lists
of tick messages. This allows for less
iteration on the receiver side by allowing for
a single "latest tick event" look up by
indexing the last entry in each sub-list.
tbt = {
'types': ['bid', 'asize', 'last', .. '<type_n>'],
'bid': [tick0, tick1, tick2, .., tickn],
'asize': [tick0, tick1, tick2, .., tickn],
'last': [tick0, tick1, tick2, .., tickn],
...
'<type_n>': [tick0, tick1, tick2, .., tickn],
}
If `ticks_in_order` is provided, append any retrieved ticks
since last iteration into this array/buffer/list.
'''
# TODO: once we decide to get fancy really we should
# have a shared mem tick buffer that is just
# continually filled and the UI just ready from it
# at it's display rate.
tbt = ticks_by_type if ticks_by_type is not None else {}
if not (ticks := quote.get('ticks')):
return tbt
# append in reverse FIFO order for in-order iteration on
# receiver side.
tick: dict[str, Any]
for tick in ticks:
tbt.setdefault(
tick['type'],
[],
).append(tick)
# TODO: do we need this any more or can we just
# expect the receiver to unwind the below
# `ticks_by_type: dict`?
# => undwinding would potentially require a
# `dict[str, set | list]` instead with an
# included `'types' field which is an (ordered)
# set of tick type fields in the order which
# types arrived?
if ticks_in_order:
ticks_in_order.extend(ticks)
return tbt
def iterticks(
quote: dict,
types: tuple[str] = (
'trade',
'dark_trade',
),
deduplicate_darks: bool = False,
reverse: bool = False,
# TODO: should we offer delegating to `frame_ticks()` above
# with this?
frame_by_type: bool = False,
) -> AsyncIterator:
'''
Iterate through ticks delivered per quote cycle, filter and
yield any declared in `types`.
'''
if deduplicate_darks:
assert 'dark_trade' in types
# print(f"{quote}\n\n")
ticks = quote.get('ticks', ())
trades = {}
darks = {}
if ticks:
# do a first pass and attempt to remove duplicate dark
# trades with the same tick signature.
if deduplicate_darks:
for tick in ticks:
ttype = tick.get('type')
time = tick.get('time', None)
if time:
sig = (
time,
tick['price'],
tick.get('size')
)
if ttype == 'dark_trade':
darks[sig] = tick
elif ttype == 'trade':
trades[sig] = tick
# filter duplicates
for sig, tick in trades.items():
tick = darks.pop(sig, None)
if tick:
ticks.remove(tick)
# print(f'DUPLICATE {tick}')
# re-insert ticks
ticks.extend(list(chain(trades.values(), darks.values())))
# most-recent-first
if reverse:
ticks = reversed(ticks)
for tick in ticks:
# print(f"{quote['symbol']}: {tick}")
ttype = tick.get('type')
if ttype in types:
yield tick

104
piker/data/types.py 100644
View File

@ -0,0 +1,104 @@
# piker: trading gear for hackers
# Copyright (C) (in stewardship for pikers)
# - Tyler Goodlet
# - Guillermo Rodriguez
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Extensions to built-in or (heavily used but 3rd party) friend-lib
types.
'''
from pprint import pformat
from msgspec import (
msgpack,
Struct,
structs,
)
class Struct(
Struct,
# https://jcristharif.com/msgspec/structs.html#tagged-unions
# tag='pikerstruct',
# tag=True,
):
'''
A "human friendlier" (aka repl buddy) struct subtype.
'''
def to_dict(self) -> dict:
'''
Like it sounds.. direct delegation to:
https://jcristharif.com/msgspec/api.html#msgspec.structs.asdict
TODO: probably just drop this method since it's now a built-int method?
'''
return structs.asdict(self)
def pformat(self) -> str:
return f'Struct({pformat(self.to_dict())})'
def copy(
self,
update: dict | None = None,
) -> Struct:
'''
Validate-typecast all self defined fields, return a copy of
us with all such fields.
NOTE: This is kinda like the default behaviour in
`pydantic.BaseModel` except a copy of the object is
returned making it compat with `frozen=True`.
'''
if update:
for k, v in update.items():
setattr(self, k, v)
# NOTE: roundtrip serialize to validate
# - enode to msgpack binary format,
# - decode that back to a struct.
return msgpack.Decoder(type=type(self)).decode(
msgpack.Encoder().encode(self)
)
def typecast(
self,
# TODO: allow only casting a named subset?
# fields: set[str] | None = None,
) -> None:
'''
Cast all fields using their declared type annotations
(kinda like what `pydantic` does by default).
NOTE: this of course won't work on frozen types, use
``.copy()`` above in such cases.
'''
# https://jcristharif.com/msgspec/api.html#msgspec.structs.fields
fi: structs.FieldInfo
for fi in structs.fields(self):
setattr(
self,
fi.name,
fi.type(getattr(self, fi.name)),
)

View File

@ -18,7 +18,6 @@ Data feed synchronization protocols, init msgs, and general
data-provider-backend-agnostic schema definitions.
'''
from __future__ import annotations
from decimal import Decimal
from pprint import pformat
from types import ModuleType
@ -29,8 +28,8 @@ from typing import (
from msgspec import field
from piker.types import Struct
from piker.accounting import (
from .types import Struct
from ..accounting import (
Asset,
MktPair,
)
@ -82,8 +81,8 @@ _eps: dict[str, list[str]] = {
# live order control and trading
'brokerd': [
'trades_dialogue',
'open_trade_dialog', # live order ctl
'norm_trade', # ledger normalizer for txns
# TODO: ledger normalizer helper?
# norm_trades(records: dict[str, Any]) -> TransactionLedger)
],
}

View File

@ -22,40 +22,17 @@ from typing import AsyncIterator
import numpy as np
from ._api import (
maybe_mk_fsp_shm,
Fsp,
)
from ._engine import (
cascade,
Cascade,
)
from ._volume import (
dolla_vlm,
flow_rates,
tina_vwap,
)
from ._engine import cascade
__all__: list[str] = [
'cascade',
'Cascade',
'maybe_mk_fsp_shm',
'Fsp',
'dolla_vlm',
'flow_rates',
'tina_vwap',
]
__all__ = ['cascade']
async def latency(
source: 'TickStream[Dict[str, float]]', # noqa
ohlcv: np.ndarray
) -> AsyncIterator[np.ndarray]:
'''
Latency measurements, broker to piker.
'''
"""Latency measurements, broker to piker.
"""
# TODO: do we want to offer yielding this async
# before the rt data connection comes up?

View File

@ -177,7 +177,6 @@ def fsp(
def maybe_mk_fsp_shm(
sym: str,
target: Fsp,
size: int,
readonly: bool = True,
) -> (str, ShmArray, bool):
@ -186,8 +185,7 @@ def maybe_mk_fsp_shm(
exists, otherwise load the shm already existing for that token.
'''
if not isinstance(sym, str):
raise ValueError('`sym: str` should be file-name-friendly')
assert isinstance(sym, str), '`sym` should be file-name-friendly `str`'
# TODO: load output types from `Fsp`
# - should `index` be a required internal field?
@ -206,7 +204,7 @@ def maybe_mk_fsp_shm(
shm, opened = maybe_open_shm_array(
key,
size=size,
# TODO: create entry for each time frame
dtype=fsp_dtype,
readonly=True,
)

View File

@ -18,12 +18,13 @@
core task logic for processing chains
'''
from __future__ import annotations
from contextlib import asynccontextmanager as acm
from dataclasses import dataclass
from functools import partial
from typing import (
AsyncIterator,
Callable,
Optional,
Union,
)
import numpy as np
@ -32,9 +33,9 @@ from trio_typing import TaskStatus
import tractor
from tractor.msg import NamespacePath
from piker.types import Struct
from ..log import get_logger, get_console_log
from .. import data
from ..data import attach_shm_array
from ..data.feed import (
Flume,
Feed,
@ -50,11 +51,17 @@ from ._api import (
_load_builtins,
_Token,
)
from ..toolz import Profiler
from .._profile import Profiler
log = get_logger(__name__)
@dataclass
class TaskTracker:
complete: trio.Event
cs: trio.CancelScope
async def filter_quotes_by_sym(
sym: str,
@ -75,168 +82,30 @@ async def filter_quotes_by_sym(
if quote:
yield quote
# TODO: unifying the abstractions in this FSP subsys/layer:
# -[ ] move the `.data.flows.Flume` type into this
# module/subsys/pkg?
# -[ ] ideas for further abstractions as per
# - https://github.com/pikers/piker/issues/216,
# - https://github.com/pikers/piker/issues/270:
# - a (financial signal) ``Flow`` would be the a "collection" of such
# minmial cascades. Some engineering based jargon concepts:
# - https://en.wikipedia.org/wiki/Signal_chain
# - https://en.wikipedia.org/wiki/Daisy_chain_(electrical_engineering)
# - https://en.wikipedia.org/wiki/Audio_signal_flow
# - https://en.wikipedia.org/wiki/Digital_signal_processing#Implementation
# - https://en.wikipedia.org/wiki/Dataflow_programming
# - https://en.wikipedia.org/wiki/Signal_programming
# - https://en.wikipedia.org/wiki/Incremental_computing
# - https://en.wikipedia.org/wiki/Signal-flow_graph
# - https://en.wikipedia.org/wiki/Signal-flow_graph#Basic_components
# -[ ] we probably want to eval THE BELOW design and unify with the
# proto `TaskManager` in the `tractor` dev branch as well as with
# our below idea for `Cascade`:
# - https://github.com/goodboy/tractor/pull/363
class Cascade(Struct):
'''
As per sig-proc engineering parlance, this is a chaining of
`Flume`s, which are themselves collections of "Streams"
implemented currently via `ShmArray`s.
async def fsp_compute(
A `Cascade` is be the minimal "connection" of 2 `Flumes`
as per circuit parlance:
https://en.wikipedia.org/wiki/Two-port_network#Cascade_connection
TODO:
-[ ] could cover the combination of our `FspAdmin` and the
backend `.fsp._engine` related machinery to "connect" one flume
to another?
'''
# TODO: make these `Flume`s
src: Flume
dst: Flume
tn: trio.Nursery
fsp: Fsp # UI-side middleware ctl API
# filled during cascade/.bind_func() (fsp_compute) init phases
bind_func: Callable | None = None
complete: trio.Event | None = None
cs: trio.CancelScope | None = None
client_stream: tractor.MsgStream | None = None
async def resync(self) -> int:
# TODO: adopt an incremental update engine/approach
# where possible here eventually!
log.info(f're-syncing fsp {self.fsp.name} to source')
self.cs.cancel()
await self.complete.wait()
index: int = await self.tn.start(self.bind_func)
# always trigger UI refresh after history update,
# see ``piker.ui._fsp.FspAdmin.open_chain()`` and
# ``piker.ui._display.trigger_update()``.
dst_shm: ShmArray = self.dst.rt_shm
await self.client_stream.send({
'fsp_update': {
'key': dst_shm.token,
'first': dst_shm._first.value,
'last': dst_shm._last.value,
}
})
return index
def is_synced(self) -> tuple[bool, int, int]:
'''
Predicate to dertmine if a destination FSP
output array is aligned to its source array.
'''
src_shm: ShmArray = self.src.rt_shm
dst_shm: ShmArray = self.dst.rt_shm
step_diff = src_shm.index - dst_shm.index
len_diff = abs(len(src_shm.array) - len(dst_shm.array))
synced: bool = not (
# the source is likely backfilling and we must
# sync history calculations
len_diff > 2
# we aren't step synced to the source and may be
# leading/lagging by a step
or step_diff > 1
or step_diff < 0
)
if not synced:
fsp: Fsp = self.fsp
log.warning(
'***DESYNCED FSP***\n'
f'{fsp.ns_path}@{src_shm.token}\n'
f'step_diff: {step_diff}\n'
f'len_diff: {len_diff}\n'
)
return (
synced,
step_diff,
len_diff,
)
async def poll_and_sync_to_step(self) -> int:
synced, step_diff, _ = self.is_synced()
while not synced:
await self.resync()
synced, step_diff, _ = self.is_synced()
return step_diff
@acm
async def open_edge(
self,
bind_func: Callable,
) -> int:
self.bind_func = bind_func
index = await self.tn.start(bind_func)
yield index
# TODO: what do we want on teardown/error?
# -[ ] dynamic reconnection after update?
async def connect_streams(
casc: Cascade,
mkt: MktPair,
flume: Flume,
quote_stream: trio.abc.ReceiveChannel,
src: Flume,
dst: Flume,
edge_func: Callable,
src: ShmArray,
dst: ShmArray,
func: Callable,
# attach_stream: bool = False,
task_status: TaskStatus[None] = trio.TASK_STATUS_IGNORED,
) -> None:
'''
Stream and per-sample compute and write the cascade of
2 `Flumes`/streams given some operating `func`.
https://en.wikipedia.org/wiki/Signal-flow_graph#Basic_components
Not literally, but something like:
edge_func(Flume_in) -> Flume_out
'''
profiler = Profiler(
delayed=False,
disabled=True
)
# TODO: just pull it from src.mkt.fqme no?
# fqme: str = mkt.fqme
fqme: str = src.mkt.fqme
# TODO: dynamic introspection of what the underlying (vertex)
# function actually requires from input node (flumes) then
# deliver those inputs as part of a graph "compilation" step?
out_stream = edge_func(
fqme = mkt.fqme
out_stream = func(
# TODO: do we even need this if we do the feed api right?
# shouldn't a local stream do this before we get a handle
@ -244,21 +113,20 @@ async def connect_streams(
# async itertools style?
filter_quotes_by_sym(fqme, quote_stream),
# XXX: currently the ``ohlcv`` arg, but we should allow
# (dynamic) requests for src flume (node) streams?
src.rt_shm,
# XXX: currently the ``ohlcv`` arg
flume.rt_shm,
)
# HISTORY COMPUTE PHASE
# conduct a single iteration of fsp with historical bars input
# and get historical output.
history_output: (
dict[str, np.ndarray] # multi-output case
| np.ndarray, # single output case
)
history_output: Union[
dict[str, np.ndarray], # multi-output case
np.ndarray, # single output case
]
history_output = await anext(out_stream)
func_name = edge_func.__name__
func_name = func.__name__
profiler(f'{func_name} generated history')
# build struct array with an 'index' field to push as history
@ -266,12 +134,10 @@ async def connect_streams(
# TODO: push using a[['f0', 'f1', .., 'fn']] = .. syntax no?
# if the output array is multi-field then push
# each respective field.
dst_shm: ShmArray = dst.rt_shm
fields = getattr(dst_shm.array.dtype, 'fields', None).copy()
fields = getattr(dst.array.dtype, 'fields', None).copy()
fields.pop('index')
history_by_field: np.ndarray | None = None
src_shm: ShmArray = src.rt_shm
src_time = src_shm.array['time']
history_by_field: Optional[np.ndarray] = None
src_time = src.array['time']
if (
fields and
@ -290,7 +156,7 @@ async def connect_streams(
if history_by_field is None:
if output is None:
length = len(src_shm.array)
length = len(src.array)
else:
length = len(output)
@ -299,7 +165,7 @@ async def connect_streams(
# will be pushed to shm.
history_by_field = np.zeros(
length,
dtype=dst_shm.array.dtype
dtype=dst.array.dtype
)
if output is None:
@ -316,13 +182,13 @@ async def connect_streams(
)
history_by_field = np.zeros(
len(history_output),
dtype=dst_shm.array.dtype
dtype=dst.array.dtype
)
history_by_field[func_name] = history_output
history_by_field['time'] = src_time[-len(history_by_field):]
history_output['time'] = src_shm.array['time']
history_output['time'] = src.array['time']
# TODO: XXX:
# THERE'S A BIG BUG HERE WITH THE `index` field since we're
@ -335,11 +201,11 @@ async def connect_streams(
# is `index` aware such that historical data can be indexed
# relative to the true first datum? Not sure if this is sane
# for incremental compuations.
first = dst_shm._first.value = src_shm._first.value
first = dst._first.value = src._first.value
# TODO: can we use this `start` flag instead of the manual
# setting above?
index = dst_shm.push(
index = dst.push(
history_by_field,
start=first,
)
@ -350,9 +216,12 @@ async def connect_streams(
# setup a respawn handle
with trio.CancelScope() as cs:
casc.cs = cs
casc.complete = trio.Event()
task_status.started(index)
# TODO: might be better to just make a "restart" method where
# the target task is spawned implicitly and then the event is
# set via some higher level api? At that poing we might as well
# be writing a one-cancels-one nursery though right?
tracker = TaskTracker(trio.Event(), cs)
task_status.started((tracker, index))
profiler(f'{func_name} yield last index')
@ -366,12 +235,12 @@ async def connect_streams(
log.debug(f"{func_name}: {processed}")
key, output = processed
# dst.array[-1][key] = output
dst_shm.array[[key, 'time']][-1] = (
dst.array[[key, 'time']][-1] = (
output,
# TODO: what about pushing ``time.time_ns()``
# in which case we'll need to round at the graphics
# processing / sampling layer?
src_shm.array[-1]['time']
src.array[-1]['time']
)
# NOTE: for now we aren't streaming this to the consumer
@ -383,7 +252,7 @@ async def connect_streams(
# N-consumers who subscribe for the real-time output,
# which we'll likely want to implement using local-mem
# chans for the fan out?
# index = src_shm.index
# index = src.index
# if attach_stream:
# await client_stream.send(index)
@ -393,7 +262,7 @@ async def connect_streams(
# log.info(f'FSP quote too fast: {hz}')
# last = time.time()
finally:
casc.complete.set()
tracker.complete.set()
@tractor.context
@ -404,15 +273,15 @@ async def cascade(
# data feed key
fqme: str,
# flume pair cascaded using an "edge function"
src_flume_addr: dict,
dst_flume_addr: dict,
src_shm_token: dict,
dst_shm_token: tuple[str, np.dtype],
ns_path: NamespacePath,
shm_registry: dict[str, _Token],
zero_on_step: bool = False,
loglevel: str | None = None,
loglevel: Optional[str] = None,
) -> None:
'''
@ -428,14 +297,8 @@ async def cascade(
if loglevel:
get_console_log(loglevel)
src: Flume = Flume.from_msg(src_flume_addr)
dst: Flume = Flume.from_msg(
dst_flume_addr,
readonly=False,
)
# src: ShmArray = attach_shm_array(token=src_shm_token)
# dst: ShmArray = attach_shm_array(readonly=False, token=dst_shm_token)
src = attach_shm_array(token=src_shm_token)
dst = attach_shm_array(readonly=False, token=dst_shm_token)
reg = _load_builtins()
lines = '\n'.join([f'{key.rpartition(":")[2]} => {key}' for key in reg])
@ -443,11 +306,11 @@ async def cascade(
f'Registered FSP set:\n{lines}'
)
# NOTE XXX: update actorlocal flows table which registers
# readonly "instances" of this fsp for symbol/source so that
# consumer fsps can look it up by source + fsp.
# TODO: ugh i hate this wind/unwind to list over the wire but
# not sure how else to do it.
# update actorlocal flows table which registers
# readonly "instances" of this fsp for symbol/source
# so that consumer fsps can look it up by source + fsp.
# TODO: ugh i hate this wind/unwind to list over the wire
# but not sure how else to do it.
for (token, fsp_name, dst_token) in shm_registry:
Fsp._flow_registry[(
_Token.from_msg(token),
@ -457,15 +320,12 @@ async def cascade(
fsp: Fsp = reg.get(
NamespacePath(ns_path)
)
func: Callable = fsp.func
func = fsp.func
if not func:
# TODO: assume it's a func target path
raise ValueError(f'Unknown fsp target: {ns_path}')
_fqme: str = src.mkt.fqme
assert _fqme == fqme
# open a data feed stream with requested broker
feed: Feed
async with data.feed.maybe_open_feed(
@ -479,142 +339,177 @@ async def cascade(
) as feed:
flume: Flume = feed.flumes[fqme]
# XXX: can't do this since flume.feed will be set XD
# assert flume == src
assert flume.mkt == src.mkt
mkt: MktPair = flume.mkt
# NOTE: FOR NOW, sanity checks around the feed as being
# always the src flume (until we get to fancier/lengthier
# chains/graphs.
assert src.rt_shm.token == flume.rt_shm.token
# XXX: won't work bc the _hist_shm_token value will be
# list[list] after IPC..
# assert flume.to_msg() == src_flume_addr
flume = feed.flumes[fqme]
mkt = flume.mkt
assert src.token == flume.rt_shm.token
profiler(f'{func}: feed up')
func_name: str = func.__name__
func_name = func.__name__
async with (
trio.open_nursery() as tn,
trio.open_nursery() as n,
):
# TODO: might be better to just make a "restart" method where
# the target task is spawned implicitly and then the event is
# set via some higher level api? At that poing we might as well
# be writing a one-cancels-one nursery though right?
casc = Cascade(
src,
dst,
tn,
fsp,
)
# TODO: this seems like it should be wrapped somewhere?
fsp_target = partial(
connect_streams,
casc=casc,
fsp_compute,
mkt=mkt,
flume=flume,
quote_stream=flume.stream,
# flumes and shm passthrough
# shm
src=src,
dst=dst,
# chain function which takes src flume input(s)
# and renders dst flume output(s)
edge_func=func
# target
func=func
)
async with casc.open_edge(
bind_func=fsp_target,
) as index:
# casc.bind_func = fsp_target
# index = await tn.start(fsp_target)
dst_shm: ShmArray = dst.rt_shm
src_shm: ShmArray = src.rt_shm
if zero_on_step:
last = dst.rt_shm.array[-1:]
zeroed = np.zeros(last.shape, dtype=last.dtype)
tracker, index = await n.start(fsp_target)
profiler(f'{func_name}: fsp up')
if zero_on_step:
last = dst.array[-1:]
zeroed = np.zeros(last.shape, dtype=last.dtype)
# sync to client-side actor
await ctx.started(index)
profiler(f'{func_name}: fsp up')
# XXX: rt stream with client which we MUST
# open here (and keep it open) in order to make
# incremental "updates" as history prepends take
# place.
async with ctx.open_stream() as client_stream:
casc.client_stream: tractor.MsgStream = client_stream
# sync client
await ctx.started(index)
s, step, ld = casc.is_synced()
# XXX: rt stream with client which we MUST
# open here (and keep it open) in order to make
# incremental "updates" as history prepends take
# place.
async with ctx.open_stream() as client_stream:
# detect sample period step for subscription to increment
# signal
times = src.rt_shm.array['time']
if len(times) > 1:
last_ts = times[-1]
delay_s: float = float(last_ts - times[times != last_ts][-1])
else:
# our default "HFT" sample rate.
delay_s: float = _default_delay_s
# TODO: these likely should all become
# methods of this ``TaskLifetime`` or wtv
# abstraction..
async def resync(
tracker: TaskTracker,
# sub and increment the underlying shared memory buffer
# on every step msg received from the global `samplerd`
# service.
async with open_sample_stream(
float(delay_s)
) as istream:
) -> tuple[TaskTracker, int]:
# TODO: adopt an incremental update engine/approach
# where possible here eventually!
log.info(f're-syncing fsp {func_name} to source')
tracker.cs.cancel()
await tracker.complete.wait()
tracker, index = await n.start(fsp_target)
profiler(f'{func_name}: sample stream up')
profiler.finish()
# always trigger UI refresh after history update,
# see ``piker.ui._fsp.FspAdmin.open_chain()`` and
# ``piker.ui._display.trigger_update()``.
await client_stream.send({
'fsp_update': {
'key': dst_shm_token,
'first': dst._first.value,
'last': dst._last.value,
}
})
return tracker, index
async for i in istream:
# print(f'FSP incrementing {i}')
def is_synced(
src: ShmArray,
dst: ShmArray
) -> tuple[bool, int, int]:
'''
Predicate to dertmine if a destination FSP
output array is aligned to its source array.
# respawn the compute task if the source
# array has been updated such that we compute
# new history from the (prepended) source.
synced, step_diff, _ = casc.is_synced()
if not synced:
step_diff: int = await casc.poll_and_sync_to_step()
'''
step_diff = src.index - dst.index
len_diff = abs(len(src.array) - len(dst.array))
return not (
# the source is likely backfilling and we must
# sync history calculations
len_diff > 2
# skip adding a last bar since we should already
# be step alinged
if step_diff == 0:
continue
# we aren't step synced to the source and may be
# leading/lagging by a step
or step_diff > 1
or step_diff < 0
), step_diff, len_diff
# read out last shm row, copy and write new row
array = dst_shm.array
async def poll_and_sync_to_step(
tracker: TaskTracker,
src: ShmArray,
dst: ShmArray,
# some metrics like vlm should be reset
# to zero every step.
if zero_on_step:
last = zeroed
else:
last = array[-1:].copy()
) -> tuple[TaskTracker, int]:
dst.rt_shm.push(last)
synced, step_diff, _ = is_synced(src, dst)
while not synced:
tracker, index = await resync(tracker)
synced, step_diff, _ = is_synced(src, dst)
# sync with source buffer's time step
src_l2 = src_shm.array[-2:]
src_li, src_lt = src_l2[-1][['index', 'time']]
src_2li, src_2lt = src_l2[-2][['index', 'time']]
dst_shm._array['time'][src_li] = src_lt
dst_shm._array['time'][src_2li] = src_2lt
return tracker, step_diff
# last2 = dst.array[-2:]
# if (
# last2[-1]['index'] != src_li
# or last2[-2]['index'] != src_2li
# ):
# dstl2 = list(last2)
# srcl2 = list(src_l2)
# print(
# # f'{dst.token}\n'
# f'src: {srcl2}\n'
# f'dst: {dstl2}\n'
# )
s, step, ld = is_synced(src, dst)
# detect sample period step for subscription to increment
# signal
times = src.array['time']
if len(times) > 1:
last_ts = times[-1]
delay_s = float(last_ts - times[times != last_ts][-1])
else:
# our default "HFT" sample rate.
delay_s = _default_delay_s
# sub and increment the underlying shared memory buffer
# on every step msg received from the global `samplerd`
# service.
async with open_sample_stream(float(delay_s)) as istream:
profiler(f'{func_name}: sample stream up')
profiler.finish()
async for i in istream:
# print(f'FSP incrementing {i}')
# respawn the compute task if the source
# array has been updated such that we compute
# new history from the (prepended) source.
synced, step_diff, _ = is_synced(src, dst)
if not synced:
tracker, step_diff = await poll_and_sync_to_step(
tracker,
src,
dst,
)
# skip adding a last bar since we should already
# be step alinged
if step_diff == 0:
continue
# read out last shm row, copy and write new row
array = dst.array
# some metrics like vlm should be reset
# to zero every step.
if zero_on_step:
last = zeroed
else:
last = array[-1:].copy()
dst.push(last)
# sync with source buffer's time step
src_l2 = src.array[-2:]
src_li, src_lt = src_l2[-1][['index', 'time']]
src_2li, src_2lt = src_l2[-2][['index', 'time']]
dst._array['time'][src_li] = src_lt
dst._array['time'][src_2li] = src_2lt
# last2 = dst.array[-2:]
# if (
# last2[-1]['index'] != src_li
# or last2[-2]['index'] != src_2li
# ):
# dstl2 = list(last2)
# srcl2 = list(src_l2)
# print(
# # f'{dst.token}\n'
# f'src: {srcl2}\n'
# f'dst: {dstl2}\n'
# )

View File

@ -24,7 +24,7 @@ import numpy as np
from numba import jit, float64, optional, int64
from ._api import fsp
from ..data import iterticks
from ..data._normalize import iterticks
from ..data._sharedmem import ShmArray

View File

@ -20,7 +20,7 @@ import numpy as np
from tractor.trionics._broadcast import AsyncReceiver
from ._api import fsp
from ..data import iterticks
from ..data._normalize import iterticks
from ..data._sharedmem import ShmArray
from ._momo import _wma
from ..log import get_logger

View File

@ -40,10 +40,7 @@ def get_logger(
Return the package log or a sub-log for `name` if provided.
'''
return tractor.log.get_logger(
name=name,
_root_name=_proj_name,
)
return tractor.log.get_logger(name=name, _root_name=_proj_name)
def get_console_log(

View File

@ -14,45 +14,49 @@
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Actor runtime primtives and (distributed) service APIs for,
"""
Actor-runtime service orchestration machinery.
- daemon-service mgmt: `_daemon` (i.e. low-level spawn and supervise machinery
for sub-actors like `brokerd`, `emsd`, datad`, etc.)
"""
from __future__ import annotations
- service-actor supervision (via `trio` tasks) API: `._mngr`
- discovery interface (via light wrapping around `tractor`'s built-in
prot): `._registry`
- `docker` cntr SC supervision for use with `trio`: `_ahab`
- wrappers for marketstore and elasticsearch dbs
=> TODO: maybe to (re)move elsewhere?
'''
from ._mngr import Services as Services
from ._registry import (
_tractor_kwargs as _tractor_kwargs,
_default_reg_addr as _default_reg_addr,
_default_registry_host as _default_registry_host,
_default_registry_port as _default_registry_port,
open_registry as open_registry,
find_service as find_service,
check_for_service as check_for_service,
from ._mngr import Services
from ._registry import ( # noqa
_tractor_kwargs,
_default_reg_addr,
_default_registry_host,
_default_registry_port,
open_registry,
find_service,
check_for_service,
)
from ._daemon import (
maybe_spawn_daemon as maybe_spawn_daemon,
spawn_emsd as spawn_emsd,
maybe_open_emsd as maybe_open_emsd,
from ._daemon import ( # noqa
maybe_spawn_daemon,
spawn_emsd,
maybe_open_emsd,
)
from ._actor_runtime import (
open_piker_runtime as open_piker_runtime,
maybe_open_pikerd as maybe_open_pikerd,
open_pikerd as open_pikerd,
get_runtime_vars as get_runtime_vars,
open_piker_runtime,
maybe_open_pikerd,
open_pikerd,
get_tractor_runtime_kwargs,
)
from ..brokers._daemon import (
spawn_brokerd as spawn_brokerd,
maybe_spawn_brokerd as maybe_spawn_brokerd,
spawn_brokerd,
maybe_spawn_brokerd,
)
__all__ = [
'check_for_service',
'Services',
'maybe_spawn_daemon',
'spawn_brokerd',
'maybe_spawn_brokerd',
'spawn_emsd',
'maybe_open_emsd',
'open_piker_runtime',
'maybe_open_pikerd',
'open_pikerd',
'get_tractor_runtime_kwargs',
]

View File

@ -45,7 +45,7 @@ from ._registry import ( # noqa
)
def get_runtime_vars() -> dict[str, Any]:
def get_tractor_runtime_kwargs() -> dict[str, Any]:
'''
Deliver ``tractor`` related runtime variables in a `dict`.
@ -56,8 +56,6 @@ def get_runtime_vars() -> dict[str, Any]:
@acm
async def open_piker_runtime(
name: str,
registry_addrs: list[tuple[str, int]] = [],
enable_modules: list[str] = [],
loglevel: Optional[str] = None,
@ -65,6 +63,8 @@ async def open_piker_runtime(
# for data daemons when running in production.
debug_mode: bool = False,
registry_addr: None | tuple[str, int] = None,
# TODO: once we have `rsyscall` support we will read a config
# and spawn the service tree distributed per that.
start_method: str = 'trio',
@ -74,7 +74,7 @@ async def open_piker_runtime(
) -> tuple[
tractor.Actor,
list[tuple[str, int]],
tuple[str, int],
]:
'''
Start a piker actor who's runtime will automatically sync with
@ -84,31 +84,21 @@ async def open_piker_runtime(
a root actor.
'''
# check for existing runtime, boot it
# if not already running.
try:
actor = tractor.current_actor()
# check for existing runtime
actor = tractor.current_actor().uid
except tractor._exceptions.NoRuntime:
tractor._state._runtime_vars[
'piker_vars'
] = tractor_runtime_overrides
'piker_vars'] = tractor_runtime_overrides
# NOTE: if no registrar list passed used the default of just
# setting it as the root actor on localhost.
registry_addrs = (
registry_addrs
or [_default_reg_addr]
)
if ems := tractor_kwargs.pop('enable_modules', None):
# import pdbp; pdbp.set_trace()
enable_modules.extend(ems)
registry_addr = registry_addr or _default_reg_addr
async with (
tractor.open_root_actor(
# passed through to ``open_root_actor``
registry_addrs=registry_addrs,
arbiter_addr=registry_addr,
name=name,
loglevel=loglevel,
debug_mode=debug_mode,
@ -120,30 +110,24 @@ async def open_piker_runtime(
enable_modules=enable_modules,
**tractor_kwargs,
) as actor,
) as _,
open_registry(
registry_addrs,
ensure_exists=False,
) as addrs,
open_registry(registry_addr, ensure_exists=False) as addr,
):
assert actor is tractor.current_actor()
yield (
actor,
addrs,
tractor.current_actor(),
addr,
)
else:
async with open_registry(
registry_addrs
) as addrs:
async with open_registry(registry_addr) as addr:
yield (
actor,
addrs,
addr,
)
_root_dname: str = 'pikerd'
_root_modules: list[str] = [
_root_dname = 'pikerd'
_root_modules = [
__name__,
'piker.service._daemon',
'piker.brokers._daemon',
@ -157,13 +141,13 @@ _root_modules: list[str] = [
@acm
async def open_pikerd(
registry_addrs: list[tuple[str, int]],
loglevel: str | None = None,
# XXX: you should pretty much never want debug mode
# for data daemons when running in production.
debug_mode: bool = False,
registry_addr: None | tuple[str, int] = None,
**kwargs,
@ -175,39 +159,29 @@ async def open_pikerd(
alive underling services (see below).
'''
# NOTE: for the root daemon we always enable the root
# mod set and we `list.extend()` it into wtv the
# caller requested.
# TODO: make this mod set more strict?
# -[ ] eventually we should be able to avoid
# having the root have more then permissions to spawn other
# specialized daemons I think?
ems: list[str] = kwargs.setdefault('enable_modules', [])
ems.extend(_root_modules)
async with (
open_piker_runtime(
name=_root_dname,
# TODO: eventually we should be able to avoid
# having the root have more then permissions to
# spawn other specialized daemons I think?
enable_modules=_root_modules,
loglevel=loglevel,
debug_mode=debug_mode,
registry_addrs=registry_addrs,
registry_addr=registry_addr,
**kwargs,
) as (
root_actor,
reg_addrs,
),
) as (root_actor, reg_addr),
tractor.open_nursery() as actor_nursery,
trio.open_nursery() as service_nursery,
):
for addr in reg_addrs:
if addr not in root_actor.accept_addrs:
raise RuntimeError(
f'`pikerd` failed to bind on {addr}!\n'
'Maybe you have another daemon already running?'
)
if root_actor.accept_addr != reg_addr:
raise RuntimeError(
f'`pikerd` failed to bind on {reg_addr}!\n'
'Maybe you have another daemon already running?'
)
# assign globally for future daemon/task creation
Services.actor_n = actor_nursery
@ -251,9 +225,9 @@ async def open_pikerd(
@acm
async def maybe_open_pikerd(
registry_addrs: list[tuple[str, int]] | None = None,
loglevel: Optional[str] = None,
registry_addr: None | tuple = None,
loglevel: str | None = None,
**kwargs,
) -> tractor._portal.Portal | ClassVar[Services]:
@ -279,51 +253,32 @@ async def maybe_open_pikerd(
# async with open_portal(chan) as arb_portal:
# yield arb_portal
registry_addrs: list[tuple[str, int]] = (
registry_addrs
or [_default_reg_addr]
)
pikerd_portal: tractor.Portal | None
async with (
open_piker_runtime(
name=query_name,
registry_addrs=registry_addrs,
registry_addr=registry_addr,
loglevel=loglevel,
**kwargs,
) as (actor, addrs),
) as _,
tractor.find_actor(
_root_dname,
arbiter_sockaddr=registry_addr,
) as portal
):
if _root_dname in actor.uid:
yield None
# connect to any existing daemon presuming
# its registry socket was selected.
if (
portal is not None
):
yield portal
return
# NOTE: IFF running in disti mode, try to attach to any
# existing (host-local) `pikerd`.
else:
async with tractor.find_actor(
_root_dname,
registry_addrs=registry_addrs,
only_first=True,
# raise_on_none=True,
) as pikerd_portal:
# connect to any existing remote daemon presuming its
# registry socket was selected.
if pikerd_portal is not None:
# sanity check that we are actually connecting to
# a remote process and not ourselves.
assert actor.uid != pikerd_portal.channel.uid
assert registry_addrs
yield pikerd_portal
return
# presume pikerd role since no daemon could be found at
# configured address
async with open_pikerd(
loglevel=loglevel,
registry_addrs=registry_addrs,
registry_addr=registry_addr,
# passthrough to ``tractor`` init
**kwargs,

View File

@ -15,8 +15,8 @@
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Supervisor for ``docker`` with included async and SC wrapping to
ensure a cancellable container lifetime system.
Supervisor for ``docker`` with included async and SC wrapping
to ensure a cancellable container lifetime system.
'''
from __future__ import annotations

View File

@ -70,10 +70,7 @@ async def maybe_spawn_daemon(
lock = Services.locks[service_name]
await lock.acquire()
async with find_service(
service_name,
registry_addrs=[('127.0.0.1', 6116)],
) as portal:
async with find_service(service_name) as portal:
if portal is not None:
lock.release()
yield portal

View File

@ -27,12 +27,6 @@ from typing import (
import trio
from trio_typing import TaskStatus
import tractor
from tractor import (
current_actor,
ContextCancelled,
Context,
Portal,
)
from ._util import (
log, # sub-sys logger
@ -44,8 +38,6 @@ from ._util import (
# library.
# - wrap a "remote api" wherein you can get a method proxy
# to the pikerd actor for starting services remotely!
# - prolly rename this to ActorServicesNursery since it spawns
# new actors and supervises them to completion?
class Services:
actor_n: tractor._supervise.ActorNursery
@ -55,7 +47,7 @@ class Services:
str,
tuple[
trio.CancelScope,
Portal,
tractor.Portal,
trio.Event,
]
] = {}
@ -65,12 +57,12 @@ class Services:
async def start_service_task(
self,
name: str,
portal: Portal,
portal: tractor.Portal,
target: Callable,
allow_overruns: bool = False,
**ctx_kwargs,
) -> (trio.CancelScope, Context):
) -> (trio.CancelScope, tractor.Context):
'''
Open a context in a service sub-actor, add to a stack
that gets unwound at ``pikerd`` teardown.
@ -109,30 +101,13 @@ class Services:
# wait on any context's return value
# and any final portal result from the
# sub-actor.
ctx_res: Any = await ctx.result()
ctx_res = await ctx.result()
# NOTE: blocks indefinitely until cancelled
# either by error from the target context
# function or by being cancelled here by the
# surrounding cancel scope.
return (await portal.result(), ctx_res)
except ContextCancelled as ctxe:
canceller: tuple[str, str] = ctxe.canceller
our_uid: tuple[str, str] = current_actor().uid
if (
canceller != portal.channel.uid
and
canceller != our_uid
):
log.cancel(
f'Actor-service {name} was remotely cancelled?\n'
f'remote canceller: {canceller}\n'
f'Keeping {our_uid} alive, ignoring sub-actor cancel..\n'
)
else:
raise
finally:
await portal.cancel_actor()

View File

@ -27,7 +27,6 @@ from typing import (
)
import tractor
from tractor import Portal
from ._util import (
log, # sub-sys logger
@ -47,9 +46,7 @@ _registry: Registry | None = None
class Registry:
# TODO: should this be a set or should we complain
# on duplicates?
addrs: list[tuple[str, int]] = []
addr: None | tuple[str, int] = None
# TODO: table of uids to sockaddrs
peers: dict[
@ -63,115 +60,69 @@ _tractor_kwargs: dict[str, Any] = {}
@acm
async def open_registry(
addrs: list[tuple[str, int]],
addr: None | tuple[str, int] = None,
ensure_exists: bool = True,
) -> list[tuple[str, int]]:
'''
Open the service-actor-discovery registry by returning a set of
tranport socket-addrs to registrar actors which may be
contacted and queried for similar addresses for other
non-registrar actors.
) -> tuple[str, int]:
'''
global _tractor_kwargs
actor = tractor.current_actor()
uid = actor.uid
preset_reg_addrs: list[tuple[str, int]] = Registry.addrs
if (
preset_reg_addrs
and addrs
Registry.addr is not None
and addr
):
if preset_reg_addrs != addrs:
# if any(addr in preset_reg_addrs for addr in addrs):
diff: set[tuple[str, int]] = set(preset_reg_addrs) - set(addrs)
if diff:
log.warning(
f'`{uid}` requested only subset of registrars: {addrs}\n'
f'However there are more @{diff}'
)
else:
raise RuntimeError(
f'`{uid}` has non-matching registrar addresses?\n'
f'request: {addrs}\n'
f'already set: {preset_reg_addrs}'
)
raise RuntimeError(
f'`{uid}` registry addr already bound @ {_registry.sockaddr}'
)
was_set: bool = False
if (
not tractor.is_root_process()
and not Registry.addrs
and Registry.addr is None
):
Registry.addrs.extend(actor.reg_addrs)
Registry.addr = actor._arb_addr
if (
ensure_exists
and not Registry.addrs
and Registry.addr is None
):
raise RuntimeError(
f"`{uid}` registry should already exist but doesn't?"
f"`{uid}` registry should already exist bug doesn't?"
)
if (
not Registry.addrs
Registry.addr is None
):
was_set = True
Registry.addrs = addrs or [_default_reg_addr]
Registry.addr = addr or _default_reg_addr
# NOTE: only spot this seems currently used is inside
# `.ui._exec` which is the (eventual qtloops) bootstrapping
# with guest mode.
_tractor_kwargs['registry_addrs'] = Registry.addrs
_tractor_kwargs['arbiter_addr'] = Registry.addr
try:
yield Registry.addrs
yield Registry.addr
finally:
# XXX: always clear the global addr if we set it so that the
# next (set of) calls will apply whatever new one is passed
# in.
if was_set:
Registry.addrs = None
Registry.addr = None
@acm
async def find_service(
service_name: str,
registry_addrs: list[tuple[str, int]] | None = None,
) -> tractor.Portal | None:
first_only: bool = True,
) -> (
Portal
| list[Portal]
| None
):
reg_addrs: list[tuple[str, int]]
async with open_registry(
addrs=(
registry_addrs
# NOTE: if no addr set is passed assume the registry has
# already been opened and use the previously applied
# startup set.
or Registry.addrs
),
) as reg_addrs:
async with open_registry() as reg_addr:
log.info(f'Scanning for service `{service_name}`')
maybe_portals: list[Portal] | Portal | None
# attach to existing daemon by name if possible
async with tractor.find_actor(
service_name,
registry_addrs=reg_addrs,
only_first=first_only, # if set only returns single ref
) as maybe_portals:
if not maybe_portals:
yield None
return
yield maybe_portals
arbiter_sockaddr=reg_addr,
) as maybe_portal:
yield maybe_portal
async def check_for_service(
@ -182,11 +133,9 @@ async def check_for_service(
Service daemon "liveness" predicate.
'''
async with (
open_registry(ensure_exists=False) as reg_addr,
tractor.query_actor(
async with open_registry(ensure_exists=False) as reg_addr:
async with tractor.query_actor(
service_name,
arbiter_sockaddr=reg_addr,
) as sockaddr,
):
return sockaddr
) as sockaddr:
return sockaddr

View File

@ -1,5 +1,5 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# Copyright (C) Tyler Goodlet (in stewardship for piker0)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
@ -25,9 +25,11 @@
'''
from __future__ import annotations
from contextlib import asynccontextmanager as acm
from datetime import datetime
from pprint import pformat
from typing import (
Any,
Union,
TYPE_CHECKING,
)
import time
@ -35,34 +37,31 @@ from math import isnan
from pathlib import Path
from bidict import bidict
from msgspec.msgpack import (
encode,
decode,
)
from msgspec.msgpack import encode, decode
# import pyqtgraph as pg
import numpy as np
import tractor
from trio_websocket import open_websocket_url
from anyio_marketstore import ( # noqa
from anyio_marketstore import (
open_marketstore_client,
MarketstoreClient,
Params,
)
import pendulum
# TODO: import this for specific error set expected by mkts client
# import purerpc
from ..data.feed import maybe_open_feed
from . import Services
from ._util import (
log, # sub-sys logger
get_console_log,
)
import purerpc
if TYPE_CHECKING:
import docker
from ._ahab import DockerContainer
from ._util import (
log, # sub-sys logger
get_console_log,
)
from . import Services
from ..data.feed import maybe_open_feed
from .._profile import Profiler
from .. import config
# ahabd-supervisor and container level config
@ -327,6 +326,16 @@ _ohlcv_dt = [
]
ohlc_key_map = bidict({
'Epoch': 'time',
'Open': 'open',
'High': 'high',
'Low': 'low',
'Close': 'close',
'Volume': 'volume',
})
def mk_tbk(keys: tuple[str, str, str]) -> str:
'''
Generate a marketstore table key from a tuple.
@ -378,6 +387,24 @@ def quote_to_marketstore_structarray(
return np.array([tuple(array_input)], dtype=_quote_dt)
@acm
async def get_client(
host: str | None,
port: int | None,
) -> MarketstoreClient:
'''
Load a ``anyio_marketstore`` grpc client connected
to an existing ``marketstore`` server.
'''
async with open_marketstore_client(
host or 'localhost',
port or _config['grpc_listen_port'],
) as client:
yield client
class MarketStoreError(Exception):
"Generic marketstore client error"
@ -405,6 +432,375 @@ tf_in_1s = bidict({
})
class Storage:
'''
High level storage api for both real-time and historical ingest.
'''
def __init__(
self,
client: MarketstoreClient,
) -> None:
# TODO: eventually this should be an api/interface type that
# ensures we can support multiple tsdb backends.
self.client = client
# series' cache from tsdb reads
self._arrays: dict[str, np.ndarray] = {}
async def list_keys(self) -> list[str]:
return await self.client.list_symbols()
async def search_keys(self, pattern: str) -> list[str]:
'''
Search for time series key in the storage backend.
'''
...
async def write_ticks(self, ticks: list) -> None:
...
async def load(
self,
fqme: str,
timeframe: int,
) -> tuple[
np.ndarray, # timeframe sampled array-series
datetime | None, # first dt
datetime | None, # last dt
]:
first_tsdb_dt, last_tsdb_dt = None, None
hist = await self.read_ohlcv(
fqme,
# on first load we don't need to pull the max
# history per request size worth.
limit=3000,
timeframe=timeframe,
)
log.info(f'Loaded tsdb history {hist}')
if len(hist):
times = hist['Epoch']
first, last = times[0], times[-1]
first_tsdb_dt, last_tsdb_dt = map(
pendulum.from_timestamp, [first, last]
)
return (
hist, # array-data
first_tsdb_dt, # start of query-frame
last_tsdb_dt, # most recent
)
async def read_ohlcv(
self,
fqme: str,
timeframe: int | str,
end: int | None = None,
limit: int = int(800e3),
) -> np.ndarray:
client = self.client
syms = await client.list_symbols()
if fqme not in syms:
return {}
# use the provided timeframe or 1s by default
tfstr = tf_in_1s.get(timeframe, tf_in_1s[1])
params = Params(
symbols=fqme,
timeframe=tfstr,
attrgroup='OHLCV',
end=end,
# limit_from_start=True,
# TODO: figure the max limit here given the
# ``purepc`` msg size limit of purerpc: 33554432
limit=limit,
)
for i in range(3):
try:
result = await client.query(params)
break
except purerpc.grpclib.exceptions.UnknownError as err:
if 'snappy' in err.args:
await tractor.breakpoint()
# indicate there is no history for this timeframe
log.exception(
f'Unknown mkts QUERY error: {params}\n'
f'{err.args}'
)
else:
return {}
# TODO: it turns out column access on recarrays is actually slower:
# https://jakevdp.github.io/PythonDataScienceHandbook/02.09-structured-data-numpy.html#RecordArrays:-Structured-Arrays-with-a-Twist
# it might make sense to make these structured arrays?
data_set = result.by_symbols()[fqme]
array = data_set.array
# XXX: ensure sample rate is as expected
time = data_set.array['Epoch']
if len(time) > 1:
time_step = time[-1] - time[-2]
ts = tf_in_1s.inverse[data_set.timeframe]
if time_step != ts:
log.warning(
f'MKTS BUG: wrong timeframe loaded: {time_step}'
'YOUR DATABASE LIKELY CONTAINS BAD DATA FROM AN OLD BUG'
f'WIPING HISTORY FOR {ts}s'
)
await self.delete_ts(fqme, timeframe)
# try reading again..
return await self.read_ohlcv(
fqme,
timeframe,
end,
limit,
)
return array
async def delete_ts(
self,
key: str,
timeframe: Union[int, str | None] = None,
fmt: str = 'OHLCV',
) -> bool:
client = self.client
syms = await client.list_symbols()
if key not in syms:
await tractor.breakpoint()
raise KeyError(f'`{key}` table key not found in\n{syms}?')
tbk = mk_tbk((
key,
tf_in_1s.get(timeframe, tf_in_1s[60]),
fmt,
))
return await client.destroy(tbk=tbk)
async def write_ohlcv(
self,
fqme: str,
ohlcv: np.ndarray,
timeframe: int,
append_and_duplicate: bool = True,
limit: int = int(800e3),
) -> None:
# build mkts schema compat array for writing
mkts_dt = np.dtype(_ohlcv_dt)
mkts_array = np.zeros(
len(ohlcv),
dtype=mkts_dt,
)
# copy from shm array (yes it's this easy):
# https://numpy.org/doc/stable/user/basics.rec.html#assignment-from-other-structured-arrays
mkts_array[:] = ohlcv[[
'time',
'open',
'high',
'low',
'close',
'volume',
]]
m, r = divmod(len(mkts_array), limit)
tfkey = tf_in_1s[timeframe]
for i in range(m, 1):
to_push = mkts_array[i-1:i*limit]
# write to db
resp = await self.client.write(
to_push,
tbk=f'{fqme}/{tfkey}/OHLCV',
# NOTE: will will append duplicates
# for the same timestamp-index.
# TODO: pre-deduplicate?
isvariablelength=append_and_duplicate,
)
log.info(
f'Wrote {mkts_array.size} datums to tsdb\n'
)
for resp in resp.responses:
err = resp.error
if err:
raise MarketStoreError(err)
if r:
to_push = mkts_array[m*limit:]
# write to db
resp = await self.client.write(
to_push,
tbk=f'{fqme}/{tfkey}/OHLCV',
# NOTE: will will append duplicates
# for the same timestamp-index.
# TODO: pre deduplicate?
isvariablelength=append_and_duplicate,
)
log.info(
f'Wrote {mkts_array.size} datums to tsdb\n'
)
for resp in resp.responses:
err = resp.error
if err:
raise MarketStoreError(err)
# XXX: currently the only way to do this is through the CLI:
# sudo ./marketstore connect --dir ~/.config/piker/data
# >> \show mnq.globex.20220617.ib/1Sec/OHLCV 2022-05-15
# and this seems to block and use up mem..
# >> \trim mnq.globex.20220617.ib/1Sec/OHLCV 2022-05-15
# relevant source code for this is here:
# https://github.com/alpacahq/marketstore/blob/master/cmd/connect/session/trim.go#L14
# def delete_range(self, start_dt, end_dt) -> None:
# ...
@acm
async def open_storage_client(
host: str,
grpc_port: int,
) -> tuple[Storage, dict[str, np.ndarray]]:
'''
Load a series by key and deliver in ``numpy`` struct array format.
'''
async with (
# eventually a storage backend endpoint
get_client(
host=host,
port=grpc_port,
) as client,
):
# slap on our wrapper api
yield Storage(client)
@acm
async def open_tsdb_client(
fqme: str,
) -> Storage:
# TODO: real-time dedicated task for ensuring
# history consistency between the tsdb, shm and real-time feed..
# update sequence design notes:
# - load existing highest frequency data from mkts
# * how do we want to offer this to the UI?
# - lazy loading?
# - try to load it all and expect graphics caching/diffing
# to hide extra bits that aren't in view?
# - compute the diff between latest data from broker and shm
# * use sql api in mkts to determine where the backend should
# start querying for data?
# * append any diff with new shm length
# * determine missing (gapped) history by scanning
# * how far back do we look?
# - begin rt update ingest and aggregation
# * could start by always writing ticks to mkts instead of
# worrying about a shm queue for now.
# * we have a short list of shm queues worth groking:
# - https://github.com/pikers/piker/issues/107
# * the original data feed arch blurb:
# - https://github.com/pikers/piker/issues/98
#
profiler = Profiler(
disabled=True, # not pg_profile_enabled(),
delayed=False,
)
# load any user service settings for connecting to
rootconf, path = config.load(
'conf',
touch_if_dne=True,
)
tsdbconf = rootconf['network'].get('tsdb')
# backend = tsdbconf.pop('backend')
async with (
open_storage_client(
**tsdbconf,
) as storage,
maybe_open_feed(
[fqme],
start_stream=False,
) as feed,
):
profiler(f'opened feed for {fqme}')
# to_append = feed.hist_shm.array
# to_prepend = None
if fqme:
flume = feed.flumes[fqme]
symbol = flume.mkt
if symbol:
fqme = symbol.fqme
# diff db history with shm and only write the missing portions
# ohlcv = flume.hist_shm.array
# TODO: use pg profiler
# for secs in (1, 60):
# tsdb_array = await storage.read_ohlcv(
# fqme,
# timeframe=timeframe,
# )
# # hist diffing:
# # these aren't currently used but can be referenced from
# # within the embedded ipython shell below.
# to_append = ohlcv[ohlcv['time'] > ts['Epoch'][-1]]
# to_prepend = ohlcv[ohlcv['time'] < ts['Epoch'][0]]
# profiler('Finished db arrays diffs')
_ = await storage.client.list_symbols()
# log.info(f'Existing tsdb symbol set:\n{pformat(syms)}')
# profiler(f'listed symbols {syms}')
yield storage
# for array in [to_append, to_prepend]:
# if array is None:
# continue
# log.info(
# f'Writing datums {array.size} -> to tsdb from shm\n'
# )
# await storage.write_ohlcv(fqme, array)
# profiler('Finished db writes')
async def ingest_quote_stream(
symbols: list[str],
brokername: str,
@ -416,7 +812,6 @@ async def ingest_quote_stream(
Ingest a broker quote stream into a ``marketstore`` tsdb.
'''
from piker.storage.marketstore import get_client
async with (
maybe_open_feed(brokername, symbols, loglevel=loglevel) as feed,
get_client() as ms_client,
@ -568,3 +963,5 @@ async def stream_quotes(
if quotes:
yield quotes

View File

@ -1,320 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
(time-series) database middle ware layer.
- APIs for read, write, delete, replicate over multiple
db systems.
- backend agnostic tick msg ingest machinery.
- broadcast systems for fan out of real-time ingested
data to live consumers.
- test harness utilities for data-processing verification.
'''
from abc import abstractmethod
from contextlib import asynccontextmanager as acm
from functools import partial
from importlib import import_module
from datetime import datetime
from types import ModuleType
from typing import (
# Callable,
# Awaitable,
# Any,
# AsyncIterator,
Protocol,
# Generic,
# TypeVar,
)
import numpy as np
from .. import config
from ..service import (
check_for_service,
)
from ..log import (
get_logger,
get_console_log,
)
subsys: str = 'piker.storage'
log = get_logger(subsys)
get_console_log = partial(
get_console_log,
name=subsys,
)
__tsdbs__: list[str] = [
'nativedb',
# 'marketstore',
]
class StorageClient(
Protocol,
):
'''
Api description that all storage backends must implement
in order to suffice the historical data mgmt layer.
'''
name: str
@abstractmethod
async def list_keys(self) -> list[str]:
...
@abstractmethod
def search_keys(self) -> list[str]:
...
# @abstractmethod
# async def write_ticks(
# self,
# ticks: list,
# ) -> ReceiveType:
# ...
# ``trio.abc.AsyncResource`` methods
@abstractmethod
async def load(
self,
fqme: str,
timeframe: int,
) -> tuple[
np.ndarray, # timeframe sampled array-series
datetime | None, # first dt
datetime | None, # last dt
]:
...
@abstractmethod
async def delete_ts(
self,
key: str,
timeframe: int | str | None = None,
fmt: str = 'OHLCV',
) -> bool:
...
@abstractmethod
async def read_ohlcv(
self,
fqme: str,
timeframe: int | str,
end: int | None = None,
limit: int = int(800e3),
) -> np.ndarray:
...
async def write_ohlcv(
self,
fqme: str,
ohlcv: np.ndarray,
timeframe: int,
append_and_duplicate: bool = True,
limit: int = int(800e3),
) -> None:
...
class TimeseriesNotFound(Exception):
'''
No timeseries entry can be found for this backend.
'''
class StorageConnectionError(ConnectionError):
'''
Can't connect to the desired tsdb subsys/service.
'''
def get_storagemod(name: str) -> ModuleType:
mod: ModuleType = import_module(
'.' + name,
'piker.storage',
)
# we only allow monkeying because it's for internal keying
mod.name = mod.__name__.split('.')[-1]
return mod
@acm
async def open_storage_client(
backend: str | None = None,
) -> tuple[ModuleType, StorageClient]:
'''
Load the ``StorageClient`` for named backend.
'''
def_backend: str = 'nativedb'
tsdb_host: str = 'localhost'
# load root config and any tsdb user defined settings
conf, path = config.load(
conf_name='conf',
touch_if_dne=True,
)
# TODO: maybe not under a "network" section.. since
# no more chitty `marketstore`..
tsdbconf: dict = {}
service_section = conf.get('service')
if (
not backend
and service_section
):
tsdbconf = service_section.get('tsdb')
# lookup backend tsdb module by name and load any user service
# settings for connecting to the tsdb service.
backend: str = tsdbconf.pop(
'name',
def_backend,
)
tsdb_host: str = tsdbconf.get('maddrs', [])
if backend is None:
backend: str = def_backend
# import and load storagemod by name
mod: ModuleType = get_storagemod(backend)
get_client = mod.get_client
log.info('Scanning for existing `{tsbd_backend}`')
if backend != def_backend:
tsdb_is_up: bool = await check_for_service(f'{backend}d')
if (
tsdb_host == 'localhost'
or tsdb_is_up
):
log.info(f'Connecting to local: {backend}@{tsdbconf}')
else:
log.info(f'Attempting to connect to remote: {backend}@{tsdbconf}')
else:
log.info(f'Connecting to default storage: {backend}@{tsdbconf}')
async with (
get_client(**tsdbconf) as client,
):
# slap on our wrapper api
yield mod, client
# NOTE: pretty sure right now this is only being
# called by a CLI entrypoint?
@acm
async def open_tsdb_client(
fqme: str,
) -> StorageClient:
# TODO: real-time dedicated task for ensuring
# history consistency between the tsdb, shm and real-time feed..
# update sequence design notes:
# - load existing highest frequency data from mkts
# * how do we want to offer this to the UI?
# - lazy loading?
# - try to load it all and expect graphics caching/diffing
# to hide extra bits that aren't in view?
# - compute the diff between latest data from broker and shm
# * use sql api in mkts to determine where the backend should
# start querying for data?
# * append any diff with new shm length
# * determine missing (gapped) history by scanning
# * how far back do we look?
# - begin rt update ingest and aggregation
# * could start by always writing ticks to mkts instead of
# worrying about a shm queue for now.
# * we have a short list of shm queues worth groking:
# - https://github.com/pikers/piker/issues/107
# * the original data feed arch blurb:
# - https://github.com/pikers/piker/issues/98
#
from ..toolz import Profiler
profiler = Profiler(
disabled=True, # not pg_profile_enabled(),
delayed=False,
)
from ..data.feed import maybe_open_feed
async with (
open_storage_client() as (_, storage),
maybe_open_feed(
[fqme],
start_stream=False,
) as feed,
):
profiler(f'opened feed for {fqme}')
# to_append = feed.hist_shm.array
# to_prepend = None
if fqme:
flume = feed.flumes[fqme]
symbol = flume.mkt
if symbol:
fqme = symbol.fqme
# diff db history with shm and only write the missing portions
# ohlcv = flume.hist_shm.array
# TODO: use pg profiler
# for secs in (1, 60):
# tsdb_array = await storage.read_ohlcv(
# fqme,
# timeframe=timeframe,
# )
# # hist diffing:
# # these aren't currently used but can be referenced from
# # within the embedded ipython shell below.
# to_append = ohlcv[ohlcv['time'] > ts['Epoch'][-1]]
# to_prepend = ohlcv[ohlcv['time'] < ts['Epoch'][0]]
# profiler('Finished db arrays diffs')
_ = await storage.client.list_symbols()
# log.info(f'Existing tsdb symbol set:\n{pformat(syms)}')
# profiler(f'listed symbols {syms}')
yield storage
# for array in [to_append, to_prepend]:
# if array is None:
# continue
# log.info(
# f'Writing datums {array.size} -> to tsdb from shm\n'
# )
# await storage.write_ohlcv(fqme, array)
# profiler('Finished db writes')

View File

@ -1,553 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
Storage middle-ware CLIs.
"""
from __future__ import annotations
# from datetime import datetime
# from contextlib import (
# AsyncExitStack,
# )
from pathlib import Path
from math import copysign
import time
from types import ModuleType
from typing import (
Any,
TYPE_CHECKING,
)
import polars as pl
import numpy as np
import tractor
# import pendulum
from rich.console import Console
import trio
# from rich.markdown import Markdown
import typer
from piker.service import open_piker_runtime
from piker.cli import cli
from piker.data import (
ShmArray,
)
from piker import tsp
from piker.data._formatters import BGM
from . import log
from . import (
__tsdbs__,
open_storage_client,
StorageClient,
)
if TYPE_CHECKING:
from piker.ui._remote_ctl import AnnotCtl
store = typer.Typer()
@store.command()
def ls(
backends: list[str] = typer.Argument(
default=None,
help='Storage backends to query, default is all.'
),
):
from rich.table import Table
if not backends:
backends: list[str] = __tsdbs__
console = Console()
async def query_all():
nonlocal backends
async with (
open_piker_runtime(
'tsdb_storage',
),
):
for i, backend in enumerate(backends):
table = Table()
try:
async with open_storage_client(backend=backend) as (
mod,
client,
):
table.add_column(f'{mod.name}@{client.address}')
keys: list[str] = await client.list_keys()
for key in keys:
table.add_row(key)
console.print(table)
except Exception:
log.error(f'Unable to connect to storage engine: `{backend}`')
trio.run(query_all)
# TODO: like ls but takes in a pattern and matches
# @store.command()
# def search(
# patt: str,
# backends: list[str] = typer.Argument(
# default=None,
# help='Storage backends to query, default is all.'
# ),
# ):
# ...
@store.command()
def delete(
symbols: list[str],
backend: str = typer.Option(
default=None,
help='Storage backend to update'
),
# TODO: expose this as flagged multi-option?
timeframes: list[int] = [1, 60],
):
'''
Delete a storage backend's time series for (table) keys provided as
``symbols``.
'''
from . import open_storage_client
async def main(symbols: list[str]):
async with (
open_piker_runtime(
'tsdb_storage',
),
open_storage_client(backend) as (_, client),
trio.open_nursery() as n,
):
# spawn queries as tasks for max conc!
for fqme in symbols:
for tf in timeframes:
n.start_soon(
client.delete_ts,
fqme,
tf,
)
trio.run(main, symbols)
@store.command()
def anal(
fqme: str,
period: int = 60,
pdb: bool = False,
) -> np.ndarray:
'''
Anal-ysis is when you take the data do stuff to it.
NOTE: This ONLY loads the offline timeseries data (by default
from a parquet file) NOT the in-shm version you might be seeing
in a chart.
'''
async def main():
async with (
open_piker_runtime(
# are you a bear or boi?
'tsdb_polars_anal',
debug_mode=pdb,
),
open_storage_client() as (
mod,
client,
),
):
syms: list[str] = await client.list_keys()
log.info(f'{len(syms)} FOUND for {mod.name}')
history: ShmArray # np buffer format
(
history,
first_dt,
last_dt,
) = await client.load(
fqme,
period,
)
assert first_dt < last_dt
null_segs: tuple = tsp.get_null_segs(
frame=history,
period=period,
)
# TODO: do tsp queries to backcend to fill i missing
# history and then prolly write it to tsdb!
shm_df: pl.DataFrame = await client.as_df(
fqme,
period,
)
df: pl.DataFrame # with dts
deduped: pl.DataFrame # deduplicated dts
(
df,
deduped,
diff,
) = tsp.dedupe(
shm_df,
period=period,
)
write_edits: bool = True
if (
write_edits
and (
diff
or null_segs
)
):
await tractor.pause()
await client.write_ohlcv(
fqme,
ohlcv=deduped,
timeframe=period,
)
else:
# TODO: something better with tab completion..
# is there something more minimal but nearly as
# functional as ipython?
await tractor.pause()
assert not null_segs
trio.run(main)
async def markup_gaps(
fqme: str,
timeframe: float,
actl: AnnotCtl,
wdts: pl.DataFrame,
gaps: pl.DataFrame,
) -> dict[int, dict]:
'''
Remote annotate time-gaps in a dt-fielded ts (normally OHLC)
with rectangles.
'''
aids: dict[int] = {}
for i in range(gaps.height):
row: pl.DataFrame = gaps[i]
# the gap's RIGHT-most bar's OPEN value
# at that time (sample) step.
iend: int = row['index'][0]
# dt: datetime = row['dt'][0]
# dt_prev: datetime = row['dt_prev'][0]
# dt_end_t: float = dt.timestamp()
# TODO: can we eventually remove this
# once we figure out why the epoch cols
# don't match?
# TODO: FIX HOW/WHY these aren't matching
# and are instead off by 4hours (EST
# vs. UTC?!?!)
# end_t: float = row['time']
# assert (
# dt.timestamp()
# ==
# end_t
# )
# the gap's LEFT-most bar's CLOSE value
# at that time (sample) step.
prev_r: pl.DataFrame = wdts.filter(
pl.col('index') == iend - 1
)
# XXX: probably a gap in the (newly sorted or de-duplicated)
# dt-df, so we might need to re-index first..
if prev_r.is_empty():
await tractor.pause()
istart: int = prev_r['index'][0]
# dt_start_t: float = dt_prev.timestamp()
# start_t: float = prev_r['time']
# assert (
# dt_start_t
# ==
# start_t
# )
# TODO: implement px-col width measure
# and ensure at least as many px-cols
# shown per rect as configured by user.
# gap_w: float = abs((iend - istart))
# if gap_w < 6:
# margin: float = 6
# iend += margin
# istart -= margin
rect_gap: float = BGM*3/8
opn: float = row['open'][0]
ro: tuple[float, float] = (
# dt_end_t,
iend + rect_gap + 1,
opn,
)
cls: float = prev_r['close'][0]
lc: tuple[float, float] = (
# dt_start_t,
istart - rect_gap, # + 1 ,
cls,
)
color: str = 'dad_blue'
diff: float = cls - opn
sgn: float = copysign(1, diff)
color: str = {
-1: 'buy_green',
1: 'sell_red',
}[sgn]
rect_kwargs: dict[str, Any] = dict(
fqme=fqme,
timeframe=timeframe,
start_pos=lc,
end_pos=ro,
color=color,
)
aid: int = await actl.add_rect(**rect_kwargs)
assert aid
aids[aid] = rect_kwargs
# tell chart to redraw all its
# graphics view layers Bo
await actl.redraw(
fqme=fqme,
timeframe=timeframe,
)
return aids
@store.command()
def ldshm(
fqme: str,
write_parquet: bool = True,
reload_parquet_to_shm: bool = True,
) -> None:
'''
Linux ONLY: load any fqme file name matching shm buffer from
/dev/shm/ into an OHLCV numpy array and polars DataFrame,
optionally write to offline storage via `.parquet` file.
'''
async def main():
from piker.ui._remote_ctl import (
open_annot_ctl,
)
actl: AnnotCtl
mod: ModuleType
client: StorageClient
async with (
open_piker_runtime(
'polars_boi',
enable_modules=['piker.data._sharedmem'],
debug_mode=True,
),
open_storage_client() as (
mod,
client,
),
open_annot_ctl() as actl,
):
shm_df: pl.DataFrame | None = None
tf2aids: dict[float, dict] = {}
for (
shmfile,
shm,
# parquet_path,
shm_df,
) in tsp.iter_dfs_from_shms(fqme):
times: np.ndarray = shm.array['time']
d1: float = float(times[-1] - times[-2])
d2: float = float(times[-2] - times[-3])
med: float = np.median(np.diff(times))
if (
d1 < 1.
and d2 < 1.
and med < 1.
):
raise ValueError(
f'Something is wrong with time period for {shm}:\n{times}'
)
period_s: float = float(max(d1, d2, med))
null_segs: tuple = tsp.get_null_segs(
frame=shm.array,
period=period_s,
)
# TODO: call null-seg fixer somehow?
if null_segs:
await tractor.pause()
# async with (
# trio.open_nursery() as tn,
# mod.open_history_client(
# mkt,
# ) as (get_hist, config),
# ):
# nulls_detected: trio.Event = await tn.start(partial(
# tsp.maybe_fill_null_segments,
# shm=shm,
# timeframe=timeframe,
# get_hist=get_hist,
# sampler_stream=sampler_stream,
# mkt=mkt,
# ))
# over-write back to shm?
wdts: pl.DataFrame # with dts
deduped: pl.DataFrame # deduplicated dts
(
wdts,
deduped,
diff,
) = tsp.dedupe(
shm_df,
period=period_s,
)
# detect gaps from in expected (uniform OHLC) sample period
step_gaps: pl.DataFrame = tsp.detect_time_gaps(
deduped,
expect_period=period_s,
)
# TODO: by default we always want to mark these up
# with rects showing up/down gaps Bo
venue_gaps: pl.DataFrame = tsp.detect_time_gaps(
deduped,
expect_period=period_s,
# TODO: actually pull the exact duration
# expected for each venue operational period?
gap_dt_unit='days',
gap_thresh=1,
)
# TODO: find the disjoint set of step gaps from
# venue (closure) set!
# -[ ] do a set diff by checking for the unique
# gap set only in the step_gaps?
if (
not venue_gaps.is_empty()
or (
period_s < 60
and not step_gaps.is_empty()
)
):
# write repaired ts to parquet-file?
if write_parquet:
start: float = time.time()
path: Path = await client.write_ohlcv(
fqme,
ohlcv=deduped,
timeframe=period_s,
)
write_delay: float = round(
time.time() - start,
ndigits=6,
)
# read back from fs
start: float = time.time()
read_df: pl.DataFrame = pl.read_parquet(path)
read_delay: float = round(
time.time() - start,
ndigits=6,
)
log.info(
f'parquet write took {write_delay} secs\n'
f'file path: {path}'
f'parquet read took {read_delay} secs\n'
f'polars df: {read_df}'
)
if reload_parquet_to_shm:
new = tsp.pl2np(
deduped,
dtype=shm.array.dtype,
)
# since normally readonly
shm._array.setflags(
write=int(1),
)
shm.push(
new,
prepend=True,
start=new['index'][-1],
update_first=False, # don't update ._first
)
do_markup_gaps: bool = True
if do_markup_gaps:
new_df: pl.DataFrame = tsp.np2pl(new)
aids: dict = await markup_gaps(
fqme,
period_s,
actl,
new_df,
step_gaps,
)
# last chance manual overwrites in REPL
# await tractor.pause()
assert aids
tf2aids[period_s] = aids
else:
# allow interaction even when no ts problems.
assert not diff
await tractor.pause()
log.info('Exiting TSP shm anal-izer!')
if shm_df is None:
log.error(
f'No matching shm buffers for {fqme} ?'
)
trio.run(main)
typer_click_object = typer.main.get_command(store)
cli.add_command(typer_click_object, 'store')

View File

@ -1,384 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
marketstore tsdb backend:
https://github.com/alpacahq/marketstore
We wrote an async gGRPC client:
https://github.com/pikers/anyio-marketstore
which is normally preferred minus the discovered issues
in https://github.com/pikers/piker/issues/443
Which is the main reason for us moving away from this
platform..
'''
from __future__ import annotations
from contextlib import asynccontextmanager as acm
from datetime import datetime
# from pprint import pformat
from typing import (
Union,
)
from bidict import bidict
import tractor
import numpy as np
from anyio_marketstore import (
Params,
)
import pendulum
# import purerpc
from piker.service.marketstore import (
MarketstoreClient,
tf_in_1s,
mk_tbk,
_ohlcv_dt,
MarketStoreError,
)
from anyio_marketstore import ( # noqa
open_marketstore_client,
MarketstoreClient,
Params,
)
from piker.log import get_logger
log = get_logger(__name__)
class MktsStorageClient:
'''
High level storage api for both real-time and historical ingest.
'''
name: str = 'marketstore'
def __init__(
self,
client: MarketstoreClient,
config: dict,
) -> None:
# TODO: eventually this should be an api/interface type that
# ensures we can support multiple tsdb backends.
self.client = client
self._config = config
# series' cache from tsdb reads
self._arrays: dict[str, np.ndarray] = {}
@property
def address(self) -> str:
conf = self._config
return f'grpc://{conf["host"]}:{conf["port"]}'
async def list_keys(self) -> list[str]:
return await self.client.list_symbols()
async def search_keys(self, pattern: str) -> list[str]:
'''
Search for time series key in the storage backend.
'''
...
async def write_ticks(self, ticks: list) -> None:
...
async def load(
self,
fqme: str,
timeframe: int,
) -> tuple[
np.ndarray, # timeframe sampled array-series
datetime | None, # first dt
datetime | None, # last dt
]:
first_tsdb_dt, last_tsdb_dt = None, None
hist = await self.read_ohlcv(
fqme,
# on first load we don't need to pull the max
# history per request size worth.
limit=3000,
timeframe=timeframe,
)
log.info(f'Loaded tsdb history {hist}')
if len(hist):
# breakpoint()
times: np.ndarray = hist['Epoch']
first, last = times[0], times[-1]
first_tsdb_dt, last_tsdb_dt = map(
pendulum.from_timestamp,
[first, last]
)
return (
hist, # array-data
first_tsdb_dt, # start of query-frame
last_tsdb_dt, # most recent
)
async def read_ohlcv(
self,
fqme: str,
timeframe: int | str,
end: float | None = None, # epoch or none
limit: int = int(200e3),
) -> np.ndarray:
client = self.client
syms = await client.list_symbols()
if fqme not in syms:
return {}
# ensure end time is in correct int format!
if (
end
and not isinstance(end, float)
):
end = int(float(end))
# breakpoint()
# use the provided timeframe or 1s by default
tfstr = tf_in_1s.get(timeframe, tf_in_1s[1])
import pymarketstore as pymkts
sync_client = pymkts.Client()
param = pymkts.Params(
symbols=fqme,
timeframe=tfstr,
attrgroup='OHLCV',
end=end,
limit=limit,
# limit_from_start=True,
)
try:
reply = sync_client.query(param)
except Exception as err:
if 'no files returned from query parse: None' in err.args:
return []
raise
data_set: pymkts.results.DataSet = reply.first()
array: np.ndarray = data_set.array
# params = Params(
# symbols=fqme,
# timeframe=tfstr,
# attrgroup='OHLCV',
# end=end,
# # limit_from_start=True,
# # TODO: figure the max limit here given the
# # ``purepc`` msg size limit of purerpc: 33554432
# limit=limit,
# )
# for i in range(3):
# try:
# result = await client.query(params)
# break
# except purerpc.grpclib.exceptions.UnknownError as err:
# if 'snappy' in err.args:
# await tractor.pause()
# # indicate there is no history for this timeframe
# log.exception(
# f'Unknown mkts QUERY error: {params}\n'
# f'{err.args}'
# )
# else:
# return {}
# # TODO: it turns out column access on recarrays is actually slower:
# # https://jakevdp.github.io/PythonDataScienceHandbook/02.09-structured-data-numpy.html#RecordArrays:-Structured-Arrays-with-a-Twist
# # it might make sense to make these structured arrays?
# data_set = result.by_symbols()[fqme]
# array = data_set.array
# XXX: ensure sample rate is as expected
time = data_set.array['Epoch']
if len(time) > 1:
time_step = time[-1] - time[-2]
ts = tf_in_1s.inverse[data_set.timeframe]
if time_step != ts:
log.warning(
f'MKTS BUG: wrong timeframe loaded: {time_step}\n'
'YOUR DATABASE LIKELY CONTAINS BAD DATA FROM AN OLD BUG '
f'WIPING HISTORY FOR {ts}s'
)
await tractor.pause()
# await self.delete_ts(fqme, timeframe)
# try reading again..
# return await self.read_ohlcv(
# fqme,
# timeframe,
# end,
# limit,
# )
return array
async def delete_ts(
self,
key: str,
timeframe: Union[int, str | None] = None,
fmt: str = 'OHLCV',
) -> bool:
client = self.client
# syms = await client.list_symbols()
# if key not in syms:
# raise KeyError(f'`{key}` table key not found in\n{syms}?')
tbk = mk_tbk((
key,
tf_in_1s.get(timeframe, tf_in_1s[60]),
fmt,
))
return await client.destroy(tbk=tbk)
async def write_ohlcv(
self,
fqme: str,
ohlcv: np.ndarray,
timeframe: int,
append_and_duplicate: bool = True,
limit: int = int(800e3),
) -> None:
# build mkts schema compat array for writing
mkts_dt = np.dtype(_ohlcv_dt)
mkts_array = np.zeros(
len(ohlcv),
dtype=mkts_dt,
)
# copy from shm array (yes it's this easy):
# https://numpy.org/doc/stable/user/basics.rec.html#assignment-from-other-structured-arrays
mkts_array[:] = ohlcv[[
'time',
'open',
'high',
'low',
'close',
'volume',
]]
m, r = divmod(len(mkts_array), limit)
tfkey = tf_in_1s[timeframe]
for i in range(m, 1):
to_push = mkts_array[i-1:i*limit]
# write to db
resp = await self.client.write(
to_push,
tbk=f'{fqme}/{tfkey}/OHLCV',
# NOTE: will will append duplicates
# for the same timestamp-index.
# TODO: pre-deduplicate?
isvariablelength=append_and_duplicate,
)
log.info(
f'Wrote {mkts_array.size} datums to tsdb\n'
)
for resp in resp.responses:
err = resp.error
if err:
raise MarketStoreError(err)
if r:
to_push = mkts_array[m*limit:]
# write to db
resp = await self.client.write(
to_push,
tbk=f'{fqme}/{tfkey}/OHLCV',
# NOTE: will will append duplicates
# for the same timestamp-index.
# TODO: pre deduplicate?
isvariablelength=append_and_duplicate,
)
log.info(
f'Wrote {mkts_array.size} datums to tsdb\n'
)
for resp in resp.responses:
err = resp.error
if err:
raise MarketStoreError(err)
# XXX: currently the only way to do this is through the CLI:
# sudo ./marketstore connect --dir ~/.config/piker/data
# >> \show mnq.globex.20220617.ib/1Sec/OHLCV 2022-05-15
# and this seems to block and use up mem..
# >> \trim mnq.globex.20220617.ib/1Sec/OHLCV 2022-05-15
# relevant source code for this is here:
# https://github.com/alpacahq/marketstore/blob/master/cmd/connect/session/trim.go#L14
# def delete_range(self, start_dt, end_dt) -> None:
# ...
ohlc_key_map = bidict({
'Epoch': 'time',
'Open': 'open',
'High': 'high',
'Low': 'low',
'Close': 'close',
'Volume': 'volume',
})
@acm
async def get_client(
grpc_port: int = 5995, # required
host: str = 'localhost',
) -> MarketstoreClient:
'''
Load a ``anyio_marketstore`` grpc client connected
to an existing ``marketstore`` server.
'''
async with open_marketstore_client(
host or 'localhost',
grpc_port,
) as client:
yield MktsStorageClient(
client,
config={'host': host, 'port': grpc_port},
)

View File

@ -1,177 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of piker0)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Legacy marketstore ingest and streaming related clis.
'''
# from .. import watchlists as wl
# from ..service.marketstore import (
# get_client,
# stream_quotes,
# ingest_quote_stream,
# _url,
# _tick_tbk_ids,
# mk_tbk,
# )
# @cli.command()
# @click.option(
# '--url',
# default='ws://localhost:5993/ws',
# help='HTTP URL of marketstore instance'
# )
# @click.argument('names', nargs=-1)
# @click.pass_obj
# def ms_stream(
# config: dict,
# names: list[str],
# url: str,
# ) -> None:
# '''
# Connect to a marketstore time bucket stream for (a set of) symbols(s)
# and print to console.
# '''
# async def main():
# # async for quote in stream_quotes(symbols=names):
# # log.info(f"Received quote:\n{quote}")
# ...
# trio.run(main)
# @cli.command()
# @click.option(
# '--url',
# default=_url,
# help='HTTP URL of marketstore instance'
# )
# @click.argument('names', nargs=-1)
# @click.pass_obj
# def ms_destroy(config: dict, names: list[str], url: str) -> None:
# """Destroy symbol entries in the local marketstore instance.
# """
# async def main():
# nonlocal names
# async with get_client(url) as client:
#
# if not names:
# names = await client.list_symbols()
#
# # default is to wipe db entirely.
# answer = input(
# "This will entirely wipe you local marketstore db @ "
# f"{url} of the following symbols:\n {pformat(names)}"
# "\n\nDelete [N/y]?\n")
#
# if answer == 'y':
# for sym in names:
# # tbk = _tick_tbk.format(sym)
# tbk = tuple(sym, *_tick_tbk_ids)
# print(f"Destroying {tbk}..")
# await client.destroy(mk_tbk(tbk))
# else:
# print("Nothing deleted.")
#
# tractor.run(main)
# @cli.command()
# @click.option(
# '--tsdb_host',
# default='localhost'
# )
# @click.option(
# '--tsdb_port',
# default=5993
# )
# @click.argument('symbols', nargs=-1)
# @click.pass_obj
# def storesh(
# config,
# tl,
# host,
# port,
# symbols: list[str],
# ):
# '''
# Start an IPython shell ready to query the local marketstore db.
# '''
# from piker.storage import open_tsdb_client
# from piker.service import open_piker_runtime
# async def main():
# nonlocal symbols
# async with open_piker_runtime(
# 'storesh',
# enable_modules=['piker.service._ahab'],
# ):
# symbol = symbols[0]
# async with open_tsdb_client(symbol):
# # TODO: ask if user wants to write history for detected
# # available shm buffers?
# from tractor.trionics import ipython_embed
# await ipython_embed()
# trio.run(main)
# @cli.command()
# @click.option('--test-file', '-t', help='Test quote stream file')
# @click.option('--tl', is_flag=True, help='Enable tractor logging')
# @click.argument('name', nargs=1, required=True)
# @click.pass_obj
# def ingest(config, name, test_file, tl):
# '''
# Ingest real-time broker quotes and ticks to a marketstore instance.
# '''
# # global opts
# loglevel = config['loglevel']
# tractorloglevel = config['tractorloglevel']
# # log = config['log']
# watchlist_from_file = wl.ensure_watchlists(config['wl_path'])
# watchlists = wl.merge_watchlist(watchlist_from_file, wl._builtins)
# symbols = watchlists[name]
# grouped_syms = {}
# for sym in symbols:
# symbol, _, provider = sym.rpartition('.')
# if provider not in grouped_syms:
# grouped_syms[provider] = []
# grouped_syms[provider].append(symbol)
# async def entry_point():
# async with tractor.open_nursery() as n:
# for provider, symbols in grouped_syms.items():
# await n.run_in_actor(
# ingest_quote_stream,
# name='ingest_marketstore',
# symbols=symbols,
# brokername=provider,
# tries=1,
# actorloglevel=loglevel,
# loglevel=tractorloglevel
# )
# tractor.run(entry_point)

View File

@ -1,433 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
`nativedb`: a lulzy Apache-parquet file manager (that some might
call a poor man's tsdb).
AKA a `piker`-native file-system native "time series database"
without needing an extra process and no standard TSDB features,
YET!
'''
# TODO: like there's soo much..
# - better name like "parkdb" or "nativedb" (lel)? bundle this lib with
# others to make full system:
# - tractor for failover and reliablity?
# - borg for replication and sync?
#
# - use `fastparquet` for appends:
# https://fastparquet.readthedocs.io/en/latest/api.html#fastparquet.write
# (presuming it's actually faster then overwrites and
# makes sense in terms of impl?)
#
# - use `polars` support for lazy scanning, processing and schema
# validation?
# - https://pola-rs.github.io/polars-book/user-guide/io/parquet/#scan
# - https://pola-rs.github.io/polars-book/user-guide/concepts/lazy-vs-eager/
# - consider delta writes for appends?
# - https://github.com/pola-rs/polars/blob/main/py-polars/polars/dataframe/frame.py#L3232
# - consider multi-file appends with appropriate time-range naming?
# - https://pola-rs.github.io/polars-book/user-guide/io/multiple/
#
# - use `borg` for replication?
# - https://borgbackup.readthedocs.io/en/stable/quickstart.html#remote-repositories
# - https://github.com/borgbackup/borg
# - https://borgbackup.readthedocs.io/en/stable/faq.html#usage-limitations
# - https://github.com/borgbackup/community
# - https://github.com/spslater/borgapi
# - https://nixos.wiki/wiki/ZFS
from __future__ import annotations
from contextlib import asynccontextmanager as acm
from datetime import datetime
from pathlib import Path
import time
import numpy as np
import polars as pl
from pendulum import (
from_timestamp,
)
from piker import config
from piker import tsp
from piker.data import (
def_iohlcv_fields,
ShmArray,
)
from piker.log import get_logger
from . import TimeseriesNotFound
log = get_logger('storage.nativedb')
def detect_period(shm: ShmArray) -> float:
'''
Attempt to detect the series time step sampling period
in seconds.
'''
# TODO: detect sample rate helper?
# calc ohlc sample period for naming
ohlcv: np.ndarray = shm.array
times: np.ndarray = ohlcv['time']
period: float = times[-1] - times[-2]
if period == 0:
# maybe just last sample is borked?
period: float = times[-2] - times[-3]
return period
def mk_ohlcv_shm_keyed_filepath(
fqme: str,
period: float | int, # ow known as the "timeframe"
datadir: Path,
) -> Path:
if period < 1.:
raise ValueError('Sample period should be >= 1.!?')
path: Path = (
datadir
/
f'{fqme}.ohlcv{int(period)}s.parquet'
)
return path
def unpack_fqme_from_parquet_filepath(path: Path) -> str:
filename: str = str(path.name)
fqme, fmt_descr, suffix = filename.split('.')
assert suffix == 'parquet'
return fqme
ohlc_key_map = None
class NativeStorageClient:
'''
High level storage api for OHLCV time series stored in
a (modern) filesystem as apache parquet files B)
Part of a grander scheme to use arrow and parquet as our main
lowlevel data framework: https://arrow.apache.org/faq/.
'''
name: str = 'nativedb'
def __init__(
self,
datadir: Path,
) -> None:
self._datadir = datadir
self._index: dict[str, dict] = {}
# series' cache from tsdb reads
self._dfs: dict[str, dict[str, pl.DataFrame]] = {}
@property
def address(self) -> str:
return self._datadir.as_uri()
@property
def cardinality(self) -> int:
return len(self._index)
# @property
# def compression(self) -> str:
# ...
async def list_keys(self) -> list[str]:
return list(self._index)
def index_files(self):
for path in self._datadir.iterdir():
if (
path.is_dir()
or
'.parquet' not in str(path)
# or
# path.name in {'borked', 'expired',}
):
continue
key: str = path.name.rstrip('.parquet')
fqme, _, descr = key.rpartition('.')
prefix, _, suffix = descr.partition('ohlcv')
period: int = int(suffix.strip('s'))
# cache description data
self._index[fqme] = {
'path': path,
'period': period,
}
return self._index
# async def search_keys(self, pattern: str) -> list[str]:
# '''
# Search for time series key in the storage backend.
# '''
# ...
# async def write_ticks(self, ticks: list) -> None:
# ...
async def load(
self,
fqme: str,
timeframe: int,
) -> tuple[
np.ndarray, # timeframe sampled array-series
datetime | None, # first dt
datetime | None, # last dt
] | None:
try:
array: np.ndarray = await self.read_ohlcv(
fqme,
timeframe,
)
except FileNotFoundError as fnfe:
bs_fqme, _, *_ = fqme.rpartition('.')
possible_matches: list[str] = []
for tskey in self._index:
if bs_fqme in tskey:
possible_matches.append(tskey)
match_str: str = '\n'.join(sorted(possible_matches))
raise TimeseriesNotFound(
f'No entry for `{fqme}`?\n'
f'Maybe you need a more specific fqme-key like:\n\n'
f'{match_str}'
) from fnfe
times = array['time']
return (
array,
from_timestamp(times[0]),
from_timestamp(times[-1]),
)
def mk_path(
self,
fqme: str,
period: float,
) -> Path:
return mk_ohlcv_shm_keyed_filepath(
fqme=fqme,
period=period,
datadir=self._datadir,
)
def _cache_df(
self,
fqme: str,
df: pl.DataFrame,
timeframe: float,
) -> None:
# cache df for later usage since we (currently) need to
# convert to np.ndarrays to push to our `ShmArray` rt
# buffers subsys but later we may operate entirely on
# pyarrow arrays/buffers so keeping the dfs around for
# a variety of purposes is handy.
self._dfs.setdefault(
timeframe,
{},
)[fqme] = df
async def read_ohlcv(
self,
fqme: str,
timeframe: int | str,
end: float | None = None, # epoch or none
# limit: int = int(200e3),
) -> np.ndarray:
path: Path = self.mk_path(
fqme,
period=int(timeframe),
)
df: pl.DataFrame = pl.read_parquet(path)
self._cache_df(
fqme=fqme,
df=df,
timeframe=timeframe,
)
# TODO: filter by end and limit inputs
# times: pl.Series = df['time']
array: np.ndarray = tsp.pl2np(
df,
dtype=np.dtype(def_iohlcv_fields),
)
return array
async def as_df(
self,
fqme: str,
period: int = 60,
load_from_offline: bool = True,
) -> pl.DataFrame:
try:
return self._dfs[period][fqme]
except KeyError:
if not load_from_offline:
raise
await self.read_ohlcv(fqme, period)
return self._dfs[period][fqme]
def _write_ohlcv(
self,
fqme: str,
ohlcv: np.ndarray | pl.DataFrame,
timeframe: int,
) -> Path:
'''
Sync version of the public interface meth, since we don't
currently actually need or support an async impl.
'''
path: Path = mk_ohlcv_shm_keyed_filepath(
fqme=fqme,
period=timeframe,
datadir=self._datadir,
)
if isinstance(ohlcv, np.ndarray):
df: pl.DataFrame = tsp.np2pl(ohlcv)
else:
df = ohlcv
self._cache_df(
fqme=fqme,
df=df,
timeframe=timeframe,
)
# TODO: in terms of managing the ultra long term data
# -[ ] use a proper profiler to measure all this IO and
# roundtripping!
# -[ ] implement parquet append!? see issue:
# https://github.com/pikers/piker/issues/536
# -[ ] try out ``fastparquet``'s append writing:
# https://fastparquet.readthedocs.io/en/latest/api.html#fastparquet.write
start = time.time()
df.write_parquet(path)
delay: float = round(
time.time() - start,
ndigits=6,
)
log.info(
f'parquet write took {delay} secs\n'
f'file path: {path}'
)
return path
async def write_ohlcv(
self,
fqme: str,
ohlcv: np.ndarray | pl.DataFrame,
timeframe: int,
) -> Path:
'''
Write input ohlcv time series for fqme and sampling period
to (local) disk.
'''
return self._write_ohlcv(
fqme,
ohlcv,
timeframe,
)
async def delete_ts(
self,
key: str,
timeframe: int | None = None,
) -> bool:
path: Path = mk_ohlcv_shm_keyed_filepath(
fqme=key,
period=timeframe,
datadir=self._datadir,
)
if path.is_file():
path.unlink()
log.warning(f'Deleting parquet entry:\n{path}')
else:
log.error(f'No path exists:\n{path}')
return path
# TODO: allow wiping and refetching a segment of the OHLCV timeseries
# data.
# def clear_range(
# self,
# key: str,
# start_dt: datetime,
# end_dt: datetime,
# timeframe: int | None = None,
# ) -> pl.DataFrame:
# '''
# Clear and re-fetch a range of datums for the OHLCV time series.
# Useful for series editing from a chart B)
# '''
# ...
# TODO: does this need to be async on average?
# I guess for any IPC connected backend yes?
@acm
async def get_client(
# TODO: eventually support something something apache arrow
# transport over ssh something..?
# host: str | None = None,
**kwargs,
) -> NativeStorageClient:
'''
Load a ``anyio_marketstore`` grpc client connected
to an existing ``marketstore`` server.
'''
datadir: Path = config.get_conf_dir() / 'nativedb'
if not datadir.is_dir():
log.info(f'Creating `nativedb` dir: {datadir}')
datadir.mkdir()
client = NativeStorageClient(datadir)
client.index_files()
yield client

View File

@ -1,29 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Toolz for debug, profile and trace of the distributed runtime :surfer:
'''
from tractor.devx import (
open_crash_handler as open_crash_handler,
)
from .profile import (
Profiler as Profiler,
pg_profile_enabled as pg_profile_enabled,
ms_slower_then as ms_slower_then,
timeit as timeit,
)

80
piker/trionics.py 100644
View File

@ -0,0 +1,80 @@
# piker: trading gear for hackers
# Copyright (C) Tyler Goodlet (in stewardship of piker0)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
sugarz for trio/tractor conc peeps.
'''
from typing import AsyncContextManager
from typing import TypeVar
from contextlib import asynccontextmanager as acm
import trio
# A regular invariant generic type
T = TypeVar("T")
async def _enter_and_sleep(
mngr: AsyncContextManager[T],
to_yield: dict[int, T],
all_entered: trio.Event,
# task_status: TaskStatus[T] = trio.TASK_STATUS_IGNORED,
) -> T:
'''Open the async context manager deliver it's value
to this task's spawner and sleep until cancelled.
'''
async with mngr as value:
to_yield[id(mngr)] = value
if all(to_yield.values()):
all_entered.set()
# sleep until cancelled
await trio.sleep_forever()
@acm
async def async_enter_all(
*mngrs: list[AsyncContextManager[T]],
) -> tuple[T]:
to_yield = {}.fromkeys(id(mngr) for mngr in mngrs)
all_entered = trio.Event()
async with trio.open_nursery() as n:
for mngr in mngrs:
n.start_soon(
_enter_and_sleep,
mngr,
to_yield,
all_entered,
)
# deliver control once all managers have started up
await all_entered.wait()
yield tuple(to_yield.values())
# tear down all sleeper tasks thus triggering individual
# mngr ``__aexit__()``s.
n.cancel_scope.cancel()

File diff suppressed because it is too large Load Diff

View File

@ -1,746 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) 2018-present Tyler Goodlet (in stewardship of pikers)
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Financial time series processing utilities usually
pertaining to OHLCV style sampled data.
Routines are generally implemented in either ``numpy`` or
``polars`` B)
'''
from __future__ import annotations
from functools import partial
from math import (
ceil,
floor,
)
import time
from typing import (
Literal,
# AsyncGenerator,
Generator,
)
import numpy as np
import polars as pl
from pendulum import (
DateTime,
from_timestamp,
)
from ..toolz.profile import (
Profiler,
pg_profile_enabled,
ms_slower_then,
)
from ..log import (
get_logger,
get_console_log,
)
# for "time series processing"
subsys: str = 'piker.tsp'
log = get_logger(subsys)
get_console_log = partial(
get_console_log,
name=subsys,
)
# NOTE: union type-defs to handle generic `numpy` and `polars` types
# side-by-side Bo
# |_ TODO: schema spec typing?
# -[ ] nptyping!
# -[ ] wtv we can with polars?
Frame = pl.DataFrame | np.ndarray
Seq = pl.Series | np.ndarray
def slice_from_time(
arr: np.ndarray,
start_t: float,
stop_t: float,
step: float, # sampler period step-diff
) -> slice:
'''
Calculate array indices mapped from a time range and return them in
a slice.
Given an input array with an epoch `'time'` series entry, calculate
the indices which span the time range and return in a slice. Presume
each `'time'` step increment is uniform and when the time stamp
series contains gaps (the uniform presumption is untrue) use
``np.searchsorted()`` binary search to look up the appropriate
index.
'''
profiler = Profiler(
msg='slice_from_time()',
disabled=not pg_profile_enabled(),
ms_threshold=ms_slower_then,
)
times = arr['time']
t_first = floor(times[0])
t_last = ceil(times[-1])
# the greatest index we can return which slices to the
# end of the input array.
read_i_max = arr.shape[0]
# compute (presumed) uniform-time-step index offsets
i_start_t = floor(start_t)
read_i_start = floor(((i_start_t - t_first) // step)) - 1
i_stop_t = ceil(stop_t)
# XXX: edge case -> always set stop index to last in array whenever
# the input stop time is detected to be greater then the equiv time
# stamp at that last entry.
if i_stop_t >= t_last:
read_i_stop = read_i_max
else:
read_i_stop = ceil((i_stop_t - t_first) // step) + 1
# always clip outputs to array support
# for read start:
# - never allow a start < the 0 index
# - never allow an end index > the read array len
read_i_start = min(
max(0, read_i_start),
read_i_max - 1,
)
read_i_stop = max(
0,
min(read_i_stop, read_i_max),
)
# check for larger-then-latest calculated index for given start
# time, in which case we do a binary search for the correct index.
# NOTE: this is usually the result of a time series with time gaps
# where it is expected that each index step maps to a uniform step
# in the time stamp series.
t_iv_start = times[read_i_start]
if (
t_iv_start > i_start_t
):
# do a binary search for the best index mapping to ``start_t``
# given we measured an overshoot using the uniform-time-step
# calculation from above.
# TODO: once we start caching these per source-array,
# we can just overwrite ``read_i_start`` directly.
new_read_i_start = np.searchsorted(
times,
i_start_t,
side='left',
)
# TODO: minimize binary search work as much as possible:
# - cache these remap values which compensate for gaps in the
# uniform time step basis where we calc a later start
# index for the given input ``start_t``.
# - can we shorten the input search sequence by heuristic?
# up_to_arith_start = index[:read_i_start]
if (
new_read_i_start <= read_i_start
):
# t_diff = t_iv_start - start_t
# print(
# f"WE'RE CUTTING OUT TIME - STEP:{step}\n"
# f'start_t:{start_t} -> 0index start_t:{t_iv_start}\n'
# f'diff: {t_diff}\n'
# f'REMAPPED START i: {read_i_start} -> {new_read_i_start}\n'
# )
read_i_start = new_read_i_start
t_iv_stop = times[read_i_stop - 1]
if (
t_iv_stop > i_stop_t
):
# t_diff = stop_t - t_iv_stop
# print(
# f"WE'RE CUTTING OUT TIME - STEP:{step}\n"
# f'calced iv stop:{t_iv_stop} -> stop_t:{stop_t}\n'
# f'diff: {t_diff}\n'
# # f'SHOULD REMAP STOP: {read_i_start} -> {new_read_i_start}\n'
# )
new_read_i_stop = np.searchsorted(
times[read_i_start:],
# times,
i_stop_t,
side='right',
)
if (
new_read_i_stop <= read_i_stop
):
read_i_stop = read_i_start + new_read_i_stop + 1
# sanity checks for range size
# samples = (i_stop_t - i_start_t) // step
# index_diff = read_i_stop - read_i_start + 1
# if index_diff > (samples + 3):
# breakpoint()
# read-relative indexes: gives a slice where `shm.array[read_slc]`
# will be the data spanning the input time range `start_t` ->
# `stop_t`
read_slc = slice(
int(read_i_start),
int(read_i_stop),
)
profiler(
'slicing complete'
# f'{start_t} -> {abs_slc.start} | {read_slc.start}\n'
# f'{stop_t} -> {abs_slc.stop} | {read_slc.stop}\n'
)
# NOTE: if caller needs absolute buffer indices they can
# slice the buffer abs index like so:
# index = arr['index']
# abs_indx = index[read_slc]
# abs_slc = slice(
# int(abs_indx[0]),
# int(abs_indx[-1]),
# )
return read_slc
def get_null_segs(
frame: Frame,
period: float, # sampling step in seconds
imargin: int = 1,
col: str = 'time',
) -> tuple[
# Seq, # TODO: can we make it an array-type instead?
list[
list[int, int],
],
Seq,
Frame
] | None:
'''
Detect if there are any zero(-epoch stamped) valued
rows in for the provided `col: str` column; by default
presume the 'time' field/column.
Filter to all such zero (time) segments and return
the corresponding frame zeroed segment's,
- gap absolute (in buffer terms) indices-endpoints as
`absi_zsegs`
- abs indices of all rows with zeroed `col` values as `absi_zeros`
- the corresponding frame's row-entries (view) which are
zeroed for the `col` as `zero_t`
'''
times: Seq = frame['time']
zero_pred: Seq = (times == 0)
if isinstance(frame, np.ndarray):
tis_zeros: int = zero_pred.any()
else:
tis_zeros: int = zero_pred.any()
if not tis_zeros:
return None
# TODO: use ndarray for this?!
absi_zsegs: list[list[int, int]] = []
if isinstance(frame, np.ndarray):
# view of ONLY the zero segments as one continuous chunk
zero_t: np.ndarray = frame[zero_pred]
# abs indices of said zeroed rows
absi_zeros = zero_t['index']
# diff of abs index steps between each zeroed row
absi_zdiff: np.ndarray = np.diff(absi_zeros)
# scan for all frame-indices where the
# zeroed-row-abs-index-step-diff is greater then the
# expected increment of 1.
# data 1st zero seg data zeros
# ---- ------------ ---- ----- ------ ----
# ||||..000000000000..||||..00000..||||||..0000
# ---- ------------ ---- ----- ------ ----
# ^zero_t[0] ^zero_t[-1]
# ^fi_zgaps[0] ^fi_zgaps[1]
# ^absi_zsegs[0][0] ^---^ => absi_zsegs[1]: tuple
# absi_zsegs[0][1]^
#
# NOTE: the first entry in `fi_zgaps` is where
# the first (absolute) index step diff is > 1.
# and it is a frame-relative index into `zero_t`.
fi_zgaps = np.argwhere(
absi_zdiff > 1
# NOTE: +1 here is ensure we index to the "start" of each
# segment (if we didn't the below loop needs to be
# re-written to expect `fi_end_rows`!
) + 1
# the rows from the contiguous zeroed segments which have
# abs-index steps >1 compared to the previous zero row
# (indicating an end of zeroed segment).
fi_zseg_start_rows = zero_t[fi_zgaps]
# TODO: equiv for pl.DataFrame case!
else:
izeros: pl.Series = zero_pred.arg_true()
zero_t: pl.DataFrame = frame[izeros]
absi_zeros = zero_t['index']
absi_zdiff: pl.Series = absi_zeros.diff()
fi_zgaps = (absi_zdiff > 1).arg_true()
# XXX: our goal (in this func) is to select out slice index
# pairs (zseg0_start, zseg_end) in abs index units for each
# null-segment portion detected throughout entire input frame.
# only up to one null-segment in entire frame?
num_gaps: int = fi_zgaps.size + 1
if num_gaps < 1:
if absi_zeros.size > 1:
absi_zsegs = [[
# TODO: maybe mk these max()/min() limits func
# consts instead of called more then once?
max(
absi_zeros[0] - 1,
0,
),
# NOTE: need the + 1 to guarantee we index "up to"
# the next non-null row-datum.
min(
absi_zeros[-1] + 1,
frame['index'][-1],
),
]]
else:
# XXX EDGE CASE: only one null-datum found so
# mark the start abs index as None to trigger
# a full frame-len query to the respective backend?
absi_zsegs = [[
# see `get_hist()` in backend, should ALWAYS be
# able to handle a `start_dt=None`!
# None,
None,
absi_zeros[0] + 1,
]]
# XXX NOTE XXX: if >= 2 zeroed segments are found, there should
# ALWAYS be more then one zero-segment-abs-index-step-diff row
# in `absi_zdiff`, so loop through all such
# abs-index-step-diffs >1 (i.e. the entries of `absi_zdiff`)
# and add them as the "end index" entries for each segment.
# Then, iif NOT iterating the first such segment end, look back
# for the prior segments zero-segment start indext by relative
# indexing the `zero_t` frame by -1 and grabbing the abs index
# of what should be the prior zero-segment abs start index.
else:
# NOTE: since `absi_zdiff` will never have a row
# corresponding to the first zero-segment's row, we add it
# manually here.
absi_zsegs.append([
max(
absi_zeros[0] - 1,
0,
),
None,
])
# TODO: can we do it with vec ops?
for i, (
fi, # frame index of zero-seg start
zseg_start_row, # full row for ^
) in enumerate(zip(
fi_zgaps,
fi_zseg_start_rows,
)):
assert (zseg_start_row == zero_t[fi]).all()
iabs: int = zseg_start_row['index'][0]
absi_zsegs.append([
iabs - 1,
None, # backfilled on next iter
])
# final iter case, backfill FINAL end iabs!
if (i + 1) == fi_zgaps.size:
absi_zsegs[-1][1] = absi_zeros[-1] + 1
# NOTE: only after the first segment (due to `.diff()`
# usage above) can we do a lookback to the prior
# segment's end row and determine it's abs index to
# retroactively insert to the prior
# `absi_zsegs[i-1][1]` entry Bo
last_end: int = absi_zsegs[i][1]
if last_end is None:
prev_zseg_row = zero_t[fi - 1]
absi_post_zseg = prev_zseg_row['index'][0] + 1
# XXX: MUST BACKFILL previous end iabs!
absi_zsegs[i][1] = absi_post_zseg
else:
if 0 < num_gaps < 2:
absi_zsegs[-1][1] = min(
absi_zeros[-1] + 1,
frame['index'][-1],
)
iabs_first: int = frame['index'][0]
for start, end in absi_zsegs:
ts_start: float = times[start - iabs_first]
ts_end: float = times[end - iabs_first]
if (
(ts_start == 0 and not start == 0)
or
ts_end == 0
):
import pdbp
pdbp.set_trace()
assert end
assert start < end
log.warning(
f'Frame has {len(absi_zsegs)} NULL GAPS!?\n'
f'period: {period}\n'
f'total null samples: {len(zero_t)}\n'
)
return (
absi_zsegs, # [start, end] abs slice indices of seg
absi_zeros, # all abs indices within all null-segs
zero_t, # sliced-view of all null-segment rows-datums
)
def iter_null_segs(
timeframe: float,
frame: Frame | None = None,
null_segs: tuple | None = None,
) -> Generator[
tuple[
int, int,
int, int,
float, float,
float, float,
# Seq, # TODO: can we make it an array-type instead?
# list[
# list[int, int],
# ],
# Seq,
# Frame
],
None,
]:
if not (
null_segs := get_null_segs(
frame,
period=timeframe,
)
):
return
absi_pairs_zsegs: list[list[float, float]]
izeros: Seq
zero_t: Frame
(
absi_pairs_zsegs,
izeros,
zero_t,
) = null_segs
absi_first: int = frame[0]['index']
for (
absi_start,
absi_end,
) in absi_pairs_zsegs:
fi_end: int = absi_end - absi_first
end_row: Seq = frame[fi_end]
end_t: float = end_row['time']
end_dt: DateTime = from_timestamp(end_t)
fi_start = None
start_row = None
start_t = None
start_dt = None
if (
absi_start is not None
and start_t != 0
):
fi_start: int = absi_start - absi_first
start_row: Seq = frame[fi_start]
start_t: float = start_row['time']
start_dt: DateTime = from_timestamp(start_t)
if absi_start < 0:
import pdbp
pdbp.set_trace()
yield (
absi_start, absi_end, # abs indices
fi_start, fi_end, # relative "frame" indices
start_t, end_t,
start_dt, end_dt,
)
def with_dts(
df: pl.DataFrame,
time_col: str = 'time',
) -> pl.DataFrame:
'''
Insert datetime (casted) columns to a (presumably) OHLC sampled
time series with an epoch-time column keyed by `time_col: str`.
'''
return df.with_columns([
pl.col(time_col).shift(1).suffix('_prev'),
pl.col(time_col).diff().alias('s_diff'),
pl.from_epoch(pl.col(time_col)).alias('dt'),
]).with_columns([
pl.from_epoch(
column=pl.col(f'{time_col}_prev'),
).alias('dt_prev'),
pl.col('dt').diff().alias('dt_diff'),
])
t_unit: Literal = Literal[
'days',
'hours',
'minutes',
'seconds',
'miliseconds',
'microseconds',
'nanoseconds',
]
def detect_time_gaps(
w_dts: pl.DataFrame,
time_col: str = 'time',
# epoch sampling step diff
expect_period: float = 60,
# NOTE: legacy stock mkts have venue operating hours
# and thus gaps normally no more then 1-2 days at
# a time.
gap_thresh: float = 1.,
# TODO: allow passing in a frame of operating hours?
# -[ ] durations/ranges for faster legit gap checks?
# XXX -> must be valid ``polars.Expr.dt.<name>``
# like 'days' which a sane default for venue closures
# though will detect weekend gaps which are normal :o
gap_dt_unit: t_unit | None = None,
) -> pl.DataFrame:
'''
Filter to OHLC datums which contain sample step gaps.
For eg. legacy markets which have venue close gaps and/or
actual missing data segments.
'''
# first select by any sample-period (in seconds unit) step size
# greater then expected.
step_gaps: pl.DataFrame = w_dts.filter(
pl.col('s_diff').abs() > expect_period
)
if gap_dt_unit is None:
return step_gaps
# NOTE: this flag is to indicate that on this (sampling) time
# scale we expect to only be filtering against larger venue
# closures-scale time gaps.
return step_gaps.filter(
# Second by an arbitrary dt-unit step size
getattr(
pl.col('dt_diff').dt,
gap_dt_unit,
)().abs() > gap_thresh
)
def detect_price_gaps(
df: pl.DataFrame,
gt_multiplier: float = 2.,
price_fields: list[str] = ['high', 'low'],
) -> pl.DataFrame:
'''
Detect gaps in clearing price over an OHLC series.
2 types of gaps generally exist; up gaps and down gaps:
- UP gap: when any next sample's lo price is strictly greater
then the current sample's hi price.
- DOWN gap: when any next sample's hi price is strictly
less then the current samples lo price.
'''
# return df.filter(
# pl.col('high') - ) > expect_period,
# ).select([
# pl.dt.datetime(pl.col(time_col).shift(1)).suffix('_previous'),
# pl.all(),
# ]).select([
# pl.all(),
# (pl.col(time_col) - pl.col(f'{time_col}_previous')).alias('diff'),
# ])
...
# TODO: probably just use the null_segs impl above?
def detect_vlm_gaps(
df: pl.DataFrame,
col: str = 'volume',
) -> pl.DataFrame:
vnull: pl.DataFrame = w_dts.filter(
pl.col(col) == 0
)
return vnull
def dedupe(
src_df: pl.DataFrame,
time_gaps: pl.DataFrame | None = None,
sort: bool = True,
period: float = 60,
) -> tuple[
pl.DataFrame, # with dts
pl.DataFrame, # with deduplicated dts (aka gap/repeat removal)
int, # len diff between input and deduped
]:
'''
Check for time series gaps and if found
de-duplicate any datetime entries, check for
a frame height diff and return the newly
dt-deduplicated frame.
'''
wdts: pl.DataFrame = with_dts(src_df)
deduped = wdts
# remove duplicated datetime samples/sections
deduped: pl.DataFrame = wdts.unique(
# subset=['dt'],
subset=['time'],
maintain_order=True,
)
# maybe sort on any time field
if sort:
deduped = deduped.sort(by='time')
# TODO: detect out-of-order segments which were corrected!
# -[ ] report in log msg
# -[ ] possibly return segment sections which were moved?
diff: int = (
wdts.height
-
deduped.height
)
return (
wdts,
deduped,
diff,
)
def sort_diff(
src_df: pl.DataFrame,
col: str = 'time',
) -> tuple[
pl.DataFrame, # with dts
pl.DataFrame, # sorted
list[int], # indices of segments that are out-of-order
]:
ser: pl.Series = src_df[col]
sortd: pl.DataFrame = ser.sort()
diff: pl.Series = ser.diff()
sortd_diff: pl.Series = sortd.diff()
i_step_diff = (diff != sortd_diff).arg_true()
frame_reorders: int = i_step_diff.len()
if frame_reorders:
log.warn(
f'Resorted frame on col: {col}\n'
f'{frame_reorders}'
)
# import pdbp; pdbp.set_trace()
# NOTE: thanks to this SO answer for the below conversion routines
# to go from numpy struct-arrays to polars dataframes and back:
# https://stackoverflow.com/a/72054819
def np2pl(array: np.ndarray) -> pl.DataFrame:
start: float = time.time()
# XXX: thanks to this SO answer for this conversion tip:
# https://stackoverflow.com/a/72054819
df = pl.DataFrame({
field_name: array[field_name]
for field_name in array.dtype.fields
})
delay: float = round(
time.time() - start,
ndigits=6,
)
log.info(
f'numpy -> polars conversion took {delay} secs\n'
f'polars df: {df}'
)
return df
def pl2np(
df: pl.DataFrame,
dtype: np.dtype,
) -> np.ndarray:
# Create numpy struct array of the correct size and dtype
# and loop through df columns to fill in array fields.
array = np.empty(
df.height,
dtype,
)
for field, col in zip(
dtype.fields,
df.columns,
):
array[field] = df.get_column(col).to_numpy()
return array

View File

@ -1,250 +0,0 @@
# piker: trading gear for hackers
# Copyright (C) (in stewardship for pikers)
# - Tyler Goodlet
# - Guillermo Rodriguez
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
Extensions to built-in or (heavily used but 3rd party) friend-lib
types.
'''
from __future__ import annotations
from collections import UserList
from pprint import (
saferepr,
)
from typing import Any
from msgspec import (
msgpack,
Struct as _Struct,
structs,
)
class DiffDump(UserList):
'''
Very simple list delegator that repr() dumps (presumed) tuple
elements of the form `tuple[str, Any, Any]` in a nice
multi-line readable form for analyzing `Struct` diffs.
'''
def __repr__(self) -> str:
if not len(self):
return super().__repr__()
# format by displaying item pair's ``repr()`` on multiple,
# indented lines such that they are more easily visually
# comparable when printed to console when printed to
# console.
repstr: str = '[\n'
for k, left, right in self:
repstr += (
f'({k},\n'
f'\t{repr(left)},\n'
f'\t{repr(right)},\n'
')\n'
)
repstr += ']\n'
return repstr
class Struct(
_Struct,
# https://jcristharif.com/msgspec/structs.html#tagged-unions
# tag='pikerstruct',
# tag=True,
):
'''
A "human friendlier" (aka repl buddy) struct subtype.
'''
def _sin_props(self) -> Iterator[
tuple[
structs.FieldIinfo,
str,
Any,
]
]:
'''
Iterate over all non-@property fields of this struct.
'''
fi: structs.FieldInfo
for fi in structs.fields(self):
key: str = fi.name
val: Any = getattr(self, key)
yield fi, key, val
def to_dict(
self,
include_non_members: bool = True,
) -> dict:
'''
Like it sounds.. direct delegation to:
https://jcristharif.com/msgspec/api.html#msgspec.structs.asdict
BUT, by default we pop all non-member (aka not defined as
struct fields) fields by default.
'''
asdict: dict = structs.asdict(self)
if include_non_members:
return asdict
# only return a dict of the struct members
# which were provided as input, NOT anything
# added as type-defined `@property` methods!
sin_props: dict = {}
fi: structs.FieldInfo
for fi, k, v in self._sin_props():
sin_props[k] = asdict[k]
return sin_props
def pformat(
self,
field_indent: int = 2,
indent: int = 0,
) -> str:
'''
Recursion-safe `pprint.pformat()` style formatting of
a `msgspec.Struct` for sane reading by a human using a REPL.
'''
# global whitespace indent
ws: str = ' '*indent
# field whitespace indent
field_ws: str = ' '*(field_indent + indent)
# qtn: str = ws + self.__class__.__qualname__
qtn: str = self.__class__.__qualname__
obj_str: str = '' # accumulator
fi: structs.FieldInfo
k: str
v: Any
for fi, k, v in self._sin_props():
# TODO: how can we prefer `Literal['option1', 'option2,
# ..]` over .__name__ == `Literal` but still get only the
# latter for simple types like `str | int | None` etc..?
ft: type = fi.type
typ_name: str = getattr(ft, '__name__', str(ft))
# recurse to get sub-struct's `.pformat()` output Bo
if isinstance(v, Struct):
val_str: str = v.pformat(
indent=field_indent + indent,
field_indent=indent + field_indent,
)
else: # the `pprint` recursion-safe format:
# https://docs.python.org/3.11/library/pprint.html#pprint.saferepr
val_str: str = saferepr(v)
obj_str += (field_ws + f'{k}: {typ_name} = {val_str},\n')
return (
f'{qtn}(\n'
f'{obj_str}'
f'{ws})'
)
# TODO: use a pprint.PrettyPrinter instance around ONLY rendering
# inside a known tty?
# def __repr__(self) -> str:
# ...
# __str__ = __repr__ = pformat
__repr__ = pformat
def copy(
self,
update: dict | None = None,
) -> Struct:
'''
Validate-typecast all self defined fields, return a copy of
us with all such fields.
NOTE: This is kinda like the default behaviour in
`pydantic.BaseModel` except a copy of the object is
returned making it compat with `frozen=True`.
'''
if update:
for k, v in update.items():
setattr(self, k, v)
# NOTE: roundtrip serialize to validate
# - enode to msgpack binary format,
# - decode that back to a struct.
return msgpack.Decoder(type=type(self)).decode(
msgpack.Encoder().encode(self)
)
def typecast(
self,
# TODO: allow only casting a named subset?
# fields: set[str] | None = None,
) -> None:
'''
Cast all fields using their declared type annotations
(kinda like what `pydantic` does by default).
NOTE: this of course won't work on frozen types, use
``.copy()`` above in such cases.
'''
# https://jcristharif.com/msgspec/api.html#msgspec.structs.fields
fi: structs.FieldInfo
for fi in structs.fields(self):
setattr(
self,
fi.name,
fi.type(getattr(self, fi.name)),
)
def __sub__(
self,
other: Struct,
) -> DiffDump[tuple[str, Any, Any]]:
'''
Compare fields/items key-wise and return a ``DiffDump``
for easy visual REPL comparison B)
'''
diffs: DiffDump[tuple[str, Any, Any]] = DiffDump()
for fi in structs.fields(self):
attr_name: str = fi.name
ours: Any = getattr(self, attr_name)
theirs: Any = getattr(other, attr_name)
if ours != theirs:
diffs.append((
attr_name,
ours,
theirs,
))
return diffs

View File

@ -14,8 +14,9 @@
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
'''
UI components built using `Qt` with major versions swapped in via
the import indirection in the `.qt` sub-mod.
"""
Stuff for your eyes, aka super hawt Qt UI components.
'''
Currently we only support PyQt5 due to this issue in Pyside2:
https://bugreports.qt.io/projects/PYSIDE/issues/PYSIDE-1313
"""

View File

@ -21,10 +21,8 @@ Anchor funtions for UI placement of annotions.
from __future__ import annotations
from typing import Callable, TYPE_CHECKING
from piker.ui.qt import (
QPointF,
QGraphicsPathItem,
)
from PyQt5.QtCore import QPointF
from PyQt5.QtWidgets import QGraphicsPathItem
if TYPE_CHECKING:
from ._chart import ChartPlotWidget

View File

@ -20,22 +20,12 @@ Annotations for ur faces.
"""
from typing import Callable
from pyqtgraph import (
Point,
functions as fn,
Color,
)
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtCore import QPointF, QRectF
from PyQt5.QtWidgets import QGraphicsPathItem
from pyqtgraph import Point, functions as fn, Color
import numpy as np
from piker.ui.qt import (
QtCore,
QtGui,
QtWidgets,
QPointF,
QRectF,
QGraphicsPathItem,
)
def mk_marker_path(

Some files were not shown because too many files have changed in this diff Show More