Wow, turns out tick framing was totally borked since we weren't framing
on "greater then throttle period long waits" XD
This moves all the framing logic into a common func and calls it in
every case:
- every (normal) "pre throttle period expires" quote receive
- each "no new quote before throttle period expires" (slow case)
- each "no clearing tick yet received" / only burst on clears case
Add some (untested) data slicing util methods for mapping time ranges to
source data indices:
- `.get_index()` which maps a single input epoch time to an equiv array
(int) index.
- add `slice_from_time()` which returns a view of the shm data from an
input epoch range presuming the underlying struct array contains
a `'time'` field with epoch stamps.
- `.view_data()` which slices out the "in view" data according to the
current state of the passed in `pg.PlotItem`'s view box.
This has been an outstanding idea for a while and changes the framing
format of tick events into a `dict[str, list[dict]]` wherein for each
tick "type" (eg. 'bid', 'ask', 'trade', 'asize'..etc) we create an FIFO
ordered `list` of events (data) and then pack this table into each
(throttled) send. This gives an additional implied downsample reduction
(in terms of iteration on the consumer side) from `N` tick-events to
a (max) `T` tick-types presuming the rx side only needs the latest tick
event.
Drop the `types: set` and adjust clearing event test to use the new
`ticks_by_type` map's keys.
Instead of uniformly distributing the msg send rate for a given
aggregate subscription, choose to be more bursty around clearing ticks
so as to avoid saturating the consumer with L1 book updates and vs.
delivering real trade data as-fast-as-possible.
Presuming the consumer is in the "UI land of slow" (eg. modern display
frame rates) such an approach serves more useful for seeing "material
changes" in the market as-bursty-as-possible (i.e. more short lived fast
changes in last clearing price vs. many slower changes in the bid-ask
spread queues). Such an approach also lends better to multi-feed
overlays which in aggregate tend to scale linearly with the number of
feeds/overlays; centralization of bursty arrival rates allows for
a higher overall throttle rate if used cleverly with framing.
Seems that by default their history indexing rounds down/back to the
previous time step, so make sure we add a minute inside `Client.bars()`
when the `end_dt=None`, indicating "get the latest bar". Add
a breakpoint block that should trigger whenever the latest bar vs. the
latest epoch time is mismatched; we'll remove this after some testing
verifying the history bars issue is resolved.
Further this drops the legacy `backfill_bars()` endpoint which has been
deprecated and unused for a while.
Likely pertains to helping with stuff in issues #345 and #373 and just
generally is handy to have when processing ledgers / clearing event
tables.
Adds the following helper methods:
- `iter_by_dt()` to iter-sort an arbitrary `Transaction`-like table of
clear entries.
- `Position.iter_clears()` as a convenience wrapper for the above.
Trying to send a message in the `NoBsWs.fixture()` exit when the ws is
not currently disconnected causes a double `._stack.close()` call which
will corrupt `trio`'s coro stack. Instead only do the unsub if we detect
the ws is still up.
Also drops the legacy `backfill_bars()` module endpoint.
Fixes#437
Seems that by default their history indexing rounds down/back to the
previous time step, so make sure we add a minute inside `Client.bars()`
when the `end_dt=None`, indicating "get the latest bar". Add
a breakpoint block that should trigger whenever the latest bar vs. the
latest epoch time is mismatched; we'll remove this after some testing
verifying the history bars issue is resolved.
Further this drops the legacy `backfill_bars()` endpoint which has been
deprecated and unused for a while.
Instead of requiring any `-b` try to import all built-in broker backend
python modules by default and only load those detected from the input symbol
list's fqsn values. In other words the `piker chart` cmd can be run sin
`-b` now and that flag is only required if you only want to load
a subset of the built-ins or are trying to load a specific
not-yet-builtin backend.
Allows using `set` ops for subscription management and guarantees no
duplicates per `brokerd` actor. New API is simpler for dynamic
pause/resume changes per `Feed`:
- `_FeedsBus.add_subs()`, `.get_subs()`, `.remove_subs()` all accept multi-sub
`set` inputs.
- `Feed.pause()` / `.resume()` encapsulates management of *only* sending
a msg on each unique underlying IPC msg stream.
Use new api in sampler task.
Previously we would only detect overruns and drop subscriptions on
non-throttled feed subs, however you can get the same issue with
a wrapping throttler task:
- the intermediate mem chan can be blocked either by the throttler task
being too slow, in which case we still want to warn about it
- the stream's IPC channel actually breaks and we still want to drop
the connection and subscription so it doesn't be come a source of
stale backpressure.
Set each quote-stream by matching the provider for each `Flume` and thus
results in some flumes mapping to the same (multiplexed) stream.
Monkey-patch the equivalent `tractor.MsgStream._ctx: tractor.Context` on
each broadcast-receiver subscription to allow use by feed bus methods as
well as other internals which need to reference IPC channel/portal info.
Start a `_FeedsBus` subscription management API:
- add `.get_subs()` which returns the list of tuples registered for the
given key (normally the fqsn).
- add `.remove_sub()` which allows removing by key and tuple value and
provides encapsulation for sampler task(s) which deal with dropped
connections/subscribers.
Adds provider-list-filtered (quote) stream multiplexing support allowing
for merged real-time `tractor.MsgStream`s using an `@acm` interface.
Behind the scenes we are just doing a classic multi-task push to common
mem chan approach.
Details to make it work on `Feed`:
- add `Feed.mods: dict[str, Moduletype]` and
`Feed.portals[ModuleType, tractor.Portal]` which are both populated
during init in `open_feed()`
- drop `Feed.portal` and `Feed.name`
Also fix a final lingering tsdb history loading loop termination bug.
A slight facepalm but, the main issue was a simple indexing logic error:
we need to slice with `tsdb_history[-shm._first.value:]` to push most
recent history not oldest.. This allows cleanup of tsdb backfill loop as
well.
Further, greatly simply `diff_history()` time slicing by using the
classic `numpy` conditional slice on the epoch field.
This had a bug prior where the end of a frame (a partial) wasn't being
sliced correctly and we'd get odd gaps showing up in the backfilled from
`brokerd` vs. tsdb end index. Repair this by doing timeframe aware index
diffing in `diff_history()` which seems to resolve it. Also, use the
frame-result's `end_dt: datetime` for the loop exit condition.
Sync per-symbol sampler loop start to subscription registers such that
the loop can't start until the consumer's stream subscription is added;
the task-sync uses a `trio.Event`. This patch also drops a ton of
commented cruft.
Further adjustments needed to get parity with prior functionality:
- pass init msg 'symbol_info' field to the `Symbol.broker_info: dict`.
- ensure the `_FeedsBus._subscriptions` table uses the broker specific
(without brokername suffix) as keys for lookup so that the sampler
loop doesn't have to append in the brokername as a suffix.
- ensure the `open_feed_bus()` flumes-table-msg returned sent by
`tractor.Context.started()` uses the `.to_msg()` form of all flume
structs.
- ensure `maybe_open_feed()` uses `tractor.MsgStream.subscribe()` on all
`Flume.stream`s on cache hits using the
`tractor.trionics.gather_contexts()` helper.
Orient shm-flow-arrays around the new idea of a `Flume` which provides
access, mgmt and basic measure of real-time data flow sets (see water
flow management semantics).
- We discard the previous idea of a "init message" which contained all
the shm attachment info and instead send a startup message full of
`Flume.to_msg()`s which are symmetrically loaded on the caller actor
side.
- Create data-flows "entries" for every passed in fqsn such that the consumer gets back
streams and shm for each, now all wrapped in `Flume` types. For now we
allocate `brokermod.stream_quotes()` tasks 1-to-1 for each fqsn
(instead of expecting each backend to do multi-plexing, though we
might want that eventually) as well a `_FeedsBus._subscriber` entry
for each. The pause/resume management loop is adjusted to match.
Previously `Feed`s were allocated 1-to-1 with each fqsn.
- Make `Feed` a `Struct` subtype instead of a `@dataclass` and move all
flow specific attrs to the new `Flume`:
- move `.index_stream()`, `.get_ds_info()` to `Flume`.
- drop `.receive()`: each fqsn entry will now require knowledge of
separate streams by feed users.
- add multi-fqsn tables: `.flumes`, `.streams` which point to the
appropriate per-symbol entries.
- Async load all `Flume`s from all contexts and all quote streams using
`tractor.trionics.gather_contexts()` on the client `open_feed()` side.
- Update feeds test to include streaming 2 symbols on the same (binance)
backend.
This is to prep for multi-symbol feeds and charts so we accept
a sequence of fqsns to the top level entrypoints as well as the
`.data.feed.open_feed()` API (though we're not actually supporting true
multiplexed feeds nor shm lookups per fqsn yet).
Allows starting UI apps and passing the `pikerd` registry socket-addr
args via `--host` or `--port` such that a separate actor tree can be
started by selecting an unused port. This is handy when hacking new
features but while also wishing to run a more stable version of the code
for trading on the same host.
Drop all attempts at rewiring `ViewBox` signals, monkey-patching
relayee handlers, and generally modifying event source public
attributes. Instead take a much simpler approach where the event source
graphics object simply has it's handler dynamically overridden by
a broadcaster function which relays to all consumers using a Python
loop.
The benefits of this much simplified approach include:
- avoiding the tedious and often complex (re)connection of signals between
the source plot and the overlayed consumers.
- requiring zero modification of the public interface of any of the
publisher or consumer `ViewBox`s, no decoration, extra signal
definitions (eg. previous `mouseDragEventRelay` or the like).
- only a single dynamic method override on the event source graphics object
(`ViewBox`) which does the broadcasting work and requires no
modification to handler implementations.
Detailed `.ui._overlay` changes:
- drop `mk_relay_signal()`, `enable_relays()` which removes signal/slot
hacking methodology.
- drop unused `ComposedGridLayout.grid` and `.reverse`, change some
method names: `.insert()` -> `.insert_plotitem()`, `append()` ->
`.append_plotitem()`.
- in `PlotOverlay`, again drop all signal/slot rewiring in
`.add_plotitem()` and instead add our new closure based python-loop in
`broadcast()` routine which is used to override the event-source
object's handler.
- comment out all the auxiliary/want-to-have event source selection
methods for now.
Mainly this involves instantiating our overriden `PlotItem` in a few
places and tweaking type annots. A further detail is that inside
the fsp sub-chart creation code we hide some axes for overlays in the
flows subchart; these were previously somehow hidden implicitly?
Fork out our patch set submitted to upstream in multiple PRs (since they
aren't moving and/or aren't a priority to core) which can be seen in
full from the following diff:
https://github.com/pyqtgraph/pyqtgraph/compare/master...pikers:pyqtgraph:graphics_pin
Move these type extensions into the internal `.ui._pg_overrides` module.
The changes are related to both `pyqtgraph.PlotItem` and `.AxisItem` and
were driven for our need for multi-view overlays (overlaid charts with
optionally synced axis and interaction controls) as documented in the PR
to upstream: https://github.com/pyqtgraph/pyqtgraph/pull/2162
More specifically,
- wrt to `AxisItem` we added lru caching of tick values as per:
https://github.com/pyqtgraph/pyqtgraph/pull/2160.
- wrt to `PlotItem` we adjusted some of the axis management code, namely
adding a standalone `.removeAxis()` and modifying the `.setAxisItems()` logic
to use it in: https://github.com/pyqtgraph/pyqtgraph/pull/2162
as well as some tweaks to `.updateGrid()` to loop through all possible
axes when grid setting.
Details of the original patch to upstream are in:
https://github.com/pyqtgraph/pyqtgraph/pull/2281
Instead of trying to land this we've opted to just copy out that version
of `.debug.Profiler` into our own internals (luckily the class is
entirely self-contained) until such a time when we choose to find
a better dependency as per https://github.com/pikers/piker/issues/337
To make it easier to manually read/decipher long ledger files this adds
`dict` sorting based on record-type-specific (api vs. flex report)
datetime processing prior to ledger file write.
- break up parsers into separate routines for flex and api record
processing.
- add `parse_flex_dt()` for special handling of the weird semicolon
stamps in flex reports.
There never was any underlying db bug, it was a hardcoded timeframe in
the column series write key.. Now we always assert a matching timeframe
in results.
Not only improves startup latency but also avoids a bug where the rt
buffer was being tsdb-history prepended *before* the backfilling of
recent data from the backend was complete resulting in our of order
frames in shm.
Factor the multi-sample-rate region UI connecting into a new helper
`link_views_with_region()` which reads in the shm buffer offsets from
the `Feed` and appropriately connects the fast and slow chart handlers
for the linear region graphics. Add detailed comments writeup for the
inter-sampling transform algebra.
If a history manager raises a `DataUnavailable` just assume the sample
rate isn't supported and that no shm prepends will be done. Further seed
the shm array in such cases as before from the 1m history's last datum.
Also, fix tsdb -> shm back-loading, cancelling tsdb queries when either
no array-data is returned or a frame is delivered which has a start time
no lesser then the least last retrieved. Use strict timeframes for every
`Storage` API call.
Turns out querying for a high freq timeframe (like 1sec) will still
return a lower freq timeframe (like 1Min) SMH, and no idea if it's the
server or the client's fault, so we have to explicitly check the sample
step size and discard lower freq series-results. Do this inside
`Storage.read_ohlcv()` and return an empty `dict` when the wrong time
step is detected from the query result.
Further enforcements,
- both `.load()` and `read_ohlcv()` now require an explicit `timeframe:
int` input to guarantee the time step of the output array.
- drop all calls `.load()` with non-timeframe specific input.
Our default sample periods are 60s (1m) for the history chart and 1s for
the fast chart. This patch adds concurrent loading of both (or more)
different sample period data sets using the existing loading code but
with new support for looping through a passed "timeframe" table which
points to each shm instance.
More detailed adjustments include:
- breaking the "basic" and tsdb loading into 2 new funcs:
`basic_backfill()` and `tsdb_backfill()` the latter of which is run
when the tsdb daemon is discovered.
- adjust the fast shm buffer to offset with one day's worth of 1s so
that only up to a day is backfilled as history in the fast chart.
- adjust bus task starting in `manage_history()` to deliver back the
offset indices for both fast and slow shms and set them on the
`Feed` object as `.izero_hist/rt: int` values:
- allows the chart-UI linked view region handlers to use the offsets
in the view-linking-transform math to index-align the history and
fast chart.
Allows keeping mutex state around data reset requests which (if more
then one are sent) can cause a throttling condition where ib's servers
will get slower and slower to conduct a reconnect. With this you can
have multiple ongoing contract requests without hitting that issue and
we can go back to having a nice 3s timeout on the history queries before
activating the hack.
When a network outage or data feed connection is reset often the
`ib_insync` task will hang until some kind of (internal?) timeout takes
place or, in some (worst) cases it never re-establishes (the event
stream) and thus the backend needs to restart or the live feed will
never resume..
In order to avoid this issue once and for all this patch implements an
additional (extremely simple) task that is started with the real-time
feed and simply waits for any market data reset events; when detected
restarts the `open_aio_quote_stream()` call in a loop using
a surrounding cancel scope.
Been meaning to implement this for ages and it's finally working!
Allows for easier restarts of certain `trio` side tasks without killing
the `asyncio`-side clients; support via flag.
Also fix a bug in `Client.bars()`: we need to return the duration on the
empty bars case..
This allows the history manager to know the decrement size for
`end_dt: datetime` on the next query if a no-data / gap case was
encountered; subtract this in `get_bars()` in such cases. Define the
expected `pendulum.Duration`s in the `.api._samplings` table.
Also add a bit of query latency profiling that we may use later to more
dynamically determine timeout driven data feed resets. Factor the `162`
error cases into a common exception handler block.
When we get a timeout or a `NoData` condition still return a tuple of
empty sequences instead of `None` from `Client.bars()`. Move the
sampling period-duration table to module level.
It doesn't seem to be any slower on our least throttled backend
(binance) and it removes a bunch of hard to get correct frame
re-ordering logic that i'm not sure really ever fully worked XD
Commented some issues we still need to resolve as well.
Manual tinker-testing demonstrated that triggering data resets
completely independent of the frame request gets more throughput and
further, that repeated requests (for the same frame after cancelling on
the `trio`-side) can yield duplicate frame responses. Re-work the
dual-task structure to instead have one task wait indefinitely on the
frame response (and thus not trigger duplicate frames) and the 2nd data
reset task poll for the first task to complete in a poll loop which
terminates when the frame arrives via an event.
Dirty deatz:
- make `get_bars()` take an optional timeout (which will eventually be
dynamically passed from the history mgmt machinery) and move request
logic inside a new `query()` closure meant to be spawned in a task
which sets an event on frame arrival, add data reset poll loop in the
main/parent task, deliver result on nursery completion.
- handle frame request cancelled event case without crash.
- on no-frame result (due to real history gap) hack in a 1 day decrement
case which we need to eventually allow the caller to control likely
based on measured frame rx latency.
- make `wait_on_data_reset()` a predicate without output indicating
reset success as well as `trio.Nursery.start()` compat so that it can
be started in a new task with the started values yielded being
a cancel scope and completion event.
- drop the legacy `backfill_bars()`, not longer used.
Adjust all history query machinery to pass a `timeframe: int` in seconds
and set default of 60 (aka 1m) such that history views from here forward
will be 1m sampled OHLCV. Further when the tsdb is detected as up load
a full 10 years of data if possible on the 1m - backends will eventually
get a config section (`brokers.toml`) that allow user's to tune this.
The `Store.load()`, `.read_ohlcv()` and `.write_ohlcv()` and
`.delete_ts()` now can take a `timeframe: Optional[float]` param which
is used to look up the appropriate sampling period table-key from
`marketstore`.
Allow data feed sub-system to specify the timeframe (aka OHLC sample
period) to the `open_history_client()` delivered history fetching API.
Factor the data keycombo hack into a new routine to be used also from
the history backfiller code when request latency increases; there is
a first draft at trying to use the feed reset to speed up 1m frame
throttling by timing out on the history frame response, but it needs
a lot of fine tuning.