Inside `._interaction` routines we need access to `Viz` instances.
Instead of doing `CharPlotWidget._vizs: dict` lookups this ensures each
plot can lookup it's (parent) viz without error.
Also, adjusts `Viz.maxmin()` output parsing to new signature.
Move the `Viz.datums_range()` call into `Viz.maxmin()` itself thus
minimizing the chart `.maxmin()` method to an ultra light wrapper around
the viz call. Also move all profiling into the `Viz` method.
Adjust `Viz.maxmin()` to return both the (rounded) x-range values which
correspond to the range containing the y-domain min and max so that
it can be used for up and coming overlay group maxmin calcs.
We obviously don't want to be debugging a sample-index issue if/when the
market for the asset is closed (since we'll be guaranteed to have
a mismatch, lul). Pass in the `feed_is_live: trio.Event` throughout the
backfilling routines to allow first checking for the live feed being active
so as to avoid breakpointing on false +ves. Also, add a detailed warning
log message for when *actually* investigating a mismatch.
This should never really happen but when it does it appears to be a race
with writing startup pre-graphics-formatter array data where we get
`x_end` epoch value subtracting some really small offset value (like
`-/+0.5`) or the opposite where the `x_start` is epoch and `x_end` is
small.
This adds a warning msg and `breakpoint()` as well as guards around the
entire code downsampling code path so that when resumed the downsampling
cycle should just be skipped and avoid a crash.
This attempt was unsuccessful since trying to (re)select the last
highlighted item on both an "enter" or "click" of that item causes
a hang and then segfault in `Qt`; no clue why..
Adds a `keep_current_item_selected: bool` flag to
`CompleterView.show_cache_entries()` but using it seems to always cause
a hang and crash; we keep all potential use spots commented for now
obviously to avoid this. Also included is a bunch of tidying to logic
blocks in the kb-control loop for readability.
Whenever the last datum is in view `slice_from_time()` need to always
spec the final array index (i.e. the len - 1 value we set as
`read_i_max`) to avoid a uniform-step arithmetic error where gaps in the
underlying time series causes an index that's too low to be returned.
- adjust zoom focal to be min of the view-right coord or the right-most
point on the flow graphic in view and drop all the legacy l1-in-view
focal point cruft.
- flip to not auto-scaling overlays by default.
- change the `._set_yrange()` margin to `0.09`.
- drop `use_vr: bool` usage.
Before this axes were being stacked from the outside in (for `'right'`
and 'bottom'` axes) which is somewhat non-intuitive for an `.append()`
operation. As such this change makes a symbol list stack a set of
`'right'` axes from left-to-right.
Details:
- rename `ComposeGridLayout.items` -> `.pitems`
- return `(int, list[AxisItem])` pairs from `.insert/append_plotitem()`
and the down stream `PlotItemOverlay.add_plotitem()`.
- drop `PlotItemOverlay.overlays` and add it back as `@property` around
the underlying `.layout.pitems`.
Goes back to always adjusting the y-axis range to include the L1 spread
and clearing label in view whenever the last datum is also in view,
previously this was broken after reworking the display loop for
multi-feeds.
Drops a bunch of old commented tick looping cruft from before we started
using tick-type framing. Also adds more stringent guards for ignoring
but error logging quote values that are more then 25% out of range; it
seems particularly our `ib` feed has some issues with strange `price`
values that are way off here and there?
Instead of having the l1 lines be inside the view space, move them to be
inside their respective axis (with only a 16 unit portion inside the
view) such that the clear price label can overlay with them nicely
without obscuring; this is much better suited to multiple adjacent
y-axes and in general is simpler and less noisy.
Further `L1Labels` + `LevelLabel` style tweaks:
- adjust `.rect` positioning to be "right" (i.e. inside the parent
y-axis) with a slight 16 unit shift toward the viewbox (using the new
`._x_br_offset`) to allow seeing each level label's line even when the
clearing price label is positioned at that same level.
- add a newline's worth of vertical space to each of the bid/ask labels
so that L1 labels' text content isn't ever obscured by the clear price
label.
- set a low (10) z-value to ensure l1 labels are always placed
underneath the clear price label.
- always fill the label rect with the chosen background color.
- make labels fully opaque so as to always make them hide the parent
axes' `.tickStrings()` contents.
- make default color the "default" from the global scheme.
- drop the "price" part from the l1 label text contents, just show the
book-queue's amount (in dst asset's units, aka the potential clearing vlm).
In the case where the last-datum-graphic hasn't been created yet, simply
return a `None` from this method so the caller can choose to ignore the
output. Further, drop `.px_width()` since it makes more sense defined on
`Viz` as well as the previously commented `BarItems.x_uppx()` method.
Also, don't round the `.x_uppx()` output since it can then be used when
< 1 to do x-domain scaling during high zoom usage.
Factor some common methods into the parent type:
- `.x_uppx()` for reading the horizontal units-per-pixel.
- `.x_last()` for reading the "closest to y-axis" last datum coordinate
for zooming "around" during mouse interaction.
- `.px_width()` for computing the max width of any curve in view in
pixels.
Adjust all previous derived `pg.GraphicsObject` child types to now
inherit from this new parent and in particular enable proper `.x_uppx()`
support to `BarItems`.
Use proper uppx scaling when either of scaling the data to the x-domain
index-range or when the uppx is < 1 (now that we support it) such that
both the fast and slow chart always appropriately scale and offset to
the y-axis with the last datum graphic just adjacent to the order line
arrow markers.
Further this fixes the `.index_step()` calc to use the "earliest" 16
values to compute the expected sample step diff since the last set often
contained gaps due to start up race conditions and generated
unexpected/incorrect output.
Further this drops the `.curve_width_pxs()` method and replaces it with
`.px_width()`, taken from the graphics object API and instead returns
the pixel account for the whole view width instead of the
x-domain-data-range within the view.
Doesn't seem like we really need to handle the situation where the start
or stop input time stamps are outside the index range of the data since
the new binary search handling via `numpy.searchsorted()` covers this
case at minimal runtime cost and with an equally correct output. Allows
us to drop some other indexing endpoint internal variables as well.