Again, to make epoch indexing a flip-of-switch for testing look up the
`Viz.index_field: str` value when updating labels.
Also, drops the legacy tick-type set tracking which we no longer use
thanks to the new throttler subsys and it's framing msgs.
This was a major cause of error (particularly trying to get epoch
indexing working) and really isn't necessary; instead just have
`.diff()` always read from the underlying source array for current
index-step diffing and append/prepend slice construction.
Allows us to,
- drop `._last_read` state management and thus usage.
- better handle startup indexing by setting `.xy_nd_start/stop` to
`None` initially so that the first update can be done in one large
prepend.
- better understand and document the step curve "slice back to previous
level" logic which is now heavily commented B)
- drop all the `slice_to_head` stuff from and instead allow each
formatter to choose it's 1d segmenting.
In an effort to make it easy to override the indexing scheme.
Further, this repairs the `.datums_range()` special case to handle when
the view box is to-the-right-of the data set (i.e. l > datum_start).
As in make the call to `Flume.slice_from_time()` to try and convert any
time index values from the view range to array-indices; all untested
atm.
Also drop some old/unused/moved methods:
- `._set_xlimits()`
- `.bars_range()`
- `.curve_width_pxs()`
and fix some `flow` -> `viz` var naming.
Since these modules no longer contain Qt specific code we might
as well include them in the data sub-package.
Also, add `IncrementalFormatter.index_field` as single point to def the
indexing field that should be used for all x-domain graphics-data
rendering.
Since higher level charting and fsp management need access to the
new `Flume` indexing apis this adjusts some func sigs to pass through
(and/or create) flume instances:
- `LinkedSplits.add_plot()` and dependents.
- `ChartPlotWidget.draw_curve()` and deps, and it now returns a `Flow`.
- `.ui._fsp.open_fsp_admin()` and `FspAdmin.open_fsp_ui()` related
methods => now we wrap the destination fsp shm in a flume on the admin
side and is returned from `.start_engine_method()`.
Drop a bunch of (unused) chart widget methods including some already
moved to flume methods: `.get_index()`, `.in_view()`,
`.last_bar_in_view()`, `.is_valid_index()`.
Move to expect and process new by-tick-event frames where the display
loop can now just iterate the most recent tick events by type instead of
the entire tick history sequence - thus we reduce iterations inside the
update loop.
Also, go back to use using the detected display's refresh rate (minus 6)
as the default feed requested throttle rate since we can now handle
much more bursty-ness in display updates thanks to the new framing
format B)
Factor out the chart widget creation since it's only executed once
during rendering of the first feed/flow whilst keeping plotitem overlay
creation inside the (flume oriented) init loop. Only create one vlm and
FSP chart/chain for now until we figure out if we want FSPs overlayed by
default or selected based on the "front" symbol in use. Add a default
color-palette set using shades of gray when plotting overlays. Presume
that the display loop's quote throttle rate should be uniformly
distributed over all input symbol-feeds for now. Restore feed pausing on
mouse interaction.
Initial support for real-time multi-symbol overlay charts using an
aggregate feed delivered by `Feed.open_multi_stream()`.
The setup steps for constructing the overlayed plot items is still very
very rough and will likely provide incentive for better refactoring high
level "charting APIs". For each fqsn passed into `display_symbol_data()`
we now synchronously,
- create a single call to `LinkedSplits.plot_ohlc_main() -> `ChartPlotWidget`
where we cache the chart in scope and for all other "sibling" fqsns
we,
- make a call to `ChartPlotWidget.overlay_plotitem()` -> `PlotItem`, hide its axes,
make another call with this plotitem input to
`ChartPlotWidget.draw_curve()`, set a sym-specific view box auto-yrange maxmin callback,
register the plotitem in a global `pis: dict[str, list[pgo.PlotItem, pgo.PlotItem]] = {}`
Once all plots have been created we then asynchronously for each symbol,
- maybe create a volume chart and register it in a similar task-global
table: `vlms: dict[str, ChartPlotWidget] = {}`
- start fsp displays for each symbol
Then common entrypoints are entered once for all symbols:
- a single `graphics_update_loop()` loop-task is started wherein
real-time graphics update components for each symbol are created,
* `L1Labels`
* y-axis last clearing price stickies
* `maxmin()` auto-ranger
* `DisplayState` (stored in a table `dss: dict[str, DisplayState] = {}`)
* an `increment_history_view()` task
and a single call to `Feed.open_multi_stream()` is used to create
a symbol-multiplexed quote stream which drives a single loop over all
symbols wherein for each quote the appropriate components are looked
up and passed to `graphics_update_cycle()`.
- a single call to `open_order_mode()` is made with the first symbol
provided as input, though eventually we want to support passing in the
entire list.
Further internal implementation details:
- special tweaks to the `pg.LinearRegionItem` setup wherein the region
is added with a zero opacity and *after* all plotitem overlays to
avoid and issue where overlays weren't being shown within the region
area in the history chart.
- all symbol-specific graphics oriented update calls are adjusted to
pass in the fqsn:
* `update_fsp_chart()`
* `ChartView._set_yrange()`
* ChartPlotWidget.update_graphics_from_flow()`
- avoid a double increment on sample step updates by not calling the
increment on any vlm chart since it seems the vlm-ohlc chart linking
already takes care of this now?
- use global counters for the last epoch time step to avoid incrementing
all views more then once per new time step given underlying shm array
buffers may be on different array-index values from one another.
Main "public" API change is to make `GodWidget.get/set_chart_symbol()`
accept and cache-on fqsn tuples to allow handling overlayed chart groups
and adjust method names to be plural to match.
Wrt `LinkedSplits`,
- create all chart widget axes with a `None` plotitem argument and set
the `.pi` field after axis creation (since apparently we have another
object reference causality dilemma..)
- set a monkeyed `PlotItem.chart_widget` for use in axes that still need
the widget reference.
- drop feed pause/resume for now since it's leaking feed tasks on the
`brokerd` side and we probably don't really need it any more, and if
we still do it should be done on the feed not the flume.
Wrt `ChartPlotItem`,
- drop `._add_sticky()` and use the `Axis` method instead and add some
overlay + axis sanity checks.
- refactor `.draw_ohlc()` to be a lighter wrapper around a call to
`.add_plot()`.
We have this method on our `ChartPlotWidget` but it makes more sense to
directly associate axis-labels with, well, the label's parent axis XD.
We add `._stickies: dict[str, YAxisLabel]` to replace
`ChartPlotWidget._ysticks` and pass in the `pg.PlotItem` to each axis
instance, stored as `Axis.pi` instead of handing around linked split
references (which are way out of scope for a single axis).
More work needs to be done to remove dependence on `.chart:
ChartPlotWidget` references in the date axis type as per comments.
Comments out the pixel-cache resetting since it doesn't seem we need it
any more to avoid draw oddities?
For `.fast_path` appends, this nearly got it working except the new path
segments are either not being connected correctly (step curve) or not
being drawn in full since the history path (plain line).
Leaving the attempted code commented in for a retry in the future; my
best guesses are that maybe,
- `.connectPath()` call is being done with incorrect segment length
and/or start point.
- the "appended" data: `appended = array[-append_len-1:slice_to_head]`
(done inside the formatter) isn't correct (i.e. endpoint handling
considering a path append) and needs special handling for different
curve types?
Ensure `.boundingRect()` calcs and `.draw_last_datum()` do geo-sizing
based on source data instead of presuming some `1.0` unit steps in some
spots; we need this to support an epoch index as is needed for overlays.
Further, clean out a bunch of old bounding rect calc code and add some
commented code for trying out `QRectF.united()` on the path + last datum
curve segment. Turns out that approach is slower as per eyeballing the
added profiler points.
After trying to hack epoch indexed time series and failing miserably,
decided to properly factor out all formatting routines into a common
subsystem API: ``IncrementalFormatter`` which provides the interface for
incrementally updating and tracking pre-path-graphics formatted data.
Previously this functionality was mangled into our `Renderer` (which
also does the work of `QPath` generation and update) but splitting it
out also preps for being able to do graphics-buffer downsampling and
caching on a remote host B)
The ``IncrementalFormatter`` (parent type) has the default behaviour of
tracking a single field-array on some source `ShmArray`, updating
a flattened `numpy.ndarray` in-mem allocation, and providing a default
1d conversion for pre-downsampling and path generation.
Changed out of `Renderer`,
- `.allocate_xy()`, `update_xy()` and `format_xy()` all are moved to
more explicitly named formatter methods.
- all `.x/y_data` nd array management and update
- "last view range" tracking
- `.last_read`, `.diff()`
- now calls `IncrementalFormatter.format_to_1d()` inside `.render()`
The new API gets,
- `.diff()`, `.last_read`
- all view range diff tracking through `.track_inview_range()`.
- better nd format array names: `.x/y_nd`, `xy_nd_start/stop`.
- `.format_to_1d()` which renders pre-path formatted arrays ready for
both m4 sampling and path gen.
- better explicit overloadable formatting method names:
* `.allocate_xy()` -> `.allocate_xy_nd()`
* `.update_xy()` -> `.incr_update_xy_nd()`
* `.format_xy()` -> `.format_xy_nd_to_1d()`
Finally this implements per-graphics-type formatters which define
each set up related formatting routines:
- `OHLCBarsFmtr`: std multi-line style bars
- `OHLCBarsAsCurveFmtr`: draws an interpolated line for ohlc sampled data
- `StepCurveFmtr`: handles vlm style curves
Instead of requiring any `-b` try to import all built-in broker backend
python modules by default and only load those detected from the input symbol
list's fqsn values. In other words the `piker chart` cmd can be run sin
`-b` now and that flag is only required if you only want to load
a subset of the built-ins or are trying to load a specific
not-yet-builtin backend.
This is to prep for multi-symbol feeds and charts so we accept
a sequence of fqsns to the top level entrypoints as well as the
`.data.feed.open_feed()` API (though we're not actually supporting true
multiplexed feeds nor shm lookups per fqsn yet).
Drop all attempts at rewiring `ViewBox` signals, monkey-patching
relayee handlers, and generally modifying event source public
attributes. Instead take a much simpler approach where the event source
graphics object simply has it's handler dynamically overridden by
a broadcaster function which relays to all consumers using a Python
loop.
The benefits of this much simplified approach include:
- avoiding the tedious and often complex (re)connection of signals between
the source plot and the overlayed consumers.
- requiring zero modification of the public interface of any of the
publisher or consumer `ViewBox`s, no decoration, extra signal
definitions (eg. previous `mouseDragEventRelay` or the like).
- only a single dynamic method override on the event source graphics object
(`ViewBox`) which does the broadcasting work and requires no
modification to handler implementations.
Detailed `.ui._overlay` changes:
- drop `mk_relay_signal()`, `enable_relays()` which removes signal/slot
hacking methodology.
- drop unused `ComposedGridLayout.grid` and `.reverse`, change some
method names: `.insert()` -> `.insert_plotitem()`, `append()` ->
`.append_plotitem()`.
- in `PlotOverlay`, again drop all signal/slot rewiring in
`.add_plotitem()` and instead add our new closure based python-loop in
`broadcast()` routine which is used to override the event-source
object's handler.
- comment out all the auxiliary/want-to-have event source selection
methods for now.
Mainly this involves instantiating our overriden `PlotItem` in a few
places and tweaking type annots. A further detail is that inside
the fsp sub-chart creation code we hide some axes for overlays in the
flows subchart; these were previously somehow hidden implicitly?
Fork out our patch set submitted to upstream in multiple PRs (since they
aren't moving and/or aren't a priority to core) which can be seen in
full from the following diff:
https://github.com/pyqtgraph/pyqtgraph/compare/master...pikers:pyqtgraph:graphics_pin
Move these type extensions into the internal `.ui._pg_overrides` module.
The changes are related to both `pyqtgraph.PlotItem` and `.AxisItem` and
were driven for our need for multi-view overlays (overlaid charts with
optionally synced axis and interaction controls) as documented in the PR
to upstream: https://github.com/pyqtgraph/pyqtgraph/pull/2162
More specifically,
- wrt to `AxisItem` we added lru caching of tick values as per:
https://github.com/pyqtgraph/pyqtgraph/pull/2160.
- wrt to `PlotItem` we adjusted some of the axis management code, namely
adding a standalone `.removeAxis()` and modifying the `.setAxisItems()` logic
to use it in: https://github.com/pyqtgraph/pyqtgraph/pull/2162
as well as some tweaks to `.updateGrid()` to loop through all possible
axes when grid setting.
Factor the multi-sample-rate region UI connecting into a new helper
`link_views_with_region()` which reads in the shm buffer offsets from
the `Feed` and appropriately connects the fast and slow chart handlers
for the linear region graphics. Add detailed comments writeup for the
inter-sampling transform algebra.
When the client is faster then a `brokerd` at submitting and cancelling
an order we run into the case where we need to specify that the EMS
cancels the order-flow as soon as the brokerd's ack arrives. Previously
we were stashing a `BrokerdCancel` msg as the `Status.req` msg (to be
both tested for as a "already cancelled" and sent immediately on ack arrival to
the broker), but for such
cases we can't use that msg to find the fqsn (since only the client side
msgs have it defined) which is required by the new
`Router.client_broadcast()`.
So, Since `Status.req` is supposed to be a client-side flow msg anyway,
and we need the fqsn for client broadcasting, we change this `.req`
value to the client's submitted `Cancel` msg (thus rectifying the
missing `Router.client_broadcast()` fqsn input issue) and build the
`BrokerdCancel` request from that `Cancel` inline in the relay loop
from the `.req: Cancel` status msg lookup.
Further we allow `Cancel` msgs to define an `.account` and adjust the
order mode loop to expect `Cancel` source requests in cancelled status
updates.
We haven't been using it for a while and the supposed (remembered)
latency issue on interaction doesn't seem existing after applying the
cache mode. This allows dropping some internal state-logic and generally
simplifying the show-on-hover checks.
Further add `.show_markers()` and `.hide_markers()` as explicit methods
that can be called externally by UI business logic.
Bit of a face palm but obviously `LevelLine.delete()` also removes any
`._marker` from the view which makes it disappear permanently when
moving from non-zero to zero to non-zero positions.. We don't really
need to delete the line since it can be re-used so just remove that
code.
Further this patch removes marker style setting logic from within the
`pp_line()` factory and instead expects the caller to set the correct
"direction" (for long / short) afterward.
- Every time a symbol is switched on chart we need to wait until the
search bar sidepane has been added beside the slow chart before
determining the offset for the pp line's arrow/labels; trigger this in
`GodWidget.load_symbol()` -> required monkeypatching on a
`.mode: OrderMode` to the `.rt_linked` for now..
- Drop the search pane widget removal from the current linked chart,
seems faster?
- On the slow chart override the `LevelMarker.scene_x()` callback to
adjust for the case where no L1 labels are shown beside the y-axis.
Also adds a `GodWidget.resize_all()` helper method which resizes all
sub-widgets and charts to their default ratios and/or parent-widget
dependent defaults using the detected available space on screen. This is
a "default layout" config method that eventually we'll probably want
allow users to customize.
In other words instead of some static view size previously determined by
the accompanying (slow) chart's height, (recursively) calculate the
number of displayed rows and compute the minimal height needed. This
still caps the view at the height of the chart such that the view will
switch to scroll bar mode when too many results are shown and can't all
be fit in the vertical space.
Deats:
- add a ``CompleterView.iter_df_rows()`` which recursively iterates all
rows in depth-first order making it simple to compute the absolute
number of result rows in view and thus the minimal number of pixels to
show all results.
- always pass the height in the `.on_resize()` handler to ensure
triggering the height logic when new results are generated in the
search loop.
Scales the "view" instance that holds search results to the size of the
accompanying "slow chart" for which the search pane is a "sidepane".
A lot of mucking about was required due to resizing of the view
seemingly feeding back into window resizing and further implementing the
sizing logic such that the parent `QSplitter` can be resized as the
user's whim as well.
Details,
- add a `CompleterView._init: bool` which is set once (and only once)
after startup where the first display of the current symbol/feed is
shown allowing and a single *width* padding applied once at startup
to ensure we don't have an awkward line to the right of the longest
result.
- in `.resize_to_results()` only apply a minimum height to the view
using `.setMinimumHeight()` with a down-scaled (`0.91` for now) height
value from input.
- re-implement `CompleterView.show_matches()` to accept and optional
width, heigh tuple and when not supplied pull the slow chart's
dimensions and pass as input to the resize method.
- Make `SearchWidget` x dim sizing policy "fixed".
- register the `SearchWidget` for resize events with god.
- add `.show_only_cache_entries()` for easy results clearing.
- add `.space_dims()` to retrieve slow linked-charts dimensions.
- implement `SearchWidget.on_resize()` which is the caller of all the
previously mentioned resizing routines.
- do resizing and cache entry showing on search loop startup and be sure
to clear to cache when the user selects a symbol-feed with Enter.
It ended up being what'd you expect, races on the accessing shm buffer
data by the UI during the whole "mega-async-startup-everything" phase XD
So we add the following list of ad-hoc startup steps:
- do `.default_view()` on the slow chart after the fast chart is mostly
fully spawned with the intention being to capture the state where the
historical buffer is mostly loaded before sizing the view to the
graphical form of the data.
- resize slow chart sidepanes from the fast chart just before sleeping
forever (and after order mode has booted).
Turns out god widget resizes aren't triggered implicitly by window
resizes, so instead, hook into the window by moving what was our useless
method to that class. Further we explicitly define and declare that our
window has a `.godwidget: GodWidget` and set it up in the bootstrap
phase - in `run_qutractor()` during `trio` guest mode configuration.
Further deatz:
- retype the runtime/bootstrap routines to take a qwidget "type" not an
instance, and drop the whole implicit `.main_widget` stuff.
- delegate into the `GodWidget.on_win_resize()` for any window resize
which then triggers all the custom resize callbacks we already had in
place.
- privatize `ChartnPane.sidepane` so that it can't be mutated willy
nilly without calling `.set_sidepane()`.
- always adjust splitter sizes inside `LinkeSplits.add_plot()`.
More or less moves all the UI related position "nav" logic and graphics
item management into a new `._position.Nav` composite type + api for
high level mgmt of position graphics indicators across multiple charts
(fast and slow).
The slow (history) chart requires it's own y-range checker logic which
needs to be run in 2 cases:
- the last datum is in view and goes outside the previous mx/mn in view
- the chart is incremented a step
Since we need this duplicate logic this patch also factors the incremental
graphics update info "reading" into a new `DisplayState.incr_info()`
method that can be configured to a chart and input state and returns all
relevant "graphics update measure" in a tuple (for now).
Use this method throughout the rest of the display loop for both fast
and slow chart checks and in the `increment_history_view()` slow chart
task.
Use the new `Feed.get_ds_info()` method in a poll loop to definitively
get the inter-chart sampling info and avoid races with shm buffer
backfilling.
Also, factor the history increment closure-task into
`graphics_update_loop()` which will make it clearer how to factor
all the "should we update" logic into some `DisplayState` API.
Add an update call to the display loop to consistently update the last
datum in the history view chart. Compute the inter-chart sampling ratio
and use it to sync the linear region.
Add a first draft of a working `pyqtgraph.LinearRegionItem` link between
a history view chart (+ data set) and the normal real-time "HFT" chart
set.
Add the history view (aka more downsampled data view) chart set to the
rt/hft set's splitter as it's "first widget". Hook up linear region
callbacks to enable syncing between charts including compenstating for
the downsampling rate ration (in this case hardcoded 60 since 1s to 1M,
but we'll actually compute it going forward obvs).
More to come dawgys..
Adds an additional `GodWidget.hist_linked: LinkedSplits` alongside the
renamed `.rt_linked` to enable 2 sets of linked charts with different
sampled data sets/flows. The history set is added without "all the
fixins" for now (i.e. no order mode sidepane or search integration) such
that it is merely a top level chart which shows a much longer term
history and can be added to the UI via embedding the entire history
linked-splits instance into the real-time linked set's splitter.
Further impl deats:
- adjust the `GodWidget._chart_cache: dict[str, tuple]]` to store both
linked split chart sets per symbol so that symbol switching will
continue to work with the added history chart (set).
- rework `.load_symbol()` to operate on both the real-time (HFT) chart
set and the history set.
- rework `LinkedSplits.set_split_sizes()` to compensate for the history
chart and do more detailed height calcs arithmetic to make it appear
by default as a minor sub-chart.
- adjust `LinkedSplits.add_plot()` and `ChartPlotWidget` internals to allow
adding a plot without a sidepane and/or container `ChartnPane`
composite widget by checking for a `sidepane == False` input.
- make `.default_view()` accept a manual y-axis offset kwarg.
- adjust search mode to provide history linked splits to
`.set_chart_symbol()` call.
Clearly, the linter didn't help us here.. but, just pass the
`brokerd` time for now in the `.broker_time` field; we can't get it from
the fill-case incremental updates in the `openOrders` sub. Add some
notes about this and how we might approach for backends with this
limitation.
This fixes a regression added after moving the msg parsing to later in
the order mode startup sequence. The `Allocator` needs to be configured
*to* the initial pos otherwise default settings will show in the UI..
Move the startup config logic from inside `mk_allocator()` to
`PositionTracker.update_from_pp()` and add a flag to allow setting the
`.startup_pp` from the current live one as is needed during initial
load.
Turns out we were putting too many brokername suffixes in the symbol
field and thus the order mode msg parser wasn't matching the current
asset to said msgs correctly and pps weren't being shown...
This repairs that plus simplifies the order mode initial pos msg loading
to just delegate into `process_trade_msg()` just as is done for
real-time msg updates.
If a setting fails to apply try to log an error msg and revert to the
previous setting by not applying the UI read-update until after the new
`SettingsPane.apply_setting()` call. This prevents crashes when the user
tries to give bad inputs on editable allocator fields.
Quite a simple fix, we just assign the account-specific
`PositionTracker` to the level line's `._on_level_change()` handler
instead of whatever the current `OrderMode.current_pp` is set to.
Further this adds proper pane switching support such that when a user
modifies an order line from an account which is not the currently
selected one, the settings pane is changed to reflect the
account and thus corresponding position info for that account and
instrument B)
This includes darks, lives and alerts with all connecting clients
being broadcast all existing order-flow dialog states. Obviously
for now darks and alerts only live as long as the `emsd` actor lifetime
(though we will store these in local state eventually) and "live" orders
have lifetimes managed by their respective backend broker.
The details of this change-set is extensive, so here we go..
Messaging schema:
- change the messaging `Status` status-key set to:
`resp: Literal['pending', 'open', 'dark_open', 'triggered',
'closed', 'fill', 'canceled', 'error']`
which better reflects the semantics of order lifetimes and was
partially inspired by the status keys `kraken` provides for their
order-entry API. The prior key set was based on `ib`'s horrible
semantics which sound like they're right out of the 80s..
Also, we reflect this same set in the `BrokerdStatus` msg and likely
we'll just get rid of the separate brokerd-dialog side type
eventually.
- use `Literal` type annots for statuses where applicable and as they
are supported by `msgspec`.
- add additional optional `Status` fields:
-`req: Order` to allow each status msg to optionally ref its
commanding order-request msg allowing at least a request-response
style implicit tracing in all response msgs.
-`src: str` tag string to show the source of the msg.
-`reqid: str | int` such that the ems can relay the `brokerd`
request id both to the client side and have one spot to look
up prior status msgs and
- draft a (unused/commented) `Dialog` type which can be eventually used
at all EMS endpoints to track msg-flow states
EMS engine adjustments/rework:
- use the new status key set throughout and expect `BrokerdStatus` msgs
to use the same new schema as `Status`.
- add a `_DarkBook._active: dict[str, Status]` table which is now used for
all per-leg-dialog associations and order flow state tracking
allowing for the both the brokerd-relay and client-request handler loops
to read/write the same msg-table and provides for delivering
the overall EMS-active-orders state to newly/re-connecting clients
with minimal processing; this table replaces what the `._ems_entries`
table from prior.
- add `Router.client_broadcast()` to send a msg to all currently
connected peers.
- a variety of msg handler block logic tweaks including more `case:`
blocks to be both flatter and improve explicitness:
- for the relay loop move all `Status` msg update and sending to
within each block instead of a fallthrough case plus hard-to-follow
state logic.
- add a specific case for unhandled backend status keys and just log
them.
- pop alerts from `._active` immediately once triggered.
- where possible mutate status msgs fields over instantiating new
ones.
- insert and expect `Order` instances in the dark clearing loop and
adjust `case:` blocks accordingly.
- tag `dark_open` and `triggered` statuses as sourced from the ems.
- drop all the `ChainMap` stuff for now; we're going to make our own
`Dialog` type for this purpose..
Order mode rework:
- always parse the `Status` msg and use match syntax cases with object
patterns, hackily assign the `.req` in many blocks to work around not
yet having proper on-the-wire decoding yet.
- make `.load_unknown_dialog_from_msg()` expect a `Status` with boxed
`.req: Order` as input.
- change `OrderDialog` -> `Dialog` in prep for a general purpose type
of the same name.
`ib` backend order loading support:
- do "closed" status detection inside the msg-relay loop instead
of expecting the ems to do this..
- add an attempt to cancel inactive orders by scheduling cancel
submissions continually (no idea if this works).
- add a status map to go from the 80s keys to our new set.
- deliver `Status` msgs with an embedded `Order` for existing live order
loading and make sure to try an get the source exchange info (instead
of SMART).
Paper engine ported to match:
- use new status keys in `BrokerdStatus` msgs
- use `match:` syntax in request handler loop
Ideally every client that connects to the ems can know its state
(immediately) meaning relay all the order dialogs that are currently
active. This adds full (hacky WIP) support to receive those dialog
(msgs) from the `open_ems()` startup values via the `.started()` msg
from `_emsd_main()`.
Further this adds support to the order mode chart-UI to display existing
(live) orders on the chart during startup. Details include,
- add a `OrderMode.load_unknown_dialog_from_msg()` for processing and
displaying a ``BrokerdStatus`` (for now) msg from the EMS that was not
previously created by the current ems client and registering and
displaying it on the chart.
- break out the ems msg processing into a new
`order_mode.process_trade_msg()` func so that it can be called on the
startup dialog-msg set as well as eventually used a more general low
level auto-strat API (eg. when we get to displaying auto-strat and
group trading automatically on an observing chart UI.
- hackyness around msg-processing for the dialogs delivery since we're
technically delivering `BrokerdStatus` msgs when the client-side
processing technically expects `Status` msgs.. we'll rectify this
soon!
Minimize calling `.data._shmarray.attach_shm_array()` as much as is
possible to avoid the crash from #332. This is the suggested hack from
issue #359.
Resolves https://github.com/pikers/piker/issues/359
Start a generic "position related" util mod and bring in the `Position`
type from the allocator , convert it to a `msgspec.Struct` and add
a `.lifo_update()` method. Implement a WIP pp parser from a trades
ledger and use the new lifo method to gather position entries.
Add `ChartPlotWidget._on_screen: bool` which allows detecting for the
first state where there is y-range-able flow data loaded and able to be
drawn. Check for this flag to be set in `.maxmin()` such that until the
historical data is loaded `.default_view()` will be called to ensure
that a blank view is never shown: race with the UI starting versus the
data layer loading flow graphics can have this outcome.
This was introduced in #302 but after thorough testing was clear to be
not working XD. Adjust the display loop to update the last graphics
segment on both the OHLC and vlm charts (as well as all deriving fsp
flows) whenever the uppx >= 1 and there is no current path append
taking place (since more datums are needed to span an x-pixel in view).
Summary of tweaks:
- move vlm chart update code to be at the end of the cycle routine and
have that block include the tests for a "interpolated last datum in
view" line.
- make `do_append: bool` compare with a floor of the uppx value (i.e.
appends should happen when we're just fractionally over a pixel of
x units).
- never update the "volume" chart.
Allows for optionally updating a "downsampled" graphics type which is
currently necessary in the `BarItems` -> `FlattenedOHLC` curve switching
case; we don't want to be needlessly redrawing the `Flow.graphics`
object (which will be an OHLC curve) when in flattened curve mode.
Further add a `only_last_uppx: bool` flag to `.draw_last()` to allow
forcing a "last uppx's worth of data max/min" style interpolating line
as needed.
When using m4, we downsample to the max and min of each
pixel-column's-worth of data thus preserving range / dispersion details
whilst not drawing more graphics then can be displayed by the available
amount of horizontal pixels.
Take and apply this exact same concept to the "last datum" graphics
elements for any `Flow` that is reported as being in a downsampled
state:
- take the xy output from the `Curve.draw_last_datum()`,
- slice out all data that fits in the last pixel's worth of x-range
by using the uppx,
- compute the highest and lowest value from that data,
- draw a singe line segment which spans this yrange thus creating
a simple vertical set of pixels which are "filled in" and show the
entire y-range for the most recent data "contained with that pixel".
Instead of using a bunch of internal logic to modify low level paint-able
elements create a `Curve` lineage that allows for graphics "style"
customization via a small set of public methods:
- `Curve.declare_paintables()` to allow setup of state/elements to be
drawn in later methods.
- `.sub_paint()` to allow painting additional elements along with the
defaults.
- `.sub_br()` to customize the `.boundingRect()` dimensions.
- `.draw_last_datum()` which is expected to produce the paintable
elements which will show the last datum in view.
Introduce the new sub-types and load as necessary in
`ChartPlotWidget.draw_curve()`:
- `FlattenedOHLC`
- `StepCurve`
Reimplement all `.draw_last()` routines as a `Curve` method
and call it the same way from `Flow.update_graphics()`
The basic logic is now this:
- when zooming out, uppx (units per pixel in x) can be >= 1
- if the uppx is `n` then the next pixel in view becomes occupied by
a new datum-x-coordinate-value when the diff between the last
datum step (since the last such update) is greater then the
current uppx -> `datums_diff >= n`
- if we're less then some constant uppx we just always update (because
it's not costly enough and we're not downsampling.
More or less this just avoids unnecessary real-time updates to flow
graphics until they would actually be noticeable via the next pixel
column on screen.
This was a bit of a nightmare to figure out but, it seems that the
coordinate caching system will really be a dick (like the nickname for
richard for you serious types) about leaving stale graphics if we don't
reset the cache on downsample full-redraw updates...Sooo, instead we do
this manual reset to avoid such artifacts and consequently (for now)
return a `reset: bool` flag in the return tuple from `Renderer.render()`
to indicate as such.
Some further shite:
- move the step mode `.draw_last()` equivalent graphics updates down
with the rest..
- drop some superfluous `should_redraw` logic from
`Renderer.render()` and compound it in the full path redraw block.
Adds a new pre-graphics data-format callback incremental update api to
our `Renderer`. `Renderer` instance can now overload these custom routines:
- `.update_xy()` a routine which accepts the latest [pre/a]pended data
sliced out from shm and returns it in a format suitable to store in
the optional `.[x/y]_data` arrays.
- `.allocate_xy()` which initially does the work of pre-allocating the
`.[x/y]_data` arrays based on the source shm sizing such that new
data can be filled in (to memory).
- `._xy_[first/last]: int` attrs to track index diffs between src shm
and the xy format data updates.
Implement the step curve data format with 3 super simple routines:
- `.allocate_xy()` -> `._pathops.to_step_format()`
- `.update_xy()` -> `._flows.update_step_xy()`
- `.format_xy()` -> `._flows.step_to_xy()`
Further, adjust `._pathops.gen_ohlc_qpath()` to adhere to the new
call signature.
We're doing this in `Flow.update_graphics()` atm and probably are going
to in general want custom graphics objects for all the diff curve / path
types. The new flows work seems to fix the bounding rect width calcs to
not require the ad-hoc extra `+ 1` in the step mode case; before it was
always a bit hacky anyway. This also tries to add a more correct
bounding rect adjustment for the `._last_line` segment.
Finally this gets us much closer to a generic incremental update system
for graphics wherein the input array diffing, pre-graphical format data
processing, downsampler activation and incremental update and storage of
any of these data flow stages can be managed in one modular sub-system
:surfer_boi:.
Dirty deatz:
- reorg and move all path logic into `Renderer.render()` and have it
take in pretty much the same flags as the old
`FastAppendCurve.update_from_array()` and instead storing all update
state vars (even copies of the downsampler related ones) on the
renderer instance:
- new state vars: `._last_uppx, ._in_ds, ._vr, ._avr`
- `.render()` input bools: `new_sample_rate, should_redraw,
should_ds, showing_src_data`
- add a hack-around for passing in incremental update data (for now)
via a `input_data: tuple` of numpy arrays
- a default `uppx: float = 1`
- add new render interface attrs:
- `.format_xy()` which takes in the source data array and produces out
x, y arrays (and maybe a `connect` array) that can be passed to
`.draw_path()` (the default for this is just to slice out the index
and `array_key: str` columns from the input struct array),
- `.draw_path()` which takes in the x, y, connect arrays and generates
a `QPainterPath`
- `.fast_path`, for "appendable" updates like there was on the fast
append curve
- move redraw (aka `.clear()` calls) into `.draw_path()` and trigger
via `redraw: bool` flag.
- our graphics objects no longer set their own `.path` state, it's done
by the `Flow.update_graphics()` method using output from
`Renderer.render()` (and it's state if necessary)