Adds a new pre-graphics data-format callback incremental update api to
our `Renderer`. `Renderer` instance can now overload these custom routines:
- `.update_xy()` a routine which accepts the latest [pre/a]pended data
sliced out from shm and returns it in a format suitable to store in
the optional `.[x/y]_data` arrays.
- `.allocate_xy()` which initially does the work of pre-allocating the
`.[x/y]_data` arrays based on the source shm sizing such that new
data can be filled in (to memory).
- `._xy_[first/last]: int` attrs to track index diffs between src shm
and the xy format data updates.
Implement the step curve data format with 3 super simple routines:
- `.allocate_xy()` -> `._pathops.to_step_format()`
- `.update_xy()` -> `._flows.update_step_xy()`
- `.format_xy()` -> `._flows.step_to_xy()`
Further, adjust `._pathops.gen_ohlc_qpath()` to adhere to the new
call signature.
We're doing this in `Flow.update_graphics()` atm and probably are going
to in general want custom graphics objects for all the diff curve / path
types. The new flows work seems to fix the bounding rect width calcs to
not require the ad-hoc extra `+ 1` in the step mode case; before it was
always a bit hacky anyway. This also tries to add a more correct
bounding rect adjustment for the `._last_line` segment.
Finally this gets us much closer to a generic incremental update system
for graphics wherein the input array diffing, pre-graphical format data
processing, downsampler activation and incremental update and storage of
any of these data flow stages can be managed in one modular sub-system
:surfer_boi:.
Dirty deatz:
- reorg and move all path logic into `Renderer.render()` and have it
take in pretty much the same flags as the old
`FastAppendCurve.update_from_array()` and instead storing all update
state vars (even copies of the downsampler related ones) on the
renderer instance:
- new state vars: `._last_uppx, ._in_ds, ._vr, ._avr`
- `.render()` input bools: `new_sample_rate, should_redraw,
should_ds, showing_src_data`
- add a hack-around for passing in incremental update data (for now)
via a `input_data: tuple` of numpy arrays
- a default `uppx: float = 1`
- add new render interface attrs:
- `.format_xy()` which takes in the source data array and produces out
x, y arrays (and maybe a `connect` array) that can be passed to
`.draw_path()` (the default for this is just to slice out the index
and `array_key: str` columns from the input struct array),
- `.draw_path()` which takes in the x, y, connect arrays and generates
a `QPainterPath`
- `.fast_path`, for "appendable" updates like there was on the fast
append curve
- move redraw (aka `.clear()` calls) into `.draw_path()` and trigger
via `redraw: bool` flag.
- our graphics objects no longer set their own `.path` state, it's done
by the `Flow.update_graphics()` method using output from
`Renderer.render()` (and it's state if necessary)
A bit hacky to get all graphics types working but this is hopefully the
first step toward moving all the generic update logic into `Renderer`
types which can be themselves managed more compactly and cached per
uppx-m4 level.
Which is basically just "deleting" rows from a column series.
You can only use the trim command from the `.cmd` cli and only with a so
called `LocalClient` currently; it's also sketchy af and caused
a machine to hang due to mem usage..
Ideally we can patch in this functionality for use by the rpc api
and have it not hang like this XD
Pertains to https://github.com/alpacahq/marketstore/issues/264
Yet another path ops routine which converts a 1d array into a data
format suitable for rendering a "step curve" graphics path (aka a "bar
graph" but implemented as a continuous line).
Also, factor the `BarItems` rendering logic (which determines whether to
render the literal bars lines or a downsampled curve) into a routine
`render_baritems()` until we figure out the right abstraction layer for
it.
Starts a module for grouping together all our `QPainterpath` related
generation and data format operations for creation of fast curve
graphics. To start, drops `FastAppendCurve.downsample()` and moves
it to a new `._pathops.xy_downsample()`.