This was a bit of a nightmare to figure out but, it seems that the
coordinate caching system will really be a dick (like the nickname for
richard for you serious types) about leaving stale graphics if we don't
reset the cache on downsample full-redraw updates...Sooo, instead we do
this manual reset to avoid such artifacts and consequently (for now)
return a `reset: bool` flag in the return tuple from `Renderer.render()`
to indicate as such.
Some further shite:
- move the step mode `.draw_last()` equivalent graphics updates down
with the rest..
- drop some superfluous `should_redraw` logic from
`Renderer.render()` and compound it in the full path redraw block.
Adds a new pre-graphics data-format callback incremental update api to
our `Renderer`. `Renderer` instance can now overload these custom routines:
- `.update_xy()` a routine which accepts the latest [pre/a]pended data
sliced out from shm and returns it in a format suitable to store in
the optional `.[x/y]_data` arrays.
- `.allocate_xy()` which initially does the work of pre-allocating the
`.[x/y]_data` arrays based on the source shm sizing such that new
data can be filled in (to memory).
- `._xy_[first/last]: int` attrs to track index diffs between src shm
and the xy format data updates.
Implement the step curve data format with 3 super simple routines:
- `.allocate_xy()` -> `._pathops.to_step_format()`
- `.update_xy()` -> `._flows.update_step_xy()`
- `.format_xy()` -> `._flows.step_to_xy()`
Further, adjust `._pathops.gen_ohlc_qpath()` to adhere to the new
call signature.
Finally this gets us much closer to a generic incremental update system
for graphics wherein the input array diffing, pre-graphical format data
processing, downsampler activation and incremental update and storage of
any of these data flow stages can be managed in one modular sub-system
:surfer_boi:.
Dirty deatz:
- reorg and move all path logic into `Renderer.render()` and have it
take in pretty much the same flags as the old
`FastAppendCurve.update_from_array()` and instead storing all update
state vars (even copies of the downsampler related ones) on the
renderer instance:
- new state vars: `._last_uppx, ._in_ds, ._vr, ._avr`
- `.render()` input bools: `new_sample_rate, should_redraw,
should_ds, showing_src_data`
- add a hack-around for passing in incremental update data (for now)
via a `input_data: tuple` of numpy arrays
- a default `uppx: float = 1`
- add new render interface attrs:
- `.format_xy()` which takes in the source data array and produces out
x, y arrays (and maybe a `connect` array) that can be passed to
`.draw_path()` (the default for this is just to slice out the index
and `array_key: str` columns from the input struct array),
- `.draw_path()` which takes in the x, y, connect arrays and generates
a `QPainterPath`
- `.fast_path`, for "appendable" updates like there was on the fast
append curve
- move redraw (aka `.clear()` calls) into `.draw_path()` and trigger
via `redraw: bool` flag.
- our graphics objects no longer set their own `.path` state, it's done
by the `Flow.update_graphics()` method using output from
`Renderer.render()` (and it's state if necessary)
A bit hacky to get all graphics types working but this is hopefully the
first step toward moving all the generic update logic into `Renderer`
types which can be themselves managed more compactly and cached per
uppx-m4 level.
Yet another path ops routine which converts a 1d array into a data
format suitable for rendering a "step curve" graphics path (aka a "bar
graph" but implemented as a continuous line).
Also, factor the `BarItems` rendering logic (which determines whether to
render the literal bars lines or a downsampled curve) into a routine
`render_baritems()` until we figure out the right abstraction layer for
it.
Starts a module for grouping together all our `QPainterpath` related
generation and data format operations for creation of fast curve
graphics. To start, drops `FastAppendCurve.downsample()` and moves
it to a new `._pathops.xy_downsample()`.
This took longer then i care to admit XD but it definitely adds a huge
speedup and with only a few outstanding correctness bugs:
- panning from left to right causes strange trailing artifacts in the
flows fsp (vlm) sub-plot but only when some data is off-screen on the
left but doesn't appear to be an issue if we keep the `._set_yrange()`
handler hooked up to the `.sigXRangeChanged` signal (but we aren't
going to because this makes panning way slower). i've got a feeling
this is a bug todo with the device coordinate cache stuff and we may
need to report to Qt core?
- factoring out the step curve logic from
`FastAppendCurve.update_from_array()` (un)fortunately required some
logic branch uncoupling but also meant we needed special input controls
to avoid things like redraws and curve appends for special cases,
this will hopefully all be better rectified in code when the core of
this method is moved into a renderer type/implementation.
- the `tina_vwap` fsp curve now somehow causes hangs when doing erratic
scrolling on downsampled graphics data. i have no idea why or how but
disabling it makes the issue go away (ui will literally just freeze
and gobble CPU on a `.paint()` call until you ctrl-c the hell out of
it). my guess is that something in the logic for standard line curves
and appends on large data sets is the issue?
Code related changes/hacks:
- drop use of `step_path_arrays_from_1d()`, it was always a bit hacky
(being based on `pyqtgraph` internals) and was generally hard to
understand since it returns 1d data instead of the more expected (N,2)
array of "step levels"; instead this is now implemented (uglily) in
the `Flow.update_graphics()` block for step curves (which will
obviously get cleaned up and factored elsewhere).
- add a bunch of new flags to the update method on the fast append
curve: `draw_last: bool`, `slice_to_head: int`, `do_append: bool`,
`should_redraw: bool` which are all controls to aid with previously
mentioned issues specific to getting step curve updates working
correctly.
- add a ton of commented tinkering related code (that we may end up
using) to both the flow and append curve methods that was written as
part of the effort to get this all working.
- implement all step curve updating inline in `Flow.update_graphics()`
including prepend and append logic for pre-graphics incremental step
data maintenance and in-view slicing as well as "last step" graphics
updating.
Obviously clean up commits coming stat B)
After much effort (and exhaustion) but failure to get a view into our
`numpy` OHLC struct-array, this instead allocates an in-thread-memory
array which is updated with flattened data every flow update cycle.
I need to report what I think is a bug to `numpy` core about the whole
view thing not working but, more or less this gets the same behaviour
and minimizes work to flatten the sampled data for line-graphics drawing
thus improving refresh latency when drawing large downsampled curves.
Update the OHLC ds curve with view aware data sliced out from the
pre-allocated and incrementally updated data (we had to add a last index
var `._iflat` to track appends - this should be moved into a renderer
eventually?).
This begins the removal of data processing / analysis methods from the
chart widget and instead moving them to our new `Flow` API (in the new
module introduce here) and delegating the old chart methods to the
respective internal flow. Most importantly is no longer storing the
"last read" of an array from shm in an internal chart table (was
`._arrays`) and instead the `ShmArray` instance is passed as input and
stored in the `Flow` instance. This greatly simplifies lookup logic such
that the display loop now doesn't have to worry about reading shm, it
can be done by internal graphics logic as desired. Generally speaking,
all previous `._arrays`/`._graphics` lookups are now delegated to the
entries in the chart's `._flows` table.
The new `Flow` methods are generally better factored and provide more
detailed output regarding data-stream <-> graphics inter-relations for
the future purpose of allowing much more efficient update calls in the
display loop as well as supporting low latency interaction UX.
The concept here is that we're introducing an intermediary layer that
ties together graphics and real-time data flows such that widget code is
oriented around plot layout and the flow apis are oriented around
real-time low latency updates and providing an efficient high level
metric layer for the UX.
The summary api transition is something like:
- `update_graphics_from_array()` -> `.update_graphics_from_flow()`
- `.bars_range()` -> `Flow.datums_range()`
- `.bars_range()` -> `Flow.datums_range()`