To start we only have futes working but this allows both searching
and loading multiple expiries of the same instrument by specifying
different expiries with a `.<expiry>` suffix in the symbol key (eg.
`mnq.globex.20220617`). This also paves the way for options contracts
which will need something similar plus a strike property. This change
set also required a patch to `ib_insync` to allow retrieving multiple
"ambiguous" contracts from the `IB.reqContractDetailsAcync()` method,
see https://github.com/erdewit/ib_insync/pull/454 for further discussion
since the approach here might change.
This patch also includes a lot of serious reworking of some `trio`-`asyncio`
integration to use the newer `tractor.to_asyncio.open_channel_from()`
api and use it (with a relay task) to open a persistent connection with
an in-actor `ib_insync` `Client` mostly for history requests.
Deats,
- annot the module with a `_infect_asyncio: bool` for `tractor` spawning
- add a futes venu list
- support ambiguous futes contracts lookups so that all expiries will
show in search
- support both continuous and specific expiry fute contract
qualification
- allow searching with "fqsn" keys
- don't crash on "data not found" errors in history requests
- move all quotes msg "topic-key" generation (which should now be
a broker-specific fqsn) and per-contract quote processing into
`normalize()`
- set the fqsn key in the symbol info init msg
- use `open_client_proxy()` in bars backfiller endpoint
- include expiry suffix in position update keys
This adds a new client manager-factory: `open_client_proxy()` which uses
the newer `tractor.to_asyncio.open_channel_from()` (and thus the
inter-loop-task-channel style) a `aio_client_method_relay()` and
a re-implemented `MethodProxy` wrapper to allow transparently calling
`asyncio` client methods from `trio` tasks. Use this proxy in the
history backfiller task and add a new (prototype)
`open_history_client()` which will be used in the new storage management
layer. Drop `get_client()` which was the portal wrapping equivalent of
the same proxy but with a one-task-per-call approach. Oh, and
`Client.bars()` can take `datetime`, so let's use it B)
Use fqsn as input to the client-side EMS apis but strip broker-name
stuff before generating and sending `Brokerd*` msgs to each backend for
live order requests (since it's weird for a backend to expect it's own
name, though maybe that could be a sanity check?).
Summary of fqsn use vs. broker native keys:
- client side pps, order requests and general UX for order management
use an fqsn for tracking
- brokerd side order dialogs use the broker-specific symbol which is
usually nearly the same key minus the broker name
- internal dark book and quote feed lookups use the fqsn where possible
In order to support instruments with lifetimes (aka derivatives) we need
generally need special symbol annotations which detail such meta data
(such as `MNQ.GLOBEX.20220717` for daq futes). Further there is really
no reason for the public api for this feed layer to care about getting
a special "brokername" field since generally the data is coming directly
from UIs (eg. search selection) so we might as well accept a fqsn (fully
qualified symbol name) which includes the broker name; for now a suffix
like `'.ib'`. We may change this schema (soon) but this at least gets us
to a point where we expect the full name including broker/provider.
An additional detail: for certain "generic" symbol names (like for
futes) we will pull a so called "front contract" and map this to
a specific fqsn underneath, so there is a double (cached) entry for that
entry such that other consumers can use it the same way if desired.
Some other machinery changes:
- expect the `stream_quotes()` endpoint to deliver it's `.started()` msg
almost immediately since we now need it deliver any fqsn asap (yes
this means the ep should no longer wait on a "live" first quote and
instead deliver what quote data it can right away.
- expect the quotes ohlc sampler task to add in the broker name before
broadcast to remote (actor) consumers since the backend isn't (yet)
expected to do that add in itself.
- obviously we start using all the new fqsn related `Symbol` apis
Move the core ws message handling into `stream_messages()` and call that
from 2 new stream processors: `process_data_feed_msgs()` and
`process_order_msgs()`. Add comments for hints on how to implement the
order msg parsing as well as `pprint` received msgs to console for now.
Since moving to a "god loop" for graphics, we don't really need to have
a dedicated task for updating graphics on new sample increments. The
only UX difference will be that curves won't be updated until an actual new
rt-quote-event triggers the graphics loop -> so we'll have the chart
"jump" to a new position and new curve segments generated only when new
data arrives. This is imo fine since it's just less "idle" updates
where the chart would sit printing the same (last) value every step.
Instead only update the view increment if a new index is detected by
reading shm.
If we ever want this dedicated task update again this commit can be
easily reverted B)
Break up real-time quote feed and history loading into 2 separate tasks
and deliver a client side `data.Feed` as soon as history is loaded
(instead of waiting for a rt quote - the previous logic). If
a symbol doesn't have history then likely the feed shouldn't be loaded
(since presumably client code will need at least "some" datums history
to do anything) and waiting on a real-time quote is dumb, since it'll
hang if the market isn't open XD. If a symbol doesn't have history we
can always write a zero/null array when we run into that case. This also
greatly speeds up feed loading when both history and quotes are available.
TL;DR summary:
- add a `_Feedsbus.start_task()` one-cancel-scope-per-task method for
assisting with (re-)starting and stopping long running persistent
feeds (basically a "one cancels one" style nursery API).
- add a `manage_history()` task which does all history loading (and
eventually real-time writing) which has an independent signal and
start it in a separate task.
- drop the "sample rate per symbol" stuff since client code doesn't really
care when it can just inspect shm indexing/time-steps itself.
- run throttle tasks in the bus nursery thus avoiding cancelling the
underlying sampler task on feed client disconnects.
- don't store a repeated ref the bus nursery's cancel scope..
To avoid the "trigger finger" issue (darks execing before they should
due to a stale last price state, normally when generating a trigger
predicate..) always iterate the loop and update the last known book
price even when no execs/triggered orders are registered.
You can get a weird "last line segment" artifact if *only* that segment
is drawn and the cache is enabled, so just disable unless in step mode
at startup and re-flash as normal when new path data is appended. Add
a `.disable_cache()` method for the multi-use in the update method. Use
line style on the `._last_line: QLineF` segment as well.
Enables retrieving all "named axes" on a particular "side" of the
overlayed plot items. This is useful for calculating how much space
needs to be allocated for the axes before the view box area starts.
Though it's not per-tick accurate, accumulate the number of "trades"
(i.e. the "clearing rate" - maybe this is a better name?) per bar
inside the `dolla_vlm` fsp and average and report wmas of this in the
`flow_rates` fsp.
Define the flows table as a class var (thus making it a "global" and/or
actor-local state) which can be accessed by any in process task. Add
`Fsp.get_shm()` to allow accessing output streams by source-token + fsp
routine reference and thus providing inter-fsp low level access to
real-time flows.
In order for fsp routines to be able to look up other "flows" in the
cascade, we need a small registry-table which gives access to a map of
a source stream + an fsp -> an output stream. Eventually we'll also
likely want a dependency (injection) mechanism so that any fsp demanded
can either be dynamically allocated or at the least waited upon before
a consumer tries to access it.
Instead of referencing the remote processing funcs by a `str` name start
embracing the new `@fsp`/`Fsp` API such that wrapped processing
functions are first class APIs.
Summary of the changeset:
- move and load the fsp built-in set in the new `.fsp._api` module
- handle processors ("fsps") which want to yield multiple keyed-values
(interleaved in time) by expecting both history that is keyed and
assigned to the appropriate struct-array field, *and* real-time
`yield`ed value in tuples of the form `tuple[str, float]` such that
any one (async) processing function can deliver multiple outputs from
the same base calculation.
- drop `maybe_mk_fsp_shm()` from UI module
- expect and manage `Fsp` instances (`@fsp` decorated funcs) throughout
the UI code, particularly the `FspAdmin` layer.
Since more curves costs more processing and since the vlm and $vlm
curves are normally very close to the same (graphically) we hide the
unit volume curve once the dollar volume is up (after the fsp daemon-task is
spawned) and just expect the user to understand the diff in axes units.
Also, use the new `title=` api to `.overlay_plotitem()`.
Use our internal `Label` with much better dpi based sizing of text and
placement below the y-axis ticks area for more minimalism and less
clutter.
Play around with `lru_cache` on axis label bounding rects and for now
just hack sizing by subtracting half the text height (not sure why) from
the width to avoid over-extension / overlap with any adjacent axis.