This moves the entire clearing system to use typed messages using
`pydantic.BaseModel` such that the streamed request-response order
submission protocols can be explicitly viewed in terms of message
schema, flow, and sequencing. Using the explicit message formats we can
now dig into simplifying and normalizing across broker provider apis to
get the best uniformity and simplicity.
The order submission sequence is now fully async: an order request is
expected to be explicitly acked with a new message and if cancellation
is requested by the client before the ack arrives, the cancel message is
stashed and then later sent immediately on receipt of the order
submission's ack from the backend broker. Backend brokers are now
controlled using a 2-way request-response streaming dialogue which is
fully api agnostic of the clearing system's core processing; This
leverages the new bi-directional streaming apis from `tractor`. The
clearing core (emsd) was also simplified by moving the paper engine to
it's own sub-actor and making it api-symmetric with expected `brokerd`
endpoints.
A couple of the ems status messages were changed/added:
'dark_executed' -> 'dark_triggered'
added 'alert_triggered'
More cleaning of old code to come!
This makes the paper engine look IPC-wise exactly like any
broker-provider backend module and uses the new ``trades_dialogue()``
2-way streaming endpoint for commanding order requests.
This serves as a first step toward truly distributed forward testing
since the paper engine can now be run out-of tree from `pikerd` if
needed thus demonstrating how real-time clearing signals can be shared
between fully distinct services.
This avoids somewhat convoluted "hackery" making 2 one-way streams
between the order client and the EMS and instead uses the new
bi-directional streaming and context API from `tractor`. Add a router
type to the EMS that gets setup by the initial service tree and which
we'll eventually use to work toward multi-provider executions and
order-trigger monitoring. Move to py3.9 style where possible throughout.
Makes it so we can move toward separate provider results fills in an
async way, on demand.
Also,
- add depth 1 iteration helper method
- add section finder helper method
- fix last selection loading to be mostly consistent
This allows for more deterministically managing long running sub-daemon
services under `pikerd` using the new context api from `tractor`.
The contexts are allocated in an async exit stack and torn down at root
daemon termination. Spawn brokerds using this method by changing the
persistence entry point to be a `@tractor.context`.
Some providers do well with a "longer" debounce period (like ib) since
searching them too frequently causes latency and stalls. By supporting
both a min and max debounce period on keyboard input we can only send
patterns to the slower engines when that period is triggered via
`trio.move_on_after()` and continue to relay to faster engines when the
measured period permits. Allow search routines to register their "min
period" such that they can choose to ignore patterns that arrive before
their heuristically known ideal wait.
Obviously this only supports stocks to start, it looks like we might
actually have to hard code some of the futures/forex/cmdtys that don't
have a search.. so lame. Special throttling is added here since the api
will grog out at anything more then 1Hz.
Additionally, decouple the bar loading request error handling from the
shm pushing loop so that we can always recover from a historical bars
throttle-error even if it's on the first try for a new symbol.
This allows for more deterministically managing long running sub-daemon
services under `pikerd` using the new context api from `tractor`.
The contexts are allocated in an async exit stack and torn down at root
daemon termination. Spawn brokerds using this method by changing the
persistence entry point to be a `@tractor.context`.
This gets the binance provider meeting the data feed schema requirements
of both the OHLC sampling/charting machinery as well as proper
formatting of historical OHLC history.
Notably,
- spec a minimal ohlc dtype based on the kline endpoint
- use a dataclass to parse out OHLC bar datums and pack into np.ndarray/shm
- add the ``aggTrade`` endpoint to get last clearing (traded) prices,
validate with ``pydantic`` and then normalize these into our tick-quote
format for delivery over the feed stream api.
- a notable requirement is that the "first" quote from the feed must
contain a 'last` field so the clearing system can start up correctly.
This required a fsp task spawning logic rework which ended up being
cleaner just spawning tasks in a loop sequentially instead of trying
a 2-phase spawn-then-initialize approach.
This also includes changes from the symbol search branch hacked in.
Mostly it includes isolating the main chart startup-sequence to a
function that can be run in a new task every time a new symbol is
requested by the selector/searcher. The actual search functionality
obviously isn't in here yet but minor changes are included as part of
pulling out the `tractor` stream api patch from the symbol search dev
branch.
Avoid bothering with a trio event and expect the caller to do manual shm
registering with the write loop. Provide OHLC sample period indexing
through a re-branded pub-sub func ``iter_ohlc_periods()``.
Move all feed/stream agnostic logic and shared mem writing into a new
set of routines inside the ``data`` sub-package. This lets us move
toward a more standard API for broker and data backends to provide
cache-able persistent streams to client apps.
The data layer now takes care of
- starting a single background brokerd task to start a stream for as
symbol if none yet exists and register that stream for later lookups
- the existing broker backend actor is now always re-used if possible
if it can be found in a service tree
- synchronization with the brokerd stream's startup sequence is now
oriented around fast startup concurrency such that client code gets
a handle to historical data and quote schema as fast as possible
- historical data loading is delegated to the backend more formally by
starting a ``backfill_bars()`` task
- write shared mem in the brokerd task and only destruct it once requested
either from the parent actor or further clients
- fully de-duplicate stream data by using a dynamic pub-sub strategy
where new clients register for copies of the same quote set per symbol
This new API is entirely working with the IB backend; others will need
to be ported. That's to come shortly.
Add a `Services` nurseries container singleton for spawning sub-daemons
inside the long running `pikerd` tree. Bring in `brokerd` spawning util
funcs to start getting eyes on what can be factored into a service api.
The direct open is needed for running `pikerd` cmd and
the ems spawn point is the first step toward detaching UI based order
entry from the engine itself.
- break (custom) graphics item style marker drawing into separate func
but keep using it since it still seems oddly faster then the
QGraphicsPathItem thing..
- unfactor hover handler; it was uncessary
- make both the graphics path item and custom graphics items approaches
both work inside ``.paint()``
Add support for drawing ``QPathGraphicsItem`` markers but don't use them
since they seem to be shitting up when combined with the infinite line
(bounding rect?): weird artifacts and whatnot. The only way to avoid
said glitches seems to be to update inside the infinite line's
`.paint()` but that slows stuff down.. Instead stick with the manual
paint job use the same pin point: left of the L1 spread graphics - where
the lines now also extend to.
Further stuff:
- Pin the y-label to a line's value on hover.
- Disable x-dimension line moving
- Rework the labelling to be more minimal
Add a line which shows the current average price position with and arrow
marker denoting the direction (long or short). Required some further
rewriting of the infinite line from pyqtgraph including:
- adjusting marker (arrow) placement to be offset from axis + l1 labels
- fixing the hover event to not require the `.movable` attribute to be
set
It's a super naive implementation with no slippage model or network
latency besides some slight delays. Clearing only happens on bid/ask
sweep ticks at the moment - simple last volume based clearing coming
up next.
This turned into a larger endeavour then intended but now we're using our
own label system on level lines to be able to display things nicely
**pinned wherever we want in the UI**. Keep the old ``LevelLabel`` for
now for the L1 graphics but we'll likely replace this as well since i'm
pretty sure the new label type (which wraps `QGraphicsTextItem`) is more
performant anyway.
For labels that want it add nice arrow paths that point just over the
respective axis. Couple label text offset from the axis line based on
parent 'tickTextOffset' setting. Drop `YSticky` it was not enough
meat to bother with.
The min tick size is the smallest step an instrument can move in value
(think the number of decimals places of precision the value can have).
We start leveraging this in a few places:
- make our internal "symbol" type expose it as part of it's api
so that it can be passed around by UI components
- in y-axis view box scaling, use it to keep the bid/ask spread (L1 UI)
always on screen even in the case where the spread has moved further
out of view then the last clearing price
- allows the EMS to determine dark order live order submission offsets
Async spawn a deats getter task whenever we load a symbol data feed.
Pass these symbol details in the first message delivered by the feed at
open. Move stream loop into a new func.
Basically a stop limit mode where the dirty execution-condition deats
are entirely held client side away from the broker. For now, there's
a static order size setting and a 0.5% limit setting relative to the
trigger price. Swap to using 'd' for dump and 'f' for fill - they're
easier for use with ctrl (which is used now to submit orders directly to
broker - ala "live (order) mode"). Still more kinks to work out with too
fast cancelled orders and alerts but we're getting there.
Our first major UI "mode" (yes kinda like the modes in emacs) that has
handles to a client side order book api, line and arrow editors, and
interacts with a spawned `emsd` (the EMS daemon actor).
Buncha cleaning and fixes in here for various thingers as well.
Since the "crosshair" is growing more and more UX implementation details
it probably makes sense to call it what it is; a python level mouse
abstraction. Add 2 internal sets: `_hovered` for allowing mouse hovered
objects to register themselves to other cursor aware components, and
`_trackers` for allowing scene items to "track" cursor movements via
a `on_tracked_source()` callback.
Support tracking the mouse cursor using a new `on_tracked_sources()`
callback method. Make hovered highlight a bit thicker and highlight when
click-dragged. Add a delete method for removing from the scene along
with label.
Leverages `QGraphicsItem.cacheMode` to speed up interactivity via
less `.paint()` calls (on mouse interaction) and redraws of the
underlying path when there are no transformations (other then a shift).
In order to keep the "flat bar on new time period" UX, a couple special
methods have to be triggered to get a redraw of the pixel buffer when
appending new data.
Use `QPainterPath.controlPointRect()` over `.boundingRect()` since
supposedly it's a lot faster. Drop all use of `QPicture` (since it seems
to conflict with the pixel buffer stuff?) and it doesn't give any
measurable speedup when drawing the "last bar" lines.
Oh, and add some profiling for now.
This is a bit hacky (what with array indexing semantics being relative
to the primary index's "start" value but it works. We'll likely want
to somehow wrap this index finagling into an API soon.
Failed at using either.
Quirks in numba's typing require specifying readonly arrays by
composing types manually.
The graphics item path thing, while it does take less time to write on
bar appends, seems to be slower in general in calculating the
``.boundingRect()`` value. Likely we'll just add manual max/min tracking
on array updates like ``pg.PlotCurveItem`` to squeeze some final juices
on this.
Pertains further to #109.
Instead of redrawing the entire `QPainterPath` every time there's
a historical bars update just use `.addPath()` to slap in latest
history. It seems to work and is fast. This also seems like it will be
a great strategy for filling in earlier data, woot!
This gives a massive speedup when viewing large bar sets (think a day's
worth of 5s bars) by using the `pg.functions.arrayToQPath()` "magic"
binary array writing that is also used in `PlotCurveItem`. We're using
this same (lower level) function directly to draw bars as part of one
large path and it seems to be painting 15k (ish) bars with around 3ms
`.paint()` latency. The only thing still a bit slow is the path array
generation despite doing it with `numba`. Likely, either having multiple
paths or, only regenerating the missing backing array elements should
speed this up further to avoid slight delays when incrementing the bar
step.
This is of course a first draft and more cleanups are coming.
This makes it so you don't have to ctrl-c kill apps.
Add in the experimental openGL support even though I'm pretty sure it's
not being used much for curve plotting (but could be wrong).
Break the chart update code for fsps into a new task (add a nursery) in
new `spawn_fsps` (was `chart_from_fsps`) that async requests actor
spawning and initial historical data (all CPU bound work). For multiple
fsp subcharts this allows processing initial output in parallel
(multi-core). We might want to wrap this in a "feed" like api
eventually. Basically the fsp startup sequence is now:
- start all requested fsp actors in an async loop and wait for
historical data to arrive
- loop through them all again to start update tasks which do chart
graphics rendering
Add separate x-axis objects for each new subchart (required by
pyqtgraph); still need to fix hiding unnecessary ones.
Add a `ChartPlotWidget._arrays: dict` for holding overlay data distinct
from ohlc. Drop the sizing yrange to label heights for now since it's
pretty much all gone to hell since adding L1 labels. Fix y-stickies to
look up correct overly arrays.
Requires decent modification of the built-in ``ViewBox``.
We do away with the zoom functionality for now and instead just add
a label full of some simple stats on the bounded data.
I think this gets us to the same output as TWS both on booktrader and
the quote details pane. In theory there might be logic needed to
decreases an L1 queue size on trades but can't seem to get it without
getting -ves displayed occasionally - thus leaving it for now.
Also, fix the max-min streaming logic to actually do its job, lel.
Start a simple API for L1 bid/ask labels.
Make `LevelLabel` draw a line above/below it's text (instead of the
rect fill we had before) since it looks much simpler/slicker.
Generalize the label text orientation through bounding rect
geometry positioning.
Until we get a better datum "cursor" figured out just draw the flat bar
despite the extra overhead. The reason to do this in 2 separate calls is
detailed in the comment but basic gist is that there's a race between
writer and reader of the last shm index.
Oh, and toss in some draft symbol search label code.