- Every time a symbol is switched on chart we need to wait until the
search bar sidepane has been added beside the slow chart before
determining the offset for the pp line's arrow/labels; trigger this in
`GodWidget.load_symbol()` -> required monkeypatching on a
`.mode: OrderMode` to the `.rt_linked` for now..
- Drop the search pane widget removal from the current linked chart,
seems faster?
- On the slow chart override the `LevelMarker.scene_x()` callback to
adjust for the case where no L1 labels are shown beside the y-axis.
Also adds a `GodWidget.resize_all()` helper method which resizes all
sub-widgets and charts to their default ratios and/or parent-widget
dependent defaults using the detected available space on screen. This is
a "default layout" config method that eventually we'll probably want
allow users to customize.
In other words instead of some static view size previously determined by
the accompanying (slow) chart's height, (recursively) calculate the
number of displayed rows and compute the minimal height needed. This
still caps the view at the height of the chart such that the view will
switch to scroll bar mode when too many results are shown and can't all
be fit in the vertical space.
Deats:
- add a ``CompleterView.iter_df_rows()`` which recursively iterates all
rows in depth-first order making it simple to compute the absolute
number of result rows in view and thus the minimal number of pixels to
show all results.
- always pass the height in the `.on_resize()` handler to ensure
triggering the height logic when new results are generated in the
search loop.
Scales the "view" instance that holds search results to the size of the
accompanying "slow chart" for which the search pane is a "sidepane".
A lot of mucking about was required due to resizing of the view
seemingly feeding back into window resizing and further implementing the
sizing logic such that the parent `QSplitter` can be resized as the
user's whim as well.
Details,
- add a `CompleterView._init: bool` which is set once (and only once)
after startup where the first display of the current symbol/feed is
shown allowing and a single *width* padding applied once at startup
to ensure we don't have an awkward line to the right of the longest
result.
- in `.resize_to_results()` only apply a minimum height to the view
using `.setMinimumHeight()` with a down-scaled (`0.91` for now) height
value from input.
- re-implement `CompleterView.show_matches()` to accept and optional
width, heigh tuple and when not supplied pull the slow chart's
dimensions and pass as input to the resize method.
- Make `SearchWidget` x dim sizing policy "fixed".
- register the `SearchWidget` for resize events with god.
- add `.show_only_cache_entries()` for easy results clearing.
- add `.space_dims()` to retrieve slow linked-charts dimensions.
- implement `SearchWidget.on_resize()` which is the caller of all the
previously mentioned resizing routines.
- do resizing and cache entry showing on search loop startup and be sure
to clear to cache when the user selects a symbol-feed with Enter.
It ended up being what'd you expect, races on the accessing shm buffer
data by the UI during the whole "mega-async-startup-everything" phase XD
So we add the following list of ad-hoc startup steps:
- do `.default_view()` on the slow chart after the fast chart is mostly
fully spawned with the intention being to capture the state where the
historical buffer is mostly loaded before sizing the view to the
graphical form of the data.
- resize slow chart sidepanes from the fast chart just before sleeping
forever (and after order mode has booted).
Turns out god widget resizes aren't triggered implicitly by window
resizes, so instead, hook into the window by moving what was our useless
method to that class. Further we explicitly define and declare that our
window has a `.godwidget: GodWidget` and set it up in the bootstrap
phase - in `run_qutractor()` during `trio` guest mode configuration.
Further deatz:
- retype the runtime/bootstrap routines to take a qwidget "type" not an
instance, and drop the whole implicit `.main_widget` stuff.
- delegate into the `GodWidget.on_win_resize()` for any window resize
which then triggers all the custom resize callbacks we already had in
place.
- privatize `ChartnPane.sidepane` so that it can't be mutated willy
nilly without calling `.set_sidepane()`.
- always adjust splitter sizes inside `LinkeSplits.add_plot()`.
More or less moves all the UI related position "nav" logic and graphics
item management into a new `._position.Nav` composite type + api for
high level mgmt of position graphics indicators across multiple charts
(fast and slow).
The slow (history) chart requires it's own y-range checker logic which
needs to be run in 2 cases:
- the last datum is in view and goes outside the previous mx/mn in view
- the chart is incremented a step
Since we need this duplicate logic this patch also factors the incremental
graphics update info "reading" into a new `DisplayState.incr_info()`
method that can be configured to a chart and input state and returns all
relevant "graphics update measure" in a tuple (for now).
Use this method throughout the rest of the display loop for both fast
and slow chart checks and in the `increment_history_view()` slow chart
task.
Use the new `Feed.get_ds_info()` method in a poll loop to definitively
get the inter-chart sampling info and avoid races with shm buffer
backfilling.
Also, factor the history increment closure-task into
`graphics_update_loop()` which will make it clearer how to factor
all the "should we update" logic into some `DisplayState` API.
If you spawn a brokerd set and no `ib` data feed was started (via our
`.data.feed.Feed` api) then there will be no active client loaded and
thus wont' be connected. So in these cases just return nothing, and
I guess we'll figure out real connection failures later?
Add an update call to the display loop to consistently update the last
datum in the history view chart. Compute the inter-chart sampling ratio
and use it to sync the linear region.
Add a first draft of a working `pyqtgraph.LinearRegionItem` link between
a history view chart (+ data set) and the normal real-time "HFT" chart
set.
Add the history view (aka more downsampled data view) chart set to the
rt/hft set's splitter as it's "first widget". Hook up linear region
callbacks to enable syncing between charts including compenstating for
the downsampling rate ration (in this case hardcoded 60 since 1s to 1M,
but we'll actually compute it going forward obvs).
More to come dawgys..
Adds an additional `GodWidget.hist_linked: LinkedSplits` alongside the
renamed `.rt_linked` to enable 2 sets of linked charts with different
sampled data sets/flows. The history set is added without "all the
fixins" for now (i.e. no order mode sidepane or search integration) such
that it is merely a top level chart which shows a much longer term
history and can be added to the UI via embedding the entire history
linked-splits instance into the real-time linked set's splitter.
Further impl deats:
- adjust the `GodWidget._chart_cache: dict[str, tuple]]` to store both
linked split chart sets per symbol so that symbol switching will
continue to work with the added history chart (set).
- rework `.load_symbol()` to operate on both the real-time (HFT) chart
set and the history set.
- rework `LinkedSplits.set_split_sizes()` to compensate for the history
chart and do more detailed height calcs arithmetic to make it appear
by default as a minor sub-chart.
- adjust `LinkedSplits.add_plot()` and `ChartPlotWidget` internals to allow
adding a plot without a sidepane and/or container `ChartnPane`
composite widget by checking for a `sidepane == False` input.
- make `.default_view()` accept a manual y-axis offset kwarg.
- adjust search mode to provide history linked splits to
`.set_chart_symbol()` call.
As part of supporting a "history view" chart which shows downsampled
datums alongside our 1s (or higher) sampled OHLC we need a separate
buffer to store a the slower history from broker backends. This begins
that design by allocating 2 buffers:
- `rt_shm: ShmArray` which maps to a `/dev/shm/` file with `_rt` suffix
- `hist_shm: ShmArray` which maps to a file with `_hist` suffix
Deliver both of these shms back from both `manage_history()` and load
them as `Feed.rt_shm`/`.hist_shm` on the client side.
Impl deats:
- init the rt buffer with the first datum from loaded history and
assign all OHLC values to that row's 'close' and the vlm to 0.
- pass the hist buffer to the backfiller task
- only spawn **one** global sampler array-row increment task per
`brokerd` and pass in the 1s delay which we presume is our lowest
OHLC sample rate for now.
- drop `open_sample_step_stream()` and just move its body contents into
`Feed.index_stream()`
Instead of worrying about the increment period per shm subscription,
just use the value passed as input and presume the caller knows that
only one task is necessary and that the wakeup (sampling) period should
be the shortest that is needed.
It's very unlikely we don't want at least a 1s sampling (both in terms
of task switching cost and general usage) which will eventually ship as
the default "real-time" feed "timeframe". Further, this "fast" increment
sampling task can handle all lower sampling periods (eg. 1m, 5m, 1H)
based on the current implementation just the same.
Also, add a global default sample period as `_defaul_delay_s` for use in
other internal modules.
Clearly, the linter didn't help us here.. but, just pass the
`brokerd` time for now in the `.broker_time` field; we can't get it from
the fill-case incremental updates in the `openOrders` sub. Add some
notes about this and how we might approach for backends with this
limitation.
This fixes a regression added after moving the msg parsing to later in
the order mode startup sequence. The `Allocator` needs to be configured
*to* the initial pos otherwise default settings will show in the UI..
Move the startup config logic from inside `mk_allocator()` to
`PositionTracker.update_from_pp()` and add a flag to allow setting the
`.startup_pp` from the current live one as is needed during initial
load.
In the short case (-ve size) we had a bug where the last sub-slots worth
of exit size would never be limited to zero once the allocator limit pos
size was hit (i.e. you could keep going more -ve on the pos,
exponentially per slot over the limit). It's a simple fix, just
a `max()` around the `l_sub_pp` var used in the next-step-size calc.
Resolves#392
Turns out we were putting too many brokername suffixes in the symbol
field and thus the order mode msg parser wasn't matching the current
asset to said msgs correctly and pps weren't being shown...
This repairs that plus simplifies the order mode initial pos msg loading
to just delegate into `process_trade_msg()` just as is done for
real-time msg updates.
If a setting fails to apply try to log an error msg and revert to the
previous setting by not applying the UI read-update until after the new
`SettingsPane.apply_setting()` call. This prevents crashes when the user
tries to give bad inputs on editable allocator fields.
Previously we only simulated paper engine fills when the data feed
provide L1 queue-levels matched an execution. This patch add further
support for clear-level matches when there are real live clears on the
data feed that are faster/not synced with the L1 (aka usually during
periods of HFT).
The solution was to simply iterate the interleaved paper book entries on
both sides for said tick types and instead yield side-specific predicate
per entry.
Not entirely sure why this all of a sudden became a problem but it seems
price changes on order edits were sometimes resulting in key errors when
modifying paper book entries quickly. This changes the implementation to
not care about matching the last price when keying/popping old orders
and use `bidict`s to more easily pop cleared orders in the paper loop.
When the paper engine is used it seems we can definitely hit races where
order ack msgs arrive close enough to status messages that `trio`
schedules the status processing before the acks. In such cases we want
to be tolerant and not crash but instead warn that we got an
unknown/out-of-order msg.
Quite a simple fix, we just assign the account-specific
`PositionTracker` to the level line's `._on_level_change()` handler
instead of whatever the current `OrderMode.current_pp` is set to.
Further this adds proper pane switching support such that when a user
modifies an order line from an account which is not the currently
selected one, the settings pane is changed to reflect the
account and thus corresponding position info for that account and
instrument B)
We were overwriting the existing loaded orders list in the per client
loop (lul) so move the def above all that.
Comment out the "try-to-cancel-inactive-orders-via-task-after-timeout"
stuff pertaining to https://github.com/erdewit/ib_insync/issues/363 for
now since we don't have a mechanism in place to cancel the re-cancel
task once the order is cancelled - plus who knows if this is even the
best way to do it..
Fills seems to be dual emitted from both the `status` and `fill` events
in `ib_insync` internals and more or less contain the same data nested
inside their `Trade` type. We started handling the 'fill' case to deal
with a race issue in commissions/cost report tracking but we don't
really want to leak that same race to incremental fills vs.
order-"closed" tracking.. So go back to only emitting the fill msgs
on statuses and a "closed" on `.remaining == 0`.
`ib` is super good not being reliable with order event sequence order
and duplication of fill info. This adds some guards to try and avoid
popping the last status status too early if we end up receiving
a `'closed'` before the expected `'fill`' event(s). Further delete the
`status_msg` ref on each iteration to avoid stale reference lookups in
the relay task/loop.
This includes darks, lives and alerts with all connecting clients
being broadcast all existing order-flow dialog states. Obviously
for now darks and alerts only live as long as the `emsd` actor lifetime
(though we will store these in local state eventually) and "live" orders
have lifetimes managed by their respective backend broker.
The details of this change-set is extensive, so here we go..
Messaging schema:
- change the messaging `Status` status-key set to:
`resp: Literal['pending', 'open', 'dark_open', 'triggered',
'closed', 'fill', 'canceled', 'error']`
which better reflects the semantics of order lifetimes and was
partially inspired by the status keys `kraken` provides for their
order-entry API. The prior key set was based on `ib`'s horrible
semantics which sound like they're right out of the 80s..
Also, we reflect this same set in the `BrokerdStatus` msg and likely
we'll just get rid of the separate brokerd-dialog side type
eventually.
- use `Literal` type annots for statuses where applicable and as they
are supported by `msgspec`.
- add additional optional `Status` fields:
-`req: Order` to allow each status msg to optionally ref its
commanding order-request msg allowing at least a request-response
style implicit tracing in all response msgs.
-`src: str` tag string to show the source of the msg.
-`reqid: str | int` such that the ems can relay the `brokerd`
request id both to the client side and have one spot to look
up prior status msgs and
- draft a (unused/commented) `Dialog` type which can be eventually used
at all EMS endpoints to track msg-flow states
EMS engine adjustments/rework:
- use the new status key set throughout and expect `BrokerdStatus` msgs
to use the same new schema as `Status`.
- add a `_DarkBook._active: dict[str, Status]` table which is now used for
all per-leg-dialog associations and order flow state tracking
allowing for the both the brokerd-relay and client-request handler loops
to read/write the same msg-table and provides for delivering
the overall EMS-active-orders state to newly/re-connecting clients
with minimal processing; this table replaces what the `._ems_entries`
table from prior.
- add `Router.client_broadcast()` to send a msg to all currently
connected peers.
- a variety of msg handler block logic tweaks including more `case:`
blocks to be both flatter and improve explicitness:
- for the relay loop move all `Status` msg update and sending to
within each block instead of a fallthrough case plus hard-to-follow
state logic.
- add a specific case for unhandled backend status keys and just log
them.
- pop alerts from `._active` immediately once triggered.
- where possible mutate status msgs fields over instantiating new
ones.
- insert and expect `Order` instances in the dark clearing loop and
adjust `case:` blocks accordingly.
- tag `dark_open` and `triggered` statuses as sourced from the ems.
- drop all the `ChainMap` stuff for now; we're going to make our own
`Dialog` type for this purpose..
Order mode rework:
- always parse the `Status` msg and use match syntax cases with object
patterns, hackily assign the `.req` in many blocks to work around not
yet having proper on-the-wire decoding yet.
- make `.load_unknown_dialog_from_msg()` expect a `Status` with boxed
`.req: Order` as input.
- change `OrderDialog` -> `Dialog` in prep for a general purpose type
of the same name.
`ib` backend order loading support:
- do "closed" status detection inside the msg-relay loop instead
of expecting the ems to do this..
- add an attempt to cancel inactive orders by scheduling cancel
submissions continually (no idea if this works).
- add a status map to go from the 80s keys to our new set.
- deliver `Status` msgs with an embedded `Order` for existing live order
loading and make sure to try an get the source exchange info (instead
of SMART).
Paper engine ported to match:
- use new status keys in `BrokerdStatus` msgs
- use `match:` syntax in request handler loop
Ideally every client that connects to the ems can know its state
(immediately) meaning relay all the order dialogs that are currently
active. This adds full (hacky WIP) support to receive those dialog
(msgs) from the `open_ems()` startup values via the `.started()` msg
from `_emsd_main()`.
Further this adds support to the order mode chart-UI to display existing
(live) orders on the chart during startup. Details include,
- add a `OrderMode.load_unknown_dialog_from_msg()` for processing and
displaying a ``BrokerdStatus`` (for now) msg from the EMS that was not
previously created by the current ems client and registering and
displaying it on the chart.
- break out the ems msg processing into a new
`order_mode.process_trade_msg()` func so that it can be called on the
startup dialog-msg set as well as eventually used a more general low
level auto-strat API (eg. when we get to displaying auto-strat and
group trading automatically on an observing chart UI.
- hackyness around msg-processing for the dialogs delivery since we're
technically delivering `BrokerdStatus` msgs when the client-side
processing technically expects `Status` msgs.. we'll rectify this
soon!
In order to avoid missed existing order message emissions on startup we
need to be sure the client side stream is registered with the router
first. So break out the starting of the
`translate_and_relay_brokerd_events()` task until inside the client
stream block and start the task using the dark clearing loop nursery.
Also, ensure `oid` (and thus for `ib` the equivalent re-used `reqid`)
are cast to `str` before registering the dark book. Deliver the dark
book entries as part of the `_emsd_main()` context `.started()` values.