This is a first attempt at a financial signal processing subsystem which
utilizes async generators for streaming frames of numpy array data
between actors. In this initial attempt the focus is on processing price
data and relaying it to the chart app for real-time display. So far this
seems to work (with decent latency) but much more work is likely needed
around improving the data model for even better latency and less data
duplication.
Surprisingly (or not?) a lot of simplifications to the charting code
came out of this in terms of conducting graphics updates in streaming
tasks instead of hiding them inside the obfuscated mess that is the
Qt-style-inheritance-OO-90s-trash. The goal from here on wards will be
to enforce strict semantics around reading and writing of data such that
state is kept outside "object trees" as much as possible and streaming
function semantics guide our flow model. Unsurprisingly, this reduction
in "instance state" is happening wherever we use `trio` ;)
A little summary on the technical changes:
- not going to explain the fsp system yet; it's too nascent and
probably going to get some heavy editing.
- drop any "update" methods from the `LinkedCharts` type since each
sub-chart will have it's own update task and thus a separate update
loop; further individual graphics (per chart) may eventually require
this same design.
- delete `ChartView`; moved into separate mod.
- add "stream from fsp" task to start our foray into real-time actor
processed numpy streaming.