Drop all attempts at rewiring `ViewBox` signals, monkey-patching
relayee handlers, and generally modifying event source public
attributes. Instead take a much simpler approach where the event source
graphics object simply has it's handler dynamically overridden by
a broadcaster function which relays to all consumers using a Python
loop.
The benefits of this much simplified approach include:
- avoiding the tedious and often complex (re)connection of signals between
the source plot and the overlayed consumers.
- requiring zero modification of the public interface of any of the
publisher or consumer `ViewBox`s, no decoration, extra signal
definitions (eg. previous `mouseDragEventRelay` or the like).
- only a single dynamic method override on the event source graphics object
(`ViewBox`) which does the broadcasting work and requires no
modification to handler implementations.
Detailed `.ui._overlay` changes:
- drop `mk_relay_signal()`, `enable_relays()` which removes signal/slot
hacking methodology.
- drop unused `ComposedGridLayout.grid` and `.reverse`, change some
method names: `.insert()` -> `.insert_plotitem()`, `append()` ->
`.append_plotitem()`.
- in `PlotOverlay`, again drop all signal/slot rewiring in
`.add_plotitem()` and instead add our new closure based python-loop in
`broadcast()` routine which is used to override the event-source
object's handler.
- comment out all the auxiliary/want-to-have event source selection
methods for now.
It ended up being what'd you expect, races on the accessing shm buffer
data by the UI during the whole "mega-async-startup-everything" phase XD
So we add the following list of ad-hoc startup steps:
- do `.default_view()` on the slow chart after the fast chart is mostly
fully spawned with the intention being to capture the state where the
historical buffer is mostly loaded before sizing the view to the
graphical form of the data.
- resize slow chart sidepanes from the fast chart just before sleeping
forever (and after order mode has booted).
Since downsampling with the more correct version of m4 (uppx driven
windows sizing) is super fast now we don't need to avoid downsampling
on low uppx values. Further all graphics objects now support in-view
slicing so make sure to use it on interaction updates. Pass in the view
profiler to update method calls for more detailed measuring.
Even moar,
- Add a manual call to `.maybe_downsample_graphics()` inside the mouse
wheel event handler since it seems that sometimes trailing events get
lost from the `.sigRangeChangedManually` signal which can result in
"non-downsampled-enough" graphics on chart given the scroll amount;
this manual call seems to entirely fix this?
- drop "max zoom" guard since internals now support (near) infinite
scroll out to graphics becoming a single pixel column line XD
- add back in commented xrange signal connect code for easy testing to
verify against range updates not happening without it
Since we have in-view style rendering working for all curve types
(finally) we can avoid the guard for low uppx levels and without losing
interaction speed. Further don't delay the profiler so that the nested
method calls correctly report upward - which wasn't working likely due
to some kinda GC collection related issue.
Allows for removing resize callbacks for a flow/overlay that you wish to
remove from view (eg. unit volume after dollar volume is up) and thus
less general interaction callback overhead for any plot you don't wish
to show or resize.
Further,
- drop the `autoscale_linked_plots` block for now since with
multi-view-box overlays each register their own vb resize slots
- pull the graphics object from the chart's `Flow` map inside
`.maybe_downsample_graphics()`
We don't need update graphics on every x-range change since that's what
the display loop does. Instead, only on manual changes do we make manual
calls into `.update_graphics_from_array()` and be sure to iterate all
linked subplots and all their embedded graphics.
In effort to start getting some graphics speedups as detailed in #109,
this adds a `FastAppendCurve`to every `BarItems` as a `._ds_line` which
is only displayed (instead of the normal mult-line bars curve) when the
"width" of a bar is indistinguishable on screen from a line -> so once
the view coordinates map to > 2 pixels on the display device.
`BarItems.maybe_paint_line()` takes care of this scaling detection logic and is
called by the associated view's `.sigXRangeChanged` signal handler.
Calculations for auto-yaxis ranging are both signalled and drawn by our
`ViewBox` so we might as well factor this handler down from the chart
widget into the view type. This makes it much easier (and clearer) that
`PlotItem` and other lower level overlayed `GraphicsObject`s can utilize
*size-to-data* style view modes easily without widget-level coupling.
Further changes,
- support a `._maxmin()` internal callable (temporarily) for allowing
a viewed graphics object to define it's own y-range max/min calc.
- add `._static_range` var (though usage hasn't been moved from the
chart plot widget yet
- drop y-axis click-drag zoom instead reverting back to default viewbox
behaviour with wheel-zoom and click-drag-pan on the axis.
Make a pp tracker per account and load on order mode boot.
Only show details on the pp tracker for the selected account.
Make the settings pane assign a `.current_pp` state on the order mode
instance (for the charted symbol) on account selection switches and no
longer keep a ref to a single pp tracker and allocator in the pane.
`SettingsPane.update_status_ui()` now expects an explicit tracker
reference as input. Still need to figure out the pnl update task logic
despite the intermittent account changes.
Use this method to go through writing all allocator parameters and then
reading all changes back into the order mode pane including updating the
limit and step labels by the fill bar.
Machinery changes:
- add `.limit()` and `.step_sizes()` methods to the allocator to
provide the appropriate data depending on the pp limit size unit (eg.
currency vs. units)
- humanize the label display text such that you have nice suffixes and
a fixed precision
- tweak the fill bar labels to be simpler since the values are now
humanized
- expect `.on_ui_settings_change()` to be called for every slots hotkey
tweak
- generate lines from staged `Order` msgs
- apply level update callback to each order that dynamically
updates the order size from the allocator calcs
- pass order msg instances to the ems client for submission
- update order size on line moves
- add `Order` msg and `Symbol` refs to each dialog