Use our internal `Label` with much better dpi based sizing of text and
placement below the y-axis ticks area for more minimalism and less
clutter.
Play around with `lru_cache` on axis label bounding rects and for now
just hack sizing by subtracting half the text height (not sure why) from
the width to avoid over-extension / overlap with any adjacent axis.
Allow passing in a formatter function for processing tick values on an
axis. This makes it easy to for example, `piker.calc.humanize()` dollar
volume on a subchart.
Factor `set_min_tick()` into the `PriceAxis` since it's not used on any
x-axis data thus far.
Adds `FspAdmin.open_fsp_chart()` which allows adding a real time graphics
display of an fsp's output with different options for where (which chart
or make a new one) to place it.
Further,
- change some method naming, namely the other fsp engine task methods to
`.open_chain()` and `.start_engine_task()`.
- make `run_fsp_ui()` a lone task function for now with the default
config parsing and chart setup logic (and it still includes a buncha
commented out stuff for doing graphics update which is now done in the
main loop to avoid task switching overhead).
- move all vlm related fsp config entries into the `open_vlm_displays()`
task for dedicated setup with the fsp admin api such as special
auto-yrange handling and graph overlays.
- `start_fsp_displays()` is now just a small loop through config entries
with synced startup status messages.
For wtv cucked reason all the viewbox/scene coordinate calcs do **not**
include a left axis in the geo (likely because it's a hacked in widget
+ layout thing managed by `PlotItem`). Detect if there's a left axis and
if so use it in the label placement scene coords calc. ToDo: probably
make this a non-move calc and only recompute any time the axis changes.
Other:
- rate limit mouse events down to the 60 (ish) Hz for now
- change one last lingering `'ohlc'` array lookup
- fix `.mouseMoved()` "event" type annot
This is a huge commit which moves a bunch of code around in order to
simplify some of our UI modules as well as support our first official
mult-axis chart: overlaid volume and "dollar volume". A good deal of
this change set is to make startup fast such that volume data which is
often shipped alongside OHLC history is loaded and shown asap and FSPs
are loaded in an actor cluster with their graphics overlayed
concurrently as each responsible worker generates plottable output.
For everything to work this commit requires use of a draft `pyqtgraph`
PR: https://github.com/pyqtgraph/pyqtgraph/pull/2162
Change summary:
- move remaining FSP actor cluster helpers into `.ui._fsp` mod as well
as fsp specific UI managers (`maybe_open_vlm_display()`,
`start_fsp_displays()`).
- add an `FspAdmin` API for starting fsp chains on the cluster
concurrently allowing for future work toward reload/unloading.
- bring FSP config dict into `start_fsp_displays()` and `.started()`-deliver
both the fsp admin and any volume chart back up to the calling display
loop code.
ToDo:
- repair `ChartView` click-drag interactions
- auto-range on $ vlm needs to use `ChartPlotWidget._set_yrange()`
- a lot better styling for the $_vlm overlay XD
As part of factoring `._set_yrange()` into the lower level view box,
move the y-range calculations into a new method. These calcs should
eventually be completely separate (as they are for the real-time version
in the graphics display update loop) and likely part of some kind of
graphics-related lower level management API. Draft such an API as an
`ArrayScene` (commented for now) as a sketch toward factoring array
tracking **out of** the chart widget. Drop the `'ohlc'` array name and
instead always use whatever `.name` was assigned to the chart widget
to lookup its "main" / source data array for now.
Enable auto-yranging on overlayed plotitems by enabling on its viewbox
and, for now, assign an ad-hoc `._maxmin()` since the widget version
from this commit has no easy way to know which internal array to use. If
an FSP (`dolla_vlm` in this case) is overlayed on an existing chart
without also having a full widget (which it doesn't in this case since
we're using an overlayed `PlotItem` instead of a full `ChartPlotWidget`)
we need some way to define the `.maxmin()` for the overlayed
data/graphics. This likely means the `.maxmin()` will eventually get
factored into wtv lowlevel `ArrayScene` API mentioned above.
Calculations for auto-yaxis ranging are both signalled and drawn by our
`ViewBox` so we might as well factor this handler down from the chart
widget into the view type. This makes it much easier (and clearer) that
`PlotItem` and other lower level overlayed `GraphicsObject`s can utilize
*size-to-data* style view modes easily without widget-level coupling.
Further changes,
- support a `._maxmin()` internal callable (temporarily) for allowing
a viewed graphics object to define it's own y-range max/min calc.
- add `._static_range` var (though usage hasn't been moved from the
chart plot widget yet
- drop y-axis click-drag zoom instead reverting back to default viewbox
behaviour with wheel-zoom and click-drag-pan on the axis.
This brings in the WIP components developed as part of
https://github.com/pyqtgraph/pyqtgraph/pull/2162.
Most of the history can be understood from that issue and effort but the
TL;DR is,
- add an event handler wrapper system which can be used to
wrap `ViewBox` methods such that multiple views can be overlayed and
a single event stream broadcast from one "main" view to others which
are overlaid with it.
- add in 2 relay `Signal` attrs to our `ViewBox` subtype (`Chartview`)
to accomplish per event `MouseEvent.emit()` style broadcasting to
multiple (sub-)views.
- Add a `PlotItemOverlay` api which does all the work of overlaying the
actual chart graphics and arranging multiple-axes without collision as
well as tying together all the event/signalling so that only a single
"focussed" view relays to all overlays.
Each `pyqtgraph.PlotItem` uses a `QGraphicsGridLayout` to place its view
box, axes and titles in the traditional graph format. With multiple
overlayed charts we need those axes to not collide with one another and
further allow for an "order" specified by the user. We accomplish this
by adding `QGraphicsLinearLayout`s for each axis "side": `{'left',
'right', 'top', 'bottom'}` such that plot axes can be inserted and moved
easily without having to constantly re-stack/order a grid layout (which
does not have a linked-list style API).
The new type is called `ComposedGridLayout` for now and offers a basic
list-like API with `.insert()`, `.append()`, and eventually a dict-style
`.pop()`. We probably want to also eventually offer a `.focus()` to
allow user switching of *which* main graphics object (aka chart) is "in
use".
This syncs with a dev branch in our `pyqtgraph` fork:
https://github.com/pyqtgraph/pyqtgraph/pull/2162
The main idea is to get mult-yaxis display fully functional with
multiple view boxes running in a "relay mode" where some focussed view
relays signals to overlaid views which may have independent axes. This
preps us for both displaying independent codomain-set FSP output as well
as so called "aggregate" feeds of multiple fins underlyings on the same
chart (eg. options and futures over top of ETFs and underlying stocks).
The eventual desired UX is to support fast switching of instruments for
order mode trading without requiring entirely separate charts as well as
simple real-time anal of associated instruments.
The first effort here is to display vlm and $_vlm alongside each other
as a built-in FSP subchart.