In the case where the last-datum-graphic hasn't been created yet, simply
return a `None` from this method so the caller can choose to ignore the
output. Further, drop `.px_width()` since it makes more sense defined on
`Viz` as well as the previously commented `BarItems.x_uppx()` method.
Also, don't round the `.x_uppx()` output since it can then be used when
< 1 to do x-domain scaling during high zoom usage.
Factor some common methods into the parent type:
- `.x_uppx()` for reading the horizontal units-per-pixel.
- `.x_last()` for reading the "closest to y-axis" last datum coordinate
for zooming "around" during mouse interaction.
- `.px_width()` for computing the max width of any curve in view in
pixels.
Adjust all previous derived `pg.GraphicsObject` child types to now
inherit from this new parent and in particular enable proper `.x_uppx()`
support to `BarItems`.
Ensure `.boundingRect()` calcs and `.draw_last_datum()` do geo-sizing
based on source data instead of presuming some `1.0` unit steps in some
spots; we need this to support an epoch index as is needed for overlays.
Further, clean out a bunch of old bounding rect calc code and add some
commented code for trying out `QRectF.united()` on the path + last datum
curve segment. Turns out that approach is slower as per eyeballing the
added profiler points.
Instead of using a bunch of internal logic to modify low level paint-able
elements create a `Curve` lineage that allows for graphics "style"
customization via a small set of public methods:
- `Curve.declare_paintables()` to allow setup of state/elements to be
drawn in later methods.
- `.sub_paint()` to allow painting additional elements along with the
defaults.
- `.sub_br()` to customize the `.boundingRect()` dimensions.
- `.draw_last_datum()` which is expected to produce the paintable
elements which will show the last datum in view.
Introduce the new sub-types and load as necessary in
`ChartPlotWidget.draw_curve()`:
- `FlattenedOHLC`
- `StepCurve`
Reimplement all `.draw_last()` routines as a `Curve` method
and call it the same way from `Flow.update_graphics()`
We're doing this in `Flow.update_graphics()` atm and probably are going
to in general want custom graphics objects for all the diff curve / path
types. The new flows work seems to fix the bounding rect width calcs to
not require the ad-hoc extra `+ 1` in the step mode case; before it was
always a bit hacky anyway. This also tries to add a more correct
bounding rect adjustment for the `._last_line` segment.
A bit hacky to get all graphics types working but this is hopefully the
first step toward moving all the generic update logic into `Renderer`
types which can be themselves managed more compactly and cached per
uppx-m4 level.
Starts a module for grouping together all our `QPainterpath` related
generation and data format operations for creation of fast curve
graphics. To start, drops `FastAppendCurve.downsample()` and moves
it to a new `._pathops.xy_downsample()`.
Mostly just dropping old commented code for "step mode" format
generation. Always slice the tail part of the input data and move to the
new `ms_threshold` in the `pg` profiler'
This took longer then i care to admit XD but it definitely adds a huge
speedup and with only a few outstanding correctness bugs:
- panning from left to right causes strange trailing artifacts in the
flows fsp (vlm) sub-plot but only when some data is off-screen on the
left but doesn't appear to be an issue if we keep the `._set_yrange()`
handler hooked up to the `.sigXRangeChanged` signal (but we aren't
going to because this makes panning way slower). i've got a feeling
this is a bug todo with the device coordinate cache stuff and we may
need to report to Qt core?
- factoring out the step curve logic from
`FastAppendCurve.update_from_array()` (un)fortunately required some
logic branch uncoupling but also meant we needed special input controls
to avoid things like redraws and curve appends for special cases,
this will hopefully all be better rectified in code when the core of
this method is moved into a renderer type/implementation.
- the `tina_vwap` fsp curve now somehow causes hangs when doing erratic
scrolling on downsampled graphics data. i have no idea why or how but
disabling it makes the issue go away (ui will literally just freeze
and gobble CPU on a `.paint()` call until you ctrl-c the hell out of
it). my guess is that something in the logic for standard line curves
and appends on large data sets is the issue?
Code related changes/hacks:
- drop use of `step_path_arrays_from_1d()`, it was always a bit hacky
(being based on `pyqtgraph` internals) and was generally hard to
understand since it returns 1d data instead of the more expected (N,2)
array of "step levels"; instead this is now implemented (uglily) in
the `Flow.update_graphics()` block for step curves (which will
obviously get cleaned up and factored elsewhere).
- add a bunch of new flags to the update method on the fast append
curve: `draw_last: bool`, `slice_to_head: int`, `do_append: bool`,
`should_redraw: bool` which are all controls to aid with previously
mentioned issues specific to getting step curve updates working
correctly.
- add a ton of commented tinkering related code (that we may end up
using) to both the flow and append curve methods that was written as
part of the effort to get this all working.
- implement all step curve updating inline in `Flow.update_graphics()`
including prepend and append logic for pre-graphics incremental step
data maintenance and in-view slicing as well as "last step" graphics
updating.
Obviously clean up commits coming stat B)
More or less this improves update latency like mad. Only draw data in
view and avoid full path regen as much as possible within a given
(down)sampling setting. We now support append path updates with in-view
data and the *SPECIAL CAVEAT* is that we avoid redrawing the whole curve
**only when** we calc an `append_length <= 1` **even if the view range
changed**. XXX: this should change in the future probably such that the
caller graphics update code can pass a flag which says whether or not to
do a full redraw based on it knowing where it's an interaction based
view-range change or a flow update change which doesn't require a full
path re-render.
The pg profiler seems to have trouble with early `return`s in function
calls (likely muckery with the GC/`.__delete__()`) so let's just try
to avoid it for now until we either fix it (probably by implementing as
a ctx mngr) or use diff one.
As with the `BarItems` graphics, this makes it possible to pass in a "in
view" range of array data that can be *only* rendered improving
performance for large(r) data sets. All the other normal behaviour is
kept (i.e a persistent, (pre/ap)pendable path can still be maintained)
if a ``view_range`` is not provided.
Further updates,
- drop the `.should_ds_or_redraw()` and `.maybe_downsample()` predicates
instead moving all that logic inside `.update_from_array()`.
- disable the "cache flipping", which doesn't seem to be needed to avoid
artifacts any more?
- handle all redraw/dowsampling logic in `.update_from_array()`.
- even more profiling.
- drop path `.reserve()` stuff until we better figure out how it's
supposed to work.
Build out an interface that makes it super easy to downsample curves
using the m4 algorithm while keeping our incremental `QPainterPath`
update feature. A lot of hard work and tinkering went into getting this
working all in-thread correctly and there are quite a few details..
New interface methods:
- `.x_uppx()` which returns the x-axis "view units per pixel"
- `.px_width()` which returns the total (rounded) x-axis pixels spanned
by the curve in view.
- `.should_ds_or_redraw()` a predicate which checks internal state to
see if either downsampling of the curve should take place, or the curve
should have all downsampling removed and be redrawn with source array
data.
- `.downsample()` the actual ds processing routine which delegates into
the m4 algo impl.
- `.maybe_downsample()` a simple update method which can be called by
the view box when the user changes the zoom level.
Implementation details/changes:
- make `.update_from_array()` check for downsample (or revert to source
aka de-downsample) conditions exist and then downsample and re-draw
path graphics accordingly.
- in order to even further speed up path appends (since our main
bottleneck is measured to be `QPainter.drawPath()` calls with large
paths which are frequently updates), add a secondary path `.fast_path`
which is the path that is real-time updates by incremental appends and
which is painted separately for speed in `.pain()`.
- drop all the `QPolyLine` stuff since it was tested to be much slower
in general and especially so for append-updates.
- stop disabling the cache settings on updates since it doesn't seem to
be required any more?
- more move toward deprecating and removing all lingering interface
requirements from `pg.PlotCurveItem` (like `.xData`/`.yData`).
- adjust `.paint()` and `.boundingRect()` to compensate for the new
`.fast_path`
- add a butt-load of profiling B)