Since some positions obviously expire and thus shouldn't continually
exist inside a `pps.toml` add naive support for tracking and discarding
expired contracts:
- add `Transaction.expiry: Optional[pendulum.datetime]`.
- add `Position.expiry: Optional[pendulum.datetime]` which can be parsed
from a transaction ledger.
- only write pps with a non-none expiry to the `pps.toml`
- change `Position.avg_price` -> `.be_price` (be is "breakeven")
since it's a much less ambiguous name.
- change `load_pps_from_legder()` to *not* call `dump_active()` since
for the only use case it ends up getting called later anyway.
We can probably make this better (and with less file sys accesses) later
such that we keep a consistent pps state in mem and only write async
maybe from another side-task?
What a nightmare this was.. main holdup was that cost (commissions)
reports are fired independent from "fills" so you can't really emit
a proper full position update until they both arrive.
Deatz:
- move `push_tradesies()` and relay loop in `deliver_trade_events()` to
the new py3.10 `match:` syntax B)
- subscribe for, and handle `CommissionReport` events from `ib_insync`
and repack as a `cost` event type.
- handle cons with no primary/listing exchange (like futes) in
`update_ledger_from_api_trades()` by falling back to the plain
'exchange' field.
- drop reverse fqsn lookup from ib positions map; just use contract
lookup for api trade logs since we're already connected..
- make validation in `update_and_audit()` optional via flag.
- pass in the accounts def, ib pp msg table and the proxies table to the
trade event relay task-loop.
- add `emit_pp_update()` too encapsulate a full api trade entry
incremental update which calls into the `piker.pp` apis to,
- update the ledger
- update the pps.toml
- generate a new `BrokerdPosition` msg to send to the ems
- adjust trades relay loop to only emit pp updates when a cost report
arrives for the fill/execution by maintaining a small table per exec
id.
I don't want to rant too much any more since it's pretty clear `ib` has
either zero concern for its (api) user's or a severely terrible data
management team and/or general inter-team coordination system, but this
patch more or less hacks the flex report records to be similar enough to
API "execution" / "fill" records such that they can be similarly
normalized and stored as well as processed for position calculations..
Dirty deats,
- use the `IB.fills()` method for pulling current session trade events
since it's both recommended in the docs and does seem to capture
more extensive meta-data.
- add a `update_ledger_from_api()` helper which does all the insane work
of making sure api trade entries are usable both within piker's global
fqsn system but also compatible with incremental updates of positions
computed from trade ledgers derived from ib's "flex reports".
- add "auditting" of `ib`'s reported positioning API messages by
comparison with piker's new "traders first" breakeven price style and
complain via logging on mismatches.
- handle buy vs. sell arithmetic (via a +ve or -ve multiplier) to make
"size" arithmetic work for API trade entries..
- draft out options contract transaction parsing but skip in pps
generation for now.
- always use the "execution id" as ledger keys both in flex and api
trade processing.
- for whatever weird reason `ib_insync` doesn't include the so called
"primary exchange" in contracts reported in fill events, so do manual
contract lookups in such cases such that pps entries can be placed
in the right fqsn section...
Still ToDo:
- incremental update on trade clears / position updates
- pps audit from ledger depending on user config?
This makes a few major changes but mostly is centered around including
transaction (aka trade-clear) costs in the avg breakeven price
calculation.
TL;DR:
- rename `TradeRecord` -> `Transaction`.
- make `Position.fills` a `dict[str, float]` which holds each clear's
cost value.
- change `Transaction.symkey` -> `.bsuid` for "backend symbol unique id".
- drop `brokername: str` arg to `update_pps()`
- rename `._split_active()` -> `dump_active()` and use input keys
verbatim in output map.
- in `update_pps_conf()` always incrementally update from trade records
even when no `pps.toml` exists yet since it may be both the case that
the ledger needs loading **and** the caller is handing new records not
yet in the ledger.
Begins the position tracking incremental update API which supports both
constructing a `pps.toml` both from trade ledgers as well diff-oriented
incremental update from an existing config assumed to be previously
generated from some prior ledger.
New set of routines includes:
- `_split_active()` a helper to split a position table into the active
and closed positions (aka pps of size 0) for determining entry updates
in the `pps.toml`.
- `update_pps_conf()` to maybe load a `pps.toml` and update it from
an input trades ledger including necessary (de)serialization to and
from `Position` object form(s).
- `load_pps_from_ledger()` a ledger parser-loader which constructs
a table of pps strictly from the broker-account ledger data without
any consideration for any existing pps file.
Each "entry" in `pps.toml` also contains a `fills: list` attr (name may
change) which references the set of trade records which make up its
state since the last net-zero position in the instrument.
Add a `TradeRecord` struct which holds the minimal field set to build
out position entries. Add `.update_pps()` to convert a set of records
into LIFO position entries, optionally allowing for an update to some
existing pp input set. Add `load_pps_from_ledger()` which does a full
ledger extraction to pp objects, ready for writing a `pps.toml`.
Since "flex reports" are only available for the current session's trades
the day after, this adds support for also collecting trade execution
records for the current session and writing them to the equivalent
ledger file.
Summary:
- add `trades_to_records()` to handle parsing both flex and API event
objects into a common record form.
- add `norm_trade_records()` to handle converting ledger entries into
`TradeRecord` types from the new `piker.pps` mod (coming in next
commit).
Start a generic "position related" util mod and bring in the `Position`
type from the allocator , convert it to a `msgspec.Struct` and add
a `.lifo_update()` method. Implement a WIP pp parser from a trades
ledger and use the new lifo method to gather position entries.
Add `ChartPlotWidget._on_screen: bool` which allows detecting for the
first state where there is y-range-able flow data loaded and able to be
drawn. Check for this flag to be set in `.maxmin()` such that until the
historical data is loaded `.default_view()` will be called to ensure
that a blank view is never shown: race with the UI starting versus the
data layer loading flow graphics can have this outcome.
This should hopefully make teardown more reliable and includes better
logic to fail over to a hard kill path after a 3 second timeout waiting
for the instance to complete using the `docker-py` wait API. Also
generalize the supervisor teardown loop by allowing the container config
endpoint to return 2 msgs to expect:
- a startup message that can be read from the container's internal
process logging that indicates it is fully up and ready.
- a teardown msg that can be polled for that indicates the container has
gracefully terminated after a cancellation request which is passed to
our container wrappers `.cancel()` method.
Make the marketstore config endpoint return the 2 messages we previously
had hard coded and use this new api.
This was introduced in #302 but after thorough testing was clear to be
not working XD. Adjust the display loop to update the last graphics
segment on both the OHLC and vlm charts (as well as all deriving fsp
flows) whenever the uppx >= 1 and there is no current path append
taking place (since more datums are needed to span an x-pixel in view).
Summary of tweaks:
- move vlm chart update code to be at the end of the cycle routine and
have that block include the tests for a "interpolated last datum in
view" line.
- make `do_append: bool` compare with a floor of the uppx value (i.e.
appends should happen when we're just fractionally over a pixel of
x units).
- never update the "volume" chart.
Allows for optionally updating a "downsampled" graphics type which is
currently necessary in the `BarItems` -> `FlattenedOHLC` curve switching
case; we don't want to be needlessly redrawing the `Flow.graphics`
object (which will be an OHLC curve) when in flattened curve mode.
Further add a `only_last_uppx: bool` flag to `.draw_last()` to allow
forcing a "last uppx's worth of data max/min" style interpolating line
as needed.
The single-file module was getting way out of hand size-wise with the
new flex report parsing stuff so this starts the process of breaking
things up into smaller modules oriented around trade, data, and ledger
related endpoints.
Add support for backends to declare sub-modules to enable in
a `__enable_modules__: list[str]` module var which is parsed by the
daemon spawning code passed to `tractor`'s `enable_modules: list[str]`
input.
When using m4, we downsample to the max and min of each
pixel-column's-worth of data thus preserving range / dispersion details
whilst not drawing more graphics then can be displayed by the available
amount of horizontal pixels.
Take and apply this exact same concept to the "last datum" graphics
elements for any `Flow` that is reported as being in a downsampled
state:
- take the xy output from the `Curve.draw_last_datum()`,
- slice out all data that fits in the last pixel's worth of x-range
by using the uppx,
- compute the highest and lowest value from that data,
- draw a singe line segment which spans this yrange thus creating
a simple vertical set of pixels which are "filled in" and show the
entire y-range for the most recent data "contained with that pixel".
Instead of using a bunch of internal logic to modify low level paint-able
elements create a `Curve` lineage that allows for graphics "style"
customization via a small set of public methods:
- `Curve.declare_paintables()` to allow setup of state/elements to be
drawn in later methods.
- `.sub_paint()` to allow painting additional elements along with the
defaults.
- `.sub_br()` to customize the `.boundingRect()` dimensions.
- `.draw_last_datum()` which is expected to produce the paintable
elements which will show the last datum in view.
Introduce the new sub-types and load as necessary in
`ChartPlotWidget.draw_curve()`:
- `FlattenedOHLC`
- `StepCurve`
Reimplement all `.draw_last()` routines as a `Curve` method
and call it the same way from `Flow.update_graphics()`
The basic logic is now this:
- when zooming out, uppx (units per pixel in x) can be >= 1
- if the uppx is `n` then the next pixel in view becomes occupied by
a new datum-x-coordinate-value when the diff between the last
datum step (since the last such update) is greater then the
current uppx -> `datums_diff >= n`
- if we're less then some constant uppx we just always update (because
it's not costly enough and we're not downsampling.
More or less this just avoids unnecessary real-time updates to flow
graphics until they would actually be noticeable via the next pixel
column on screen.
This was a bit of a nightmare to figure out but, it seems that the
coordinate caching system will really be a dick (like the nickname for
richard for you serious types) about leaving stale graphics if we don't
reset the cache on downsample full-redraw updates...Sooo, instead we do
this manual reset to avoid such artifacts and consequently (for now)
return a `reset: bool` flag in the return tuple from `Renderer.render()`
to indicate as such.
Some further shite:
- move the step mode `.draw_last()` equivalent graphics updates down
with the rest..
- drop some superfluous `should_redraw` logic from
`Renderer.render()` and compound it in the full path redraw block.
Adds a new pre-graphics data-format callback incremental update api to
our `Renderer`. `Renderer` instance can now overload these custom routines:
- `.update_xy()` a routine which accepts the latest [pre/a]pended data
sliced out from shm and returns it in a format suitable to store in
the optional `.[x/y]_data` arrays.
- `.allocate_xy()` which initially does the work of pre-allocating the
`.[x/y]_data` arrays based on the source shm sizing such that new
data can be filled in (to memory).
- `._xy_[first/last]: int` attrs to track index diffs between src shm
and the xy format data updates.
Implement the step curve data format with 3 super simple routines:
- `.allocate_xy()` -> `._pathops.to_step_format()`
- `.update_xy()` -> `._flows.update_step_xy()`
- `.format_xy()` -> `._flows.step_to_xy()`
Further, adjust `._pathops.gen_ohlc_qpath()` to adhere to the new
call signature.
We're doing this in `Flow.update_graphics()` atm and probably are going
to in general want custom graphics objects for all the diff curve / path
types. The new flows work seems to fix the bounding rect width calcs to
not require the ad-hoc extra `+ 1` in the step mode case; before it was
always a bit hacky anyway. This also tries to add a more correct
bounding rect adjustment for the `._last_line` segment.
Finally this gets us much closer to a generic incremental update system
for graphics wherein the input array diffing, pre-graphical format data
processing, downsampler activation and incremental update and storage of
any of these data flow stages can be managed in one modular sub-system
:surfer_boi:.
Dirty deatz:
- reorg and move all path logic into `Renderer.render()` and have it
take in pretty much the same flags as the old
`FastAppendCurve.update_from_array()` and instead storing all update
state vars (even copies of the downsampler related ones) on the
renderer instance:
- new state vars: `._last_uppx, ._in_ds, ._vr, ._avr`
- `.render()` input bools: `new_sample_rate, should_redraw,
should_ds, showing_src_data`
- add a hack-around for passing in incremental update data (for now)
via a `input_data: tuple` of numpy arrays
- a default `uppx: float = 1`
- add new render interface attrs:
- `.format_xy()` which takes in the source data array and produces out
x, y arrays (and maybe a `connect` array) that can be passed to
`.draw_path()` (the default for this is just to slice out the index
and `array_key: str` columns from the input struct array),
- `.draw_path()` which takes in the x, y, connect arrays and generates
a `QPainterPath`
- `.fast_path`, for "appendable" updates like there was on the fast
append curve
- move redraw (aka `.clear()` calls) into `.draw_path()` and trigger
via `redraw: bool` flag.
- our graphics objects no longer set their own `.path` state, it's done
by the `Flow.update_graphics()` method using output from
`Renderer.render()` (and it's state if necessary)
A bit hacky to get all graphics types working but this is hopefully the
first step toward moving all the generic update logic into `Renderer`
types which can be themselves managed more compactly and cached per
uppx-m4 level.
Which is basically just "deleting" rows from a column series.
You can only use the trim command from the `.cmd` cli and only with a so
called `LocalClient` currently; it's also sketchy af and caused
a machine to hang due to mem usage..
Ideally we can patch in this functionality for use by the rpc api
and have it not hang like this XD
Pertains to https://github.com/alpacahq/marketstore/issues/264
Yet another path ops routine which converts a 1d array into a data
format suitable for rendering a "step curve" graphics path (aka a "bar
graph" but implemented as a continuous line).
Also, factor the `BarItems` rendering logic (which determines whether to
render the literal bars lines or a downsampled curve) into a routine
`render_baritems()` until we figure out the right abstraction layer for
it.
Starts a module for grouping together all our `QPainterpath` related
generation and data format operations for creation of fast curve
graphics. To start, drops `FastAppendCurve.downsample()` and moves
it to a new `._pathops.xy_downsample()`.
Mostly just dropping old commented code for "step mode" format
generation. Always slice the tail part of the input data and move to the
new `ms_threshold` in the `pg` profiler'
Relates to the bug discovered in #310, this should avoid out-of-order
msgs which do not have a `.reqid` set to be error logged to console.
Further, add `pformat()` to kraken logging of ems msging.