No real-time update support (yet) but this is the first draft at writing
trades ledgers and `pps.toml` entries for the kraken backend.
Deatz:
- drop `pack_positions()`, no longer used.
- use `piker.pp` apis to both write a trades ledger file and update the
`pps.toml` inside the `trades_dialogue()` endpoint startup.
- drop the weird paper engine swap over if auth can't be done, we should
be doing something with messaging in the ems over this..
- more web API error response raising.
- pass the `pp.Transaction` set loaded from ledger into
`process_trade_msgs()` do avoid duplicate sends of already collected
trades msgs.
- add `norm_trade_records()` public endpoing (used by `piker.pp` api)
and `update_ledger()` helper.
- rejig `process_trade_msgs()` to drop the weird `try:` assertion block
and skip already-recorded-in-ledger trade msgs as well as yield *each*
trade instead of sub-sequences.
This was just implemented totally wrong but somehow worked XD
The idea was to include all trades that contribute to ongoing position
size since the last time the position was "net zero", i.e. no position
in the asset. Adjust arithmetic to *subtract* from the current size
until a zero size condition is met and then keep all those clears as
part of the "current state" clears table.
Additionally this fixes another bug where the positions freshly loaded
from a ledger *were not* being merged with the current `pps.toml` state.
Gah, was a remaining bug where if you tried to update the pps state with
both new trades and from the ledger you'd do a double add of
transactions that were cleared during a `update_pps()` loop. Instead now
keep all clears in tact until ready to serialize to the `pps.toml` file
in which cases we call a new method `Position.minimize_clears()` which
does the work of only keep clears since the last net-zero size.
Re-implement `update_pps_conf()` update logic as a single pass loop
which does expiry and size checking for closed pps all in one pass thus
allowing us to drop `dump_active()` which was kinda redundant anyway..
Before we weren't emitting pp msgs when a position went back to "net
zero" (aka the size is zero) nor when a new one was opened (wasn't
previously loaded from the `pps.toml`). This reworks a bunch of the
incremental update logic as well as ports to the changes in the
`piker.pp` module:
- rename a few of the normalizing helpers to be more explicit.
- drop calling `pp.get_pps()` in the trades dialog task and instead
create msgs iteratively, per account, by iterating through collected
position and API trade records and calling instead
`pp.update_pps_conf()`.
- always from-ledger-update both positions reported from ib's pp sys and
session api trades detected on ems-trade-dialog startup.
- `update_ledger_from_api_trades()` now does **just** that: only updates
the trades ledger and returns the transaction set.
- `update_and_audit_msgs()` now only the input list of msgs and properly
generates new msgs for newly created positions that weren't previously
loaded from the `pps.toml`.
- use `tomli` package for reading since it's the fastest pure python
reader available apparently.
- add new fields to each pp's clears table: price, size, dt
- make `load_pps_from_toml()`'s `reload_records` a dict that can be
passed in by the caller and is verbatim used to re-read a ledger and
filter to the specified symbol set to build out fresh pp objects.
- add a `update_from_ledger: bool` flag to `load_pps_from_toml()`
to allow forcing a full backend ledger read.
- if a set of trades records is passed into `update_pps_conf()` parse
out the meta data required to cause a ledger reload as per 2 bullets
above.
- return active and closed pps in separate by-account maps from
`update_pps_conf()`.
- drop the `key_by` kwarg.
This makes it possible to refresh a single fqsn-position in one's
`pps.toml` by simply deleting the file entry, in which case, if there is
new trade records passed to `load_pps_from_toml()` via the new
`reload_records` kwarg, then the backend ledger entries matching that
symbol will be filtered and used to recompute a fresh position.
This turns out to be super handy when you have crashes that prevent
a `pps.toml` entry from being updated correctly but where the ledger
does have all the data necessary to calculate a fresh correct entry.
Since some positions obviously expire and thus shouldn't continually
exist inside a `pps.toml` add naive support for tracking and discarding
expired contracts:
- add `Transaction.expiry: Optional[pendulum.datetime]`.
- add `Position.expiry: Optional[pendulum.datetime]` which can be parsed
from a transaction ledger.
- only write pps with a non-none expiry to the `pps.toml`
- change `Position.avg_price` -> `.be_price` (be is "breakeven")
since it's a much less ambiguous name.
- change `load_pps_from_legder()` to *not* call `dump_active()` since
for the only use case it ends up getting called later anyway.