Since we now fully support interchange-as-dict-msg, use the msg codec
API and drop manual `Asset` unpacking. Also, wrap `get_symcache()` in
a `pdbp` crash handler block for now B)
As part of loading the cache we can now fill the asset sub-tables:
`.mktmaps` and `.assets` with their deserialized struct instances!
In theory this might be possible for the backend defined `Pair` structs
as well but we need to figure out probably an endpoint to offer
the conversion?
Also, add a `SymbologyCache.search()` which allows sync code to scan the
existing (known via cache) symbol set just like how async code can use the
(much slower) `open_symbol_search()` ctx endpoint 💥
For starters rename the cache type to `SymbologyCache` and fill out its
interface to include an (async) `.reload()` which can be used to populate
the in-mem asset-table sets such that any tractor-runtime task can
actually directly call it. Use a symcache file name schema of
`_cache/<backend>.symcache.toml`.
Dirtier deatz:
- make `.open_symcache()` a `@cm` such that it can be used from sync code
and will actually call `trio.run()` in the case where it needs to do a
full (re)load; also don't write on exit only on reloads.
- add `.get_symcache()` a simple non-ctx-mngr reader which again can
mostly be called willy-nilly from sync code without the full runtime
being up (but likely will only work if symcache files already exist
for the backend).
New mod is `.data._symcache` and it needs backend clients to declare
`Client.get_assets()` and `.get_mkt_pairs()` to generate the cache files
which now go in the config dir under `_cache/`.
Since it may be handy to get the latest ticks first, add a `reverse:
bool` to `iterticks()` and add some cleaner logic and a proper doc
string to `frame_ticks()`.
Also adjust sizing such that the history buffer will backfill the last
six years by default (in 1m OHLC) and the hft buffer will do only 3 days
worth. Also ensure the fsp layer passes the src shm's buffer size when
allocating since the size is now required by allocators in the shm apis.
Avoid unnecessarily re-rendering the wrong (1min OHLC history) chart
and/or other such charts with update tasks listening to the sampler
stream. Instead only redraw in tasks which are updating vizs which match
the actual details of the backfill event.
We can probably also eventually match against a range tuple (emitted in
the msg) and then have the task further only update the formatter layer
unless the range is actually in view?
For now, just detect and fill in gaps (via fresh backend queries)
*in the shm buffer* but eventually i'm pretty sure we can just write
these direct to the parquet file as well.
Use the new `.data._timeseries.detect_null_time_gap()` to find and fill
in the `ShmArray` index range, re-check it and enter a prompt if it
didn't totally fill.
Also,
- do a massive cleanup and removal of all unused/commented code.
- drop the duplicate frames tracking, don't think we need it after
removing multi-frame concurrent queries.
- change backfill loop variable `end_dt` -> `last_start_dt` which is
more semantically correct.
- fix logic to backfill any missing sub-sequence portion for any frame
query that overruns the shm buffer prependable space by detecting
the available rows left to insert and only push those.
- add a new `shm_push_in_between()` helper to match.
It took a little while (and a lot of commenting out of old no longer
needed code) but, this gets tsdb (from parquet file) loading *before*
final backfilling from the most recent history frame until the most
recent tsdb time stamp!
More or less all the convoluted concurrency shit we had for coping with
`marketstore` IPC junk is no longer needed, particularly all the query
size limits and accompanying load loops.. The recent frame loading
technique/order *has* now changed though since we'd like to show charts
asap once tsdb history loads.
The new load sequence is as follows:
- load mr (most recent) frame from backend.
- load existing history (one shot) from the "tsdb" aka parquet files
with `polars`.
- backfill the gap part from the mr frame back to the tsdb start
incrementally by making (hacky) `ShmArray.push(start=<blah>)` calls
and *not* updating the `._first.value` while doing it XD
Dirtier deatz:
- make `tsdb_backfill()` run per timeframe in a separate task.
- drop all the loop through timeframes and insert `dts_per_tf` crap.
- only spawn a subtask for the `start_backfill()` call which in turn
only does the gap backfilling as mentioned above.
- mask out all the code related to being limited to certain query sizes
(over gRPC) as was restricted by marketstore.. not gonna go through
what all of that was since it's probably getting deleted in a follow
up commit.
- buncha off-by-one tweaks to do with backfilling the gap from mr frame
to tsdb start.. mostly tinkered it to get it all right but seems to be
working correctly B)
- still use the `broadcast_all()` msg stuff when doing the gap backfill
though don't have it really working yet on the UI side (since
previously we were relying on the shm first/last values.. so this will
be "coming soon" :)
It was a concurrency-hack mess somewhat due to all sorts of limitations
imposed by marketstore (query size limits, strange datetime/timestamp
errors, slow table loads for large queries..) and we can drastically
simplify. There's still some issues with getting new backfills (not yet
in storage) correctly prepended: there's sometimes little gaps due to shm
races when reading history indexing vs. when the live-feed startup
finishes.
We generally need tests for all this and likely a better rework of the
feed layer's init such that we're showing history in chart afap instead
of waiting on backfills or the live feed to come up.
Much more to come B)
Turns out no backend (including kraken) requires it and really this
kinda of measure should be implemented and recorded from our fsp layer
instead of (hackily) sometimes expecting it to be in "source data".
Use `def_iohlcv_fields` for a name and instead of copying and inserting
the index field pop it for the non-index version. Drop creating
`np.dtype()` instances since `numpy`'s apis accept both input forms so
this is simpler on our end.
To kick off our (tsdb) storage backends this adds our first implementing
a new `Storage(Protocol)` client interface. Going foward, the top level
`.storage` pkg-module will now expose backend agnostic APIs and helpers
whilst specific backend implementations will adhere to that middle-ware
layer.
Deats:
- add `.storage.marketstore.Storage` as the first client implementation,
moving all needed (import) dependencies out from
`.service.marketstore` as well as `.ohlc_key_map` and `get_client()`.
- move root `conf.toml` loading from `.data.history` into
`.storage.__init__.open_storage_client()` which now takes in a `name:
str` and does all the work of loading the correct backend module, its
config, and determining if a service-instance can be contacted and
a client loaded; in the case where this fails we raise a new
`StorageConnectionError`.
- add a new `.storage.get_storagemod()` just like we have for brokers.
- make `open_storage_client()` also return the backend module such that
the history-data layer can make backend specific calls as needed (eg.
ohlc_key_map).
- fall back to a basic non-tsdb backfill when `open_storage_client()`
raises the new connection error.
The plan is to offer multiple tsdb and other storage backends (for
a variety of use cases) and expose them similarly to how we do for
broker and data providers B)
Including changing to `LinkedSplits.mkt: MktPair` and adding an explicit
setter method for setting it and being sure that nothing breaks
in the display system init!
For this commit we leave in warning access to `LinkedSplits.symbol` but
will remove in following commit.
Stash it for now in the (now mutable by default) `.shm_write_opts` and
have the new `Flume._has_vlm: bool` (only set to false internally by
feed layer) which can be read via new public `.has_vlm()` predicate.
Move out the old `.ui/_fsp` helper logic to this flume method.
`Flume.mkt.fqme` might not be exactly the same as the local
version now since we've had to add some hacks to certain backends
(cough ib) to handle `MktPair.src` not being set as an `Asset` (yet).
Since porting all backends to the new `FeedInit` + `MktPair` + `Asset`
style init, we can now just directly pass a `MktPair` instance to the
history endpoint(s) since it's always called *after* the live feed
`.stream_quotes()` ep B)
This has a lot of benefits including allowing brokerd backends to have
more flexible, pre-processed market endpoint meta-data that piker has
already validated; makes handling special cases in much more straight
forward as well such as forex pairs from legacy brokers XD
First pass changes all crypto backends to expect this new input, ib will
come next after handling said special cases..
Previously we were passing the `fqme: str` which isn't as extensive nor
were we able to pass `MktPair` direct to backend history manager-loading
routines (which should be able to rely on always receiving it since
currently `stream_quotes()` is always called first for setup).
This also starts a slight bit of configuration oriented tsdb info
loading (via a new `conf.toml`) such that a user can decide to host
their (marketstore) db on a remote host and our container spawning and
client code will do the right startup automatically based on the config.
|-> Related to this I've added some comments about doing storage
backend module loading which should get actually written out as part of
patches coming in #486 (or something related).
Don't allow overruns again in history context since it seems it was
never a problem?
We need to allow overruns during the async multi-broker context spawning
init bc some backends might take longer then others to setup (eg.
binance vs. kucoin) and result in some context (stream) being overrun by
the time we get to the `.open_stream()` phase. Ideally, we can maybe
adjust the concurrent setup to be more of a task-per-provider style to
avoid this in the future - which would also in theory result in
more-immediate per-provider setup in terms showing ready feeds asap.
Also, does a bunch of renaming from fqsn -> fqme and drops the lower
casing of input symbols instead expecting the caller to know what the
data backend it's requesting is going to be able to handle in terms of
symbology.
Since it's a bit weird having service specific implementation details
inside the general service `._daemon` mod, and since i'd mentioned
trying this re-org; let's do it B)
Requires enabling the new mod in both `pikerd` and `brokerd` and
obviously a bit more runtime-loading of the service modules in the
`brokerd` service eps to avoid import cycles.
Also moved `_setup_persistent_brokerd()` into the new mod since the
naming would place it there even though the implementation really
wouldn't (longer run) since we want to split up `.data.feed` layer
backend-invoked eps into a separate actor eventually from the "actual"
`brokerd` which will be the actor running **only** the trade control eps
(eg. trades_dialogue()` and friends).
`trio`'s internals don't allow for async generator (and thus by
consequence dynamic reset of async exit stacks containing `@acm`s)
interleaving since doing so corrupts the cancel-scope stack. See details
in:
- https://github.com/python-trio/trio/issues/638
- https://trio-util.readthedocs.io/en/latest/#trio_util.trio_async_generator
- `trio._core._run.MISNESTING_ADVICE`
We originally tried to address this using
`@trio_util.trio_async_generator` in backend streaming code but for
whatever reason stopped working recently (at least for me) and it's more
or less implemented the same way as this patch but with more layers and
an extra dep. I also don't want us to have to address this problem again
if/when that lib isn't able to keep up to date with wtv `trio` is
doing..
So instead this is a complete rewrite of the conc design of our
auto-reconnect ws API to move all reset logic and msg relay into a bg
task which is respawned on reset-requiring events: user spec-ed msg recv
latency, network errors, roaming events.
Deatz:
- drop all usage of `AsyncExitStack` and no longer require client code
to (hackily) call `NoBsWs._connect()` on msg latency conditions,
intead this is all done behind the scenes and the user can instead
pass in a `msg_recv_timeout: float`.
- massively simplify impl of `NoBsWs` and move all reset logic into a
new `_reconnect_forever()` task.
- offer use of `reset_after: int` a count value that determines how many
`msg_recv_timeout` events are allowed to occur before reconnecting the
entire ws from scratch again.
Since we have made `MktPair.bs_mktid` mean something else now, change
all the feed setup var names to instead be more representative of the
actual value: `bs_fqme: str` and use the new `MktPair.bs_fqme` where
necessary.
The legacy version was a `dict` of `dicts` vs. now we want to be handed
a `list[FeedInit]`; process both in a factored way.
Drop `FeedInit.bs_mktid` since it's already defined on `.mkt.bs_mktid`
and we don't really need it top level.
More or less a replacement for what @guilledk did with the initial
attempt at a "broker check" type script a while back except in this case
we're going to always run this validation routine and it now uses a new
`FeedInit` struct to ensure backends are delivering the right schema-ed
data during startup. Also allows us to stick deprecation warnings / and
or strict API compat errors all in one spot (at least for live feeds).
Factors out a bunch of `MktPair` related adapter-logic into a new
`.validate.valiate_backend()` which warns to the backend implementer via
log msgs all the problems outstanding. Ideally we do our backend module
endpoint scan-and-complain regarding missing feature support from here
as well (eg. search, broker/trade ctl, ledger processing, etc.).
In `.feed` and `._sampling` move to using the new
`tractor.Context.open_stream(allow_overruns: bool)` (cough, A BREAKING
CHANGE).
Also set `Flume.mkt` during construction in `.feed.open_feed()`.
Might as well try and flip it over to the new type; make appropriate
dict serialization changes in `.to_msg()`. Alias back to `.symbol:
Symbol` with a property.
Initial attempt at getting the sampling and shm layer to use the new mkt
info meta-data type. Draft out a potential `BackendInitMsg:
msgspec.Struct` for validating the init msg returned from the
`stream_quotes()` start value; obvs don't actually use it yet.
Add `MktPair` handling block for when a backend delivers
a `mkt_info`-field containing init msg. Adjust the original
`Symbol`-style `'symbol_info'` msg processing to do `Decimal` defaults
and convert to `MktPair` including slapping in a hacky `_atype: str`
field XD
General initial name changes to `bs_mktid` and `_fqme` throughout!
Not sure how i missed this (and left in handling of `list.remove()` and
it ever worked for that?) after the `samplerd` impl in 5ec1a72 but, this
adjusts the remove-broken-subscriber loop to catch the correct
`set.remove()` exception type on a missing (likely already removed)
subscription entry.
There's been way too many issues when trying to calculate this
dynamically from the input array, so just expect the caller to know what
it's doing and don't bother with ever hitting the error case of
calculating and incorrect value internally.
Not sure why this was ever allowed but, for slicing to the sample
*before* whatever target time stamp is passed in we should definitely
not return the prior index as for the slice start since that might
include a very large gap prior to whatever sample is scanned to have
the earliest matching time stamp.
This was essential to fixing overlay intersect points searching in our
``ui.view_mode`` machinery..
In situations where clients are (dynamically) subscribing *while*
broadcasts are starting to taking place we need to handle the
`set`-modified-during-iteration case. This scenario seems to be more
common during races on concurrent startup of multiple symbols. The
solution here is to use another set to take note of subscribers which
are successfully sent-to and then skipping them on re-try.
This also contains an attempt to exception-handle throttled stream
overruns caused by higher frequency feeds (like binance) pushing more
quotes then can be handled during (UI) client startup.
Not really sure there's much we can do besides dump Grpc stuff when we
detect an "error" `str` for the moment..
Either way leave a buncha complaints (como siempre) and do linting
fixups..