Apparently it will likely fix our `trio`-cancel-scopes-corrupted crash
when we try to let our `._web_bs.NoBsWs` do reconnect logic around
the asyn-generator implemented data-feed streaming routines in `binance`
and `kraken`. See the project docs for deatz; obvs we add the lib as
a dep.
Solve this by always scaling the y-range for the major/target curve
*before* the final overlay scaling loop; this implicitly always solve
the case where the major series is the only one in view.
Tidy up debug print formatting and add some loop-end demarcation comment
lines.
This is particularly more "good looking" when we boot with a pair that
doesn't have historical 1s OHLC and thus the fast chart is empty from
outset. In this case it's a lot nicer to be already zoomed to
a comfortable preset number of "datums in view" even when the history
isn't yet filled in.
Adjusts the chart display `Viz.default_view()` startup to explicitly
ensure this happens via the `do_min_bars=True` flag B)
Not sure how i missed this (and left in handling of `list.remove()` and
it ever worked for that?) after the `samplerd` impl in 5ec1a72 but, this
adjusts the remove-broken-subscriber loop to catch the correct
`set.remove()` exception type on a missing (likely already removed)
subscription entry.
For the purposes of eventually trying to resolve last-step indexing
synchronization (an intermittent but still existing) issue(s) that can
happen due to races during history frame query and shm writing during
startup. In fact, here we drop all `hist_viz` info queries from the main
display loop for now anticipating that this code will either be removed
or improved later.
Again, as per the signature change, never expect implicit time step
calcs from overlay processing/machinery code. Also, extend the debug
printing (yet again) to include better details around
"rescale-due-to-minor-range-out-of-view" cases and a detailed msg for
the transform/scaling calculation (inputs/outputs), particularly for the
cases when one of the curves has a lesser support.
As per the change to `slice_from_time()` this ensures this `Viz` always
passes its self-calculated time indexing step size to the time slicing
routine(s).
Further this contains a slight impl tweak to `.scalars_from_index()` to
slice the actual view range from `xref` to `Viz.ViewState.xrange[1]` and
then reading the corresponding `yref` from the first entry in that
array; this should be no slower in theory and makes way for further
caching of x-read-range to `ViewState` opportunities later.