There never was any underlying db bug, it was a hardcoded timeframe in
the column series write key.. Now we always assert a matching timeframe
in results.
Not only improves startup latency but also avoids a bug where the rt
buffer was being tsdb-history prepended *before* the backfilling of
recent data from the backend was complete resulting in our of order
frames in shm.
Factor the multi-sample-rate region UI connecting into a new helper
`link_views_with_region()` which reads in the shm buffer offsets from
the `Feed` and appropriately connects the fast and slow chart handlers
for the linear region graphics. Add detailed comments writeup for the
inter-sampling transform algebra.
If a history manager raises a `DataUnavailable` just assume the sample
rate isn't supported and that no shm prepends will be done. Further seed
the shm array in such cases as before from the 1m history's last datum.
Also, fix tsdb -> shm back-loading, cancelling tsdb queries when either
no array-data is returned or a frame is delivered which has a start time
no lesser then the least last retrieved. Use strict timeframes for every
`Storage` API call.
Turns out querying for a high freq timeframe (like 1sec) will still
return a lower freq timeframe (like 1Min) SMH, and no idea if it's the
server or the client's fault, so we have to explicitly check the sample
step size and discard lower freq series-results. Do this inside
`Storage.read_ohlcv()` and return an empty `dict` when the wrong time
step is detected from the query result.
Further enforcements,
- both `.load()` and `read_ohlcv()` now require an explicit `timeframe:
int` input to guarantee the time step of the output array.
- drop all calls `.load()` with non-timeframe specific input.
Our default sample periods are 60s (1m) for the history chart and 1s for
the fast chart. This patch adds concurrent loading of both (or more)
different sample period data sets using the existing loading code but
with new support for looping through a passed "timeframe" table which
points to each shm instance.
More detailed adjustments include:
- breaking the "basic" and tsdb loading into 2 new funcs:
`basic_backfill()` and `tsdb_backfill()` the latter of which is run
when the tsdb daemon is discovered.
- adjust the fast shm buffer to offset with one day's worth of 1s so
that only up to a day is backfilled as history in the fast chart.
- adjust bus task starting in `manage_history()` to deliver back the
offset indices for both fast and slow shms and set them on the
`Feed` object as `.izero_hist/rt: int` values:
- allows the chart-UI linked view region handlers to use the offsets
in the view-linking-transform math to index-align the history and
fast chart.
Allows keeping mutex state around data reset requests which (if more
then one are sent) can cause a throttling condition where ib's servers
will get slower and slower to conduct a reconnect. With this you can
have multiple ongoing contract requests without hitting that issue and
we can go back to having a nice 3s timeout on the history queries before
activating the hack.
When a network outage or data feed connection is reset often the
`ib_insync` task will hang until some kind of (internal?) timeout takes
place or, in some (worst) cases it never re-establishes (the event
stream) and thus the backend needs to restart or the live feed will
never resume..
In order to avoid this issue once and for all this patch implements an
additional (extremely simple) task that is started with the real-time
feed and simply waits for any market data reset events; when detected
restarts the `open_aio_quote_stream()` call in a loop using
a surrounding cancel scope.
Been meaning to implement this for ages and it's finally working!
Allows for easier restarts of certain `trio` side tasks without killing
the `asyncio`-side clients; support via flag.
Also fix a bug in `Client.bars()`: we need to return the duration on the
empty bars case..
This allows the history manager to know the decrement size for
`end_dt: datetime` on the next query if a no-data / gap case was
encountered; subtract this in `get_bars()` in such cases. Define the
expected `pendulum.Duration`s in the `.api._samplings` table.
Also add a bit of query latency profiling that we may use later to more
dynamically determine timeout driven data feed resets. Factor the `162`
error cases into a common exception handler block.
When we get a timeout or a `NoData` condition still return a tuple of
empty sequences instead of `None` from `Client.bars()`. Move the
sampling period-duration table to module level.
It doesn't seem to be any slower on our least throttled backend
(binance) and it removes a bunch of hard to get correct frame
re-ordering logic that i'm not sure really ever fully worked XD
Commented some issues we still need to resolve as well.
Manual tinker-testing demonstrated that triggering data resets
completely independent of the frame request gets more throughput and
further, that repeated requests (for the same frame after cancelling on
the `trio`-side) can yield duplicate frame responses. Re-work the
dual-task structure to instead have one task wait indefinitely on the
frame response (and thus not trigger duplicate frames) and the 2nd data
reset task poll for the first task to complete in a poll loop which
terminates when the frame arrives via an event.
Dirty deatz:
- make `get_bars()` take an optional timeout (which will eventually be
dynamically passed from the history mgmt machinery) and move request
logic inside a new `query()` closure meant to be spawned in a task
which sets an event on frame arrival, add data reset poll loop in the
main/parent task, deliver result on nursery completion.
- handle frame request cancelled event case without crash.
- on no-frame result (due to real history gap) hack in a 1 day decrement
case which we need to eventually allow the caller to control likely
based on measured frame rx latency.
- make `wait_on_data_reset()` a predicate without output indicating
reset success as well as `trio.Nursery.start()` compat so that it can
be started in a new task with the started values yielded being
a cancel scope and completion event.
- drop the legacy `backfill_bars()`, not longer used.
Adjust all history query machinery to pass a `timeframe: int` in seconds
and set default of 60 (aka 1m) such that history views from here forward
will be 1m sampled OHLCV. Further when the tsdb is detected as up load
a full 10 years of data if possible on the 1m - backends will eventually
get a config section (`brokers.toml`) that allow user's to tune this.
The `Store.load()`, `.read_ohlcv()` and `.write_ohlcv()` and
`.delete_ts()` now can take a `timeframe: Optional[float]` param which
is used to look up the appropriate sampling period table-key from
`marketstore`.
Allow data feed sub-system to specify the timeframe (aka OHLC sample
period) to the `open_history_client()` delivered history fetching API.
Factor the data keycombo hack into a new routine to be used also from
the history backfiller code when request latency increases; there is
a first draft at trying to use the feed reset to speed up 1m frame
throttling by timing out on the history frame response, but it needs
a lot of fine tuning.
This is a simpler (and oddly more `trio`-nic and/or SC) way to handle
the cancelled-before-acked race for order dialogs. Will allow keeping
the `.req` field as solely an `Order` msg.
When the client is faster then a `brokerd` at submitting and cancelling
an order we run into the case where we need to specify that the EMS
cancels the order-flow as soon as the brokerd's ack arrives. Previously
we were stashing a `BrokerdCancel` msg as the `Status.req` msg (to be
both tested for as a "already cancelled" and sent immediately on ack arrival to
the broker), but for such
cases we can't use that msg to find the fqsn (since only the client side
msgs have it defined) which is required by the new
`Router.client_broadcast()`.
So, Since `Status.req` is supposed to be a client-side flow msg anyway,
and we need the fqsn for client broadcasting, we change this `.req`
value to the client's submitted `Cancel` msg (thus rectifying the
missing `Router.client_broadcast()` fqsn input issue) and build the
`BrokerdCancel` request from that `Cancel` inline in the relay loop
from the `.req: Cancel` status msg lookup.
Further we allow `Cancel` msgs to define an `.account` and adjust the
order mode loop to expect `Cancel` source requests in cancelled status
updates.
Except for paper accounts (in which case we need a trades dialog and
paper engine per symbol to enable simulated clearing) we can rely on the
instrument feed (symbol name) to be the caching key. Utilize
`tractor.trionics.maybe_open_context()` and the new key-as-callable
support in the paper case to ensure we have separate paper clearing
loops per symbol.
Requires https://github.com/goodboy/tractor/pull/329