`Account` api update and refine
Rename `open_pps()` -> `open_account()` for obvious reasons as well as expect a bit tighter integration with `SymbologyCache` and consequently `LedgerTransaction` in order to drop `Transaction.sym: MktPair` dependence when compiling / allocating new `Position`s from a ledger. Also we drop a bunch of prior attrs and do some cleaning, - `Position.first_clear_dt` we no longer sort during insert. - `._clears` now replaces by `._events` table. - drop the now masked `.ensure_state()` method (eventually moved to `.calc` submod for maybe-later-use). - drop `.sym=` from all remaining txns init calls. - clean out the `Position.add_clear()` method and only add the provided txn directly to the `._events` table. Improve some `Account` docs and interface: - fill out the main type descr. - add the backend broker modules as `Account.mod` allowing to drop `.brokername` as input and instead wrap as a `@property`. - make `.update_from_trans()` now a new `.update_from_ledger()` and expect either of a `TransactionLedger` (user-dict) or a dict of txns; in the latter case if we have not been also passed a symcache as input then runtime error since the symcache is necessary to allocate positions. - also, delegate to `TransactionLedger.iter_txns()` instead of a manual datetime sorted iter-loop. - drop all the clears datetime don't-insert-if-earlier-then-first logic. - rename `.to_toml()` -> `.prep_toml()`. - drop old `PpTable` alias. - rename `load_pps_from_ledger()` -> `load_account_from_ledger()` and make it only deliver the account instance and also move out all the `polars.DataFrame` related stuff (to `.calc`). And tweak some account clears table formatting, - store datetimes as TOML native equivs. - drop `be_price` fixing. - obvsly drop `.ensure_state()` call to pps.account_tests
parent
0e94e89373
commit
f5d4f58610
|
@ -22,18 +22,17 @@ that doesn't try to cuk most humans who prefer to not lose their moneys..
|
|||
|
||||
'''
|
||||
from __future__ import annotations
|
||||
# from bisect import insort
|
||||
from contextlib import contextmanager as cm
|
||||
from decimal import Decimal
|
||||
from pprint import pformat
|
||||
from pathlib import Path
|
||||
from types import ModuleType
|
||||
from typing import (
|
||||
Any,
|
||||
Iterator,
|
||||
Generator
|
||||
)
|
||||
|
||||
import polars as pl
|
||||
import pendulum
|
||||
from pendulum import (
|
||||
datetime,
|
||||
|
@ -43,7 +42,6 @@ import tomlkit
|
|||
|
||||
from ._ledger import (
|
||||
Transaction,
|
||||
open_trade_ledger,
|
||||
TransactionLedger,
|
||||
)
|
||||
from ._mktinfo import (
|
||||
|
@ -60,6 +58,7 @@ from ..clearing._messages import (
|
|||
BrokerdPosition,
|
||||
)
|
||||
from ..data.types import Struct
|
||||
from ..data._symcache import SymbologyCache
|
||||
from ..log import get_logger
|
||||
|
||||
log = get_logger(__name__)
|
||||
|
@ -105,19 +104,12 @@ class Position(Struct):
|
|||
|
||||
split_ratio: int | None = None
|
||||
|
||||
# ordered record of known constituent trade messages
|
||||
_clears: list[
|
||||
dict[str, Any], # transaction history summaries
|
||||
] = []
|
||||
|
||||
# _events: pl.DataFrame | None = None
|
||||
# TODO: use a `pl.DataFrame` intead?
|
||||
_events: dict[str, Transaction | dict] = {}
|
||||
|
||||
# first_clear_dt: datetime | None = None
|
||||
|
||||
@property
|
||||
def expiry(self) -> datetime | None:
|
||||
exp: str = self.mkt.expiry
|
||||
exp: str = self.mkt.expiry.lower()
|
||||
match exp:
|
||||
# empty str, 'perp' (contract) or simply a null
|
||||
# signifies instrument with NO expiry.
|
||||
|
@ -188,7 +180,7 @@ class Position(Struct):
|
|||
|
||||
'''
|
||||
# scan for the last "net zero" position by iterating
|
||||
# transactions until the next net-zero accum_size, rinse,
|
||||
# transactions until the next net-zero cumsize, rinse,
|
||||
# repeat.
|
||||
cumsize: float = 0
|
||||
clears_since_zero: list[dict] = []
|
||||
|
@ -223,6 +215,7 @@ class Position(Struct):
|
|||
'''
|
||||
mkt: MktPair = self.mkt
|
||||
assert isinstance(mkt, MktPair)
|
||||
|
||||
# TODO: we need to figure out how to have one top level
|
||||
# listing venue here even when the backend isn't providing
|
||||
# it via the trades ledger..
|
||||
|
@ -239,16 +232,19 @@ class Position(Struct):
|
|||
|
||||
asdict: dict[str, Any] = {
|
||||
'bs_mktid': self.bs_mktid,
|
||||
'expiry': self.expiry or '',
|
||||
# 'expiry': self.expiry or '',
|
||||
'asset_type': asset_type,
|
||||
'price_tick': mkt.price_tick,
|
||||
'size_tick': mkt.size_tick,
|
||||
}
|
||||
|
||||
if exp := self.expiry:
|
||||
asdict['expiry'] = exp
|
||||
|
||||
clears_since_zero: list[dict] = self.minimized_clears()
|
||||
|
||||
# setup a "multi-line array of inline tables" which we call
|
||||
# the "clears table", contained by each position entry in
|
||||
# an "account file".
|
||||
clears_table: tomlkit.Array = tomlkit.array()
|
||||
clears_table.multiline(
|
||||
multiline=True,
|
||||
|
@ -267,69 +263,21 @@ class Position(Struct):
|
|||
for k in ['price', 'size', 'cost']:
|
||||
inline_table[k] = entry[k]
|
||||
|
||||
# serialize datetime to parsable `str`
|
||||
inline_table['dt'] = entry['dt']#.isoformat('T')
|
||||
# assert 'Datetime' not in inline_table['dt']
|
||||
# NOTE: we don't actually need to serialize datetime to parsable `str`
|
||||
# since `tomlkit` supports a native `DateTime` but
|
||||
# seems like we're not doing it entirely in clearing
|
||||
# tables yet?
|
||||
inline_table['dt'] = entry['dt'] # .isoformat('T')
|
||||
|
||||
tid: str = entry['tid']
|
||||
inline_table['tid'] = tid
|
||||
clears_table.append(inline_table)
|
||||
# if val < 0:
|
||||
# breakpoint()
|
||||
|
||||
# assert not events
|
||||
asdict['clears'] = clears_table
|
||||
|
||||
return fqme, asdict
|
||||
|
||||
# def ensure_state(self) -> None:
|
||||
# '''
|
||||
# Audit either the `.cumsize` and `.ppu` local instance vars against
|
||||
# the clears table calculations and return the calc-ed values if
|
||||
# they differ and log warnings to console.
|
||||
|
||||
# '''
|
||||
# # clears: list[dict] = self._clears
|
||||
|
||||
# # self.first_clear_dt = min(clears, key=lambda e: e['dt'])['dt']
|
||||
# last_clear: dict = clears[-1]
|
||||
# csize: float = self.calc_size()
|
||||
# accum: float = last_clear['accum_size']
|
||||
|
||||
# if not self.expired():
|
||||
# if (
|
||||
# csize != accum
|
||||
# and csize != round(accum * (self.split_ratio or 1))
|
||||
# ):
|
||||
# raise ValueError(f'Size mismatch: {csize}')
|
||||
# else:
|
||||
# assert csize == 0, 'Contract is expired but non-zero size?'
|
||||
|
||||
# if self.cumsize != csize:
|
||||
# log.warning(
|
||||
# 'Position state mismatch:\n'
|
||||
# f'{self.cumsize} => {csize}'
|
||||
# )
|
||||
# self.cumsize = csize
|
||||
|
||||
# cppu: float = self.calc_ppu()
|
||||
# ppu: float = last_clear['ppu']
|
||||
# if (
|
||||
# cppu != ppu
|
||||
# and self.split_ratio is not None
|
||||
|
||||
# # handle any split info entered (for now) manually by user
|
||||
# and cppu != (ppu / self.split_ratio)
|
||||
# ):
|
||||
# raise ValueError(f'PPU mismatch: {cppu}')
|
||||
|
||||
# if self.ppu != cppu:
|
||||
# log.warning(
|
||||
# 'Position state mismatch:\n'
|
||||
# f'{self.ppu} => {cppu}'
|
||||
# )
|
||||
# self.ppu = cppu
|
||||
|
||||
def update_from_msg(
|
||||
self,
|
||||
msg: BrokerdPosition,
|
||||
|
@ -337,12 +285,13 @@ class Position(Struct):
|
|||
) -> None:
|
||||
|
||||
mkt: MktPair = self.mkt
|
||||
# we summarize the pos with a single summary transaction
|
||||
# (for now) until we either pass THIS type as msg directly
|
||||
# from emsd or come up with a better way?
|
||||
|
||||
# NOTE WARNING XXX: we summarize the pos with a single
|
||||
# summary transaction (for now) until we either pass THIS
|
||||
# type as msg directly from emsd or come up with a better
|
||||
# way?
|
||||
t = Transaction(
|
||||
fqme=mkt.bs_mktid,
|
||||
sym=mkt,
|
||||
fqme=mkt.fqme,
|
||||
bs_mktid=mkt.bs_mktid,
|
||||
tid='unknown',
|
||||
size=msg['size'],
|
||||
|
@ -357,15 +306,16 @@ class Position(Struct):
|
|||
@property
|
||||
def dsize(self) -> float:
|
||||
'''
|
||||
The "dollar" size of the pp, normally in trading (fiat) unit
|
||||
terms.
|
||||
The "dollar" size of the pp, normally in source asset
|
||||
(fiat) units.
|
||||
|
||||
'''
|
||||
return self.ppu * self.size
|
||||
|
||||
def expired(self) -> bool:
|
||||
'''
|
||||
Predicate which checks if the contract/instrument is past its expiry.
|
||||
Predicate which checks if the contract/instrument is past
|
||||
its expiry.
|
||||
|
||||
'''
|
||||
return bool(self.expiry) and self.expiry < now()
|
||||
|
@ -388,36 +338,23 @@ class Position(Struct):
|
|||
log.warning(f'{t} is already added?!')
|
||||
return added
|
||||
|
||||
# clear: dict[str, float | str | int] = {
|
||||
# 'tid': t.tid,
|
||||
# 'cost': t.cost,
|
||||
# 'price': t.price,
|
||||
# 'size': t.size,
|
||||
# 'dt': t.dt
|
||||
# }
|
||||
self._events[tid] = t
|
||||
return True
|
||||
# TODO: apparently this IS possible with a dict but not
|
||||
# common and probably not that beneficial unless we're also
|
||||
# going to do cum-calcs on each insert?
|
||||
# https://stackoverflow.com/questions/38079171/python-insert-new-element-into-sorted-list-of-dictionaries
|
||||
# from bisect import insort
|
||||
# insort(
|
||||
# self._clears,
|
||||
# clear,
|
||||
# key=lambda entry: entry['dt']
|
||||
# )
|
||||
self._events[tid] = t
|
||||
return True
|
||||
|
||||
# TODO: compute these incrementally instead
|
||||
# of re-looping through each time resulting in O(n**2)
|
||||
# behaviour..?
|
||||
|
||||
# NOTE: we compute these **after** adding the entry in order to
|
||||
# make the recurrence relation math work inside
|
||||
# ``.calc_size()``.
|
||||
# self.size = clear['accum_size'] = self.calc_size()
|
||||
# self.ppu = clear['ppu'] = self.calc_ppu()
|
||||
# self.size: float = self.calc_size()
|
||||
# self.ppu: float = self.calc_ppu()
|
||||
|
||||
# assert len(self._events) == len(self._clears)
|
||||
# return clear
|
||||
|
||||
# TODO: compute these incrementally instead
|
||||
# of re-looping through each time resulting in O(n**2)
|
||||
# behaviour..? Can we have some kinda clears len to cached
|
||||
# output subsys?
|
||||
def calc_ppu(self) -> float:
|
||||
return ppu(self.iter_by_type('clear'))
|
||||
|
||||
|
@ -487,20 +424,50 @@ class Position(Struct):
|
|||
|
||||
|
||||
class Account(Struct):
|
||||
'''
|
||||
The real-time (double-entry accounting) state of
|
||||
a given **asset ownership tracking system**, normally offered
|
||||
or measured from some brokerage, CEX or (implied virtual)
|
||||
summary crypto$ "wallets" aggregated and tracked over some set
|
||||
of DEX-es.
|
||||
|
||||
brokername: str
|
||||
Both market-mapped and ledger-system-native (aka inter-account
|
||||
"transfers") transactions are accounted and they pertain to
|
||||
(implied) PnL relatve to any other accountable asset.
|
||||
|
||||
More specifically in piker terms, an account tracks all of:
|
||||
|
||||
- the *balances* of all assets currently available for use either
|
||||
in (future) market or (inter-account/wallet) transfer
|
||||
transactions.
|
||||
- a transaction *ledger* from a given brokerd backend whic
|
||||
is a recording of all (know) such transactions from the past.
|
||||
- a set of financial *positions* as measured from the current
|
||||
ledger state.
|
||||
|
||||
See the semantic origins from double-bookeeping:
|
||||
https://en.wikipedia.org/wiki/Double-entry_bookkeeping
|
||||
|
||||
'''
|
||||
mod: ModuleType
|
||||
acctid: str
|
||||
pps: dict[str, Position]
|
||||
|
||||
conf_path: Path
|
||||
conf: dict | None = {}
|
||||
|
||||
# TODO: track a table of asset balances as `.balances:
|
||||
# dict[Asset, float]`?
|
||||
|
||||
def update_from_trans(
|
||||
@property
|
||||
def brokername(self) -> str:
|
||||
return self.mod.name
|
||||
|
||||
def update_from_ledger(
|
||||
self,
|
||||
trans: dict[str, Transaction],
|
||||
ledger: TransactionLedger,
|
||||
cost_scalar: float = 2,
|
||||
symcache: SymbologyCache | None = None,
|
||||
|
||||
) -> dict[str, Position]:
|
||||
'''
|
||||
|
@ -509,24 +476,36 @@ class Account(Struct):
|
|||
accumulative size for each entry.
|
||||
|
||||
'''
|
||||
if (
|
||||
not isinstance(ledger, TransactionLedger)
|
||||
and symcache is None
|
||||
):
|
||||
raise RuntimeError(
|
||||
'No ledger provided!\n'
|
||||
'We can not determine the `MktPair`s without a symcache..\n'
|
||||
'Please provide `symcache: SymbologyCache` when '
|
||||
'processing NEW positions!'
|
||||
)
|
||||
|
||||
pps = self.pps
|
||||
updated: dict[str, Position] = {}
|
||||
|
||||
# lifo update all pps from records, ensuring
|
||||
# we compute the PPU and size sorted in time!
|
||||
for t in sorted(
|
||||
trans.values(),
|
||||
key=lambda t: t.dt,
|
||||
# reverse=True,
|
||||
):
|
||||
fqme: str = t.fqme
|
||||
bs_mktid: str = t.bs_mktid
|
||||
for tid, txn in ledger.iter_txns():
|
||||
# for t in sorted(
|
||||
# trans.values(),
|
||||
# key=lambda t: t.dt,
|
||||
# ):
|
||||
fqme: str = txn.fqme
|
||||
bs_mktid: str = txn.bs_mktid
|
||||
|
||||
# template the mkt-info presuming a legacy market ticks
|
||||
# if no info exists in the transactions..
|
||||
mkt: MktPair = t.sys
|
||||
mkt: MktPair = ledger._symcache.mktmaps[fqme]
|
||||
|
||||
if not (pos := pps.get(bs_mktid)):
|
||||
|
||||
# if no existing pos, allocate fresh one.
|
||||
pos = pps[bs_mktid] = Position(
|
||||
mkt=mkt,
|
||||
|
@ -541,33 +520,16 @@ class Account(Struct):
|
|||
if len(pos.mkt.fqme) < len(fqme):
|
||||
pos.mkt = mkt
|
||||
|
||||
# clears: list[dict] = pos._clears
|
||||
# if clears:
|
||||
# # first_clear_dt = pos.first_clear_dt
|
||||
|
||||
# # don't do updates for ledger records we already have
|
||||
# # included in the current pps state.
|
||||
# if (
|
||||
# t.tid in clears
|
||||
# # or (
|
||||
# # first_clear_dt
|
||||
# # and t.dt < first_clear_dt
|
||||
# # )
|
||||
# ):
|
||||
# # NOTE: likely you'll see repeats of the same
|
||||
# # ``Transaction`` passed in here if/when you are restarting
|
||||
# # a ``brokerd.ib`` where the API will re-report trades from
|
||||
# # the current session, so we need to make sure we don't
|
||||
# # "double count" these in pp calculations.
|
||||
# continue
|
||||
|
||||
# update clearing table
|
||||
pos.add_clear(t)
|
||||
updated[t.bs_mktid] = pos
|
||||
|
||||
# re-calc ppu and accumulative sizing.
|
||||
# for bs_mktid, pos in updated.items():
|
||||
# pos.ensure_state()
|
||||
# update clearing table!
|
||||
# NOTE: likely you'll see repeats of the same
|
||||
# ``Transaction`` passed in here if/when you are restarting
|
||||
# a ``brokerd.ib`` where the API will re-report trades from
|
||||
# the current session, so we need to make sure we don't
|
||||
# "double count" these in pp calculations;
|
||||
# `Position.add_clear()` stores txs in a `dict[tid,
|
||||
# tx]` which should always ensure this is true B)
|
||||
pos.add_clear(txn)
|
||||
updated[txn.bs_mktid] = pos
|
||||
|
||||
# NOTE: deliver only the position entries that were
|
||||
# actually updated (modified the state) from the input
|
||||
|
@ -614,7 +576,7 @@ class Account(Struct):
|
|||
|
||||
return open_pp_objs, closed_pp_objs
|
||||
|
||||
def to_toml(
|
||||
def prep_toml(
|
||||
self,
|
||||
active: dict[str, Position] | None = None,
|
||||
|
||||
|
@ -629,12 +591,12 @@ class Account(Struct):
|
|||
|
||||
pos: Position
|
||||
for bs_mktid, pos in active.items():
|
||||
# NOTE: we only store the minimal amount of clears that make up this
|
||||
# position since the last net-zero state.
|
||||
# pos.minimize_clears()
|
||||
# pos.ensure_state()
|
||||
|
||||
# serialize to pre-toml form
|
||||
# NOTE: we only store the minimal amount of clears that
|
||||
# make up this position since the last net-zero state,
|
||||
# see `Position.to_pretoml()` for details
|
||||
fqme, asdict = pos.to_pretoml()
|
||||
|
||||
# clears: list[dict] = asdict['clears']
|
||||
|
@ -650,7 +612,8 @@ class Account(Struct):
|
|||
|
||||
def write_config(self) -> None:
|
||||
'''
|
||||
Write the current position table to the user's ``pps.toml``.
|
||||
Write the current account state to the user's account TOML file, normally
|
||||
something like ``pps.toml``.
|
||||
|
||||
'''
|
||||
# TODO: show diff output?
|
||||
|
@ -658,7 +621,7 @@ class Account(Struct):
|
|||
# active, closed_pp_objs = table.dump_active()
|
||||
|
||||
active, closed = self.dump_active()
|
||||
pp_entries = self.to_toml(active=active)
|
||||
pp_entries = self.prep_toml(active=active)
|
||||
if pp_entries:
|
||||
log.info(
|
||||
f'Updating positions in ``{self.conf_path}``:\n'
|
||||
|
@ -705,24 +668,12 @@ class Account(Struct):
|
|||
# super weird --1 thing going on for cumsize!?1!
|
||||
# NOTE: the fix was to always float() the size value loaded
|
||||
# in open_pps() below!
|
||||
|
||||
# confclears = self.conf["tsla.nasdaq.ib"]['clears']
|
||||
# firstcum = confclears[0]['cumsize']
|
||||
# if firstcum:
|
||||
# breakpoint()
|
||||
|
||||
config.write(
|
||||
config=self.conf,
|
||||
path=self.conf_path,
|
||||
fail_empty=False,
|
||||
)
|
||||
|
||||
# breakpoint()
|
||||
|
||||
|
||||
# TODO: move over all broker backend usage to new name..
|
||||
PpTable = Account
|
||||
|
||||
|
||||
def load_account(
|
||||
brokername: str,
|
||||
|
@ -784,12 +735,12 @@ def load_account(
|
|||
|
||||
|
||||
@cm
|
||||
def open_pps(
|
||||
def open_account(
|
||||
brokername: str,
|
||||
acctid: str,
|
||||
write_on_exit: bool = False,
|
||||
|
||||
) -> Generator[PpTable, None, None]:
|
||||
) -> Generator[Account, None, None]:
|
||||
'''
|
||||
Read out broker-specific position entries from
|
||||
incremental update file: ``pps.toml``.
|
||||
|
@ -820,10 +771,12 @@ def open_pps(
|
|||
# engine proc if we decide to always spawn it?),
|
||||
# - do diffs against updates from the ledger writer
|
||||
# actor and the in-mem state here?
|
||||
from ..brokers import get_brokermod
|
||||
mod: ModuleType = get_brokermod(brokername)
|
||||
|
||||
pp_objs = {}
|
||||
table = PpTable(
|
||||
brokername,
|
||||
pp_objs: dict[str, Position] = {}
|
||||
table = Account(
|
||||
mod,
|
||||
acctid,
|
||||
pp_objs,
|
||||
conf_path,
|
||||
|
@ -831,12 +784,10 @@ def open_pps(
|
|||
)
|
||||
|
||||
# unmarshal/load ``pps.toml`` config entries into object form
|
||||
# and update `PpTable` obj entries.
|
||||
# and update `Account` obj entries.
|
||||
for fqme, entry in conf.items():
|
||||
|
||||
# atype = entry.get('asset_type', '<unknown>')
|
||||
|
||||
# unique broker market id
|
||||
# unique broker-backend-system market id
|
||||
bs_mktid = str(
|
||||
entry.get('bsuid')
|
||||
or entry.get('bs_mktid')
|
||||
|
@ -860,7 +811,7 @@ def open_pps(
|
|||
fqme,
|
||||
price_tick=price_tick,
|
||||
size_tick=size_tick,
|
||||
bs_mktid=bs_mktid
|
||||
bs_mktid=bs_mktid,
|
||||
)
|
||||
|
||||
# TODO: RE: general "events" instead of just "clears":
|
||||
|
@ -875,6 +826,7 @@ def open_pps(
|
|||
# for toml re-presentation) back into a master table.
|
||||
toml_clears_list: list[dict[str, Any]] = entry['clears']
|
||||
trans: list[Transaction] = []
|
||||
|
||||
for clears_table in toml_clears_list:
|
||||
tid = clears_table['tid']
|
||||
dt: tomlkit.items.DateTime | str = clears_table['dt']
|
||||
|
@ -887,23 +839,18 @@ def open_pps(
|
|||
clears_table['dt'] = dt
|
||||
trans.append(Transaction(
|
||||
fqme=bs_mktid,
|
||||
sym=mkt,
|
||||
# sym=mkt,
|
||||
bs_mktid=bs_mktid,
|
||||
tid=tid,
|
||||
# XXX: not sure why sometimes these are loaded as
|
||||
# `tomlkit.Integer` and are eventually written with
|
||||
# an extra `-` in front like `--1`?
|
||||
size=float(clears_table['size']),
|
||||
price=float(clears_table['price']),
|
||||
cost=clears_table['cost'],
|
||||
dt=dt,
|
||||
))
|
||||
|
||||
# size = entry['size']
|
||||
|
||||
# # TODO: remove but, handle old field name for now
|
||||
# ppu = entry.get(
|
||||
# 'ppu',
|
||||
# entry.get('be_price', 0),
|
||||
# )
|
||||
|
||||
split_ratio = entry.get('split_ratio')
|
||||
|
||||
# if a string-ified expiry field is loaded we try to parse
|
||||
|
@ -929,9 +876,6 @@ def open_pps(
|
|||
for t in trans:
|
||||
pp.add_clear(t)
|
||||
|
||||
# audit entries loaded from toml
|
||||
# pp.ensure_state()
|
||||
|
||||
try:
|
||||
yield table
|
||||
finally:
|
||||
|
@ -939,7 +883,21 @@ def open_pps(
|
|||
table.write_config()
|
||||
|
||||
|
||||
def load_pps_from_ledger(
|
||||
# TODO: drop the old name and THIS!
|
||||
@cm
|
||||
def open_pps(
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> Generator[Account, None, None]:
|
||||
log.warning(
|
||||
'`open_pps()` is now deprecated!\n'
|
||||
'Please use `with open_account() as cnt:`'
|
||||
)
|
||||
with open_account(*args, **kwargs) as acnt:
|
||||
yield acnt
|
||||
|
||||
|
||||
def load_account_from_ledger(
|
||||
|
||||
brokername: str,
|
||||
acctname: str,
|
||||
|
@ -947,10 +905,9 @@ def load_pps_from_ledger(
|
|||
# post normalization filter on ledger entries to be processed
|
||||
filter_by_ids: dict[str, list[str]] | None = None,
|
||||
|
||||
) -> tuple[
|
||||
pl.DataFrame,
|
||||
PpTable,
|
||||
]:
|
||||
ledger: TransactionLedger | None = None,
|
||||
|
||||
) -> Account:
|
||||
'''
|
||||
Open a ledger file by broker name and account and read in and
|
||||
process any trade records into our normalized ``Transaction`` form
|
||||
|
@ -958,67 +915,12 @@ def load_pps_from_ledger(
|
|||
bs_mktid-mapped dict-sets of the transactions and pps.
|
||||
|
||||
'''
|
||||
ledger: TransactionLedger
|
||||
table: PpTable
|
||||
with (
|
||||
open_trade_ledger(brokername, acctname) as ledger,
|
||||
open_pps(brokername, acctname) as table,
|
||||
):
|
||||
if not ledger:
|
||||
# null case, no ledger file with content
|
||||
return {}
|
||||
acnt: Account
|
||||
with open_pps(
|
||||
brokername,
|
||||
acctname,
|
||||
) as acnt:
|
||||
if ledger is not None:
|
||||
acnt.update_from_ledger(ledger)
|
||||
|
||||
from ..brokers import get_brokermod
|
||||
mod = get_brokermod(brokername)
|
||||
src_records: dict[str, Transaction] = mod.norm_trade_records(
|
||||
ledger
|
||||
)
|
||||
table.update_from_trans(src_records)
|
||||
|
||||
fdf = df = pl.DataFrame(
|
||||
list(rec.to_dict() for rec in src_records.values()),
|
||||
# schema=[
|
||||
# ('tid', str),
|
||||
# ('fqme', str),
|
||||
# ('dt', str),
|
||||
# ('size', pl.Float64),
|
||||
# ('price', pl.Float64),
|
||||
# ('cost', pl.Float64),
|
||||
# ('expiry', str),
|
||||
# ('bs_mktid', str),
|
||||
# ],
|
||||
).sort('dt').select([
|
||||
pl.col('fqme'),
|
||||
pl.col('dt').str.to_datetime(),
|
||||
# pl.col('expiry').dt.datetime(),
|
||||
pl.col('bs_mktid'),
|
||||
pl.col('size'),
|
||||
pl.col('price'),
|
||||
])
|
||||
# ppt = df.groupby('fqme').agg([
|
||||
# # TODO: ppu and bep !!
|
||||
# pl.cumsum('size').alias('cumsum'),
|
||||
# ])
|
||||
acts = df.partition_by('fqme', as_dict=True)
|
||||
# ppt: dict[str, pl.DataFrame] = {}
|
||||
# for fqme, ppt in act.items():
|
||||
# ppt.with_columuns
|
||||
# # TODO: ppu and bep !!
|
||||
# pl.cumsum('size').alias('cumsum'),
|
||||
# ])
|
||||
|
||||
# filter out to the columns matching values filter passed
|
||||
# as input.
|
||||
if filter_by_ids:
|
||||
for col, vals in filter_by_ids.items():
|
||||
str_vals = set(map(str, vals))
|
||||
pred: pl.Expr = pl.col(col).eq(str_vals.pop())
|
||||
for val in str_vals:
|
||||
pred |= pl.col(col).eq(val)
|
||||
|
||||
fdf = df.filter(pred)
|
||||
|
||||
bs_mktid: str = fdf[0]['bs_mktid']
|
||||
# pos: Position = table.pps[bs_mktid]
|
||||
|
||||
return fdf, acts, table
|
||||
return acnt
|
||||
|
|
Loading…
Reference in New Issue