Store "namespace path" for each backend's pair struct

Since some backends have multiple venues keyed by the same
symbol-pair-name, AND often the market/symbol info for those different
market-venues is entirely different (cough binance), we will have to
(sometimes) save the struct namespace-path as str for lookup when
deserializing a symcache to object form.

NOTE: this change is reliant on the following `tractor` dev commit which
improves support for constructing a path from object-instance:
bee2c36072

Add a backend(-wide) default struct path stored as a (TOML top level)
field `pair_ns_path: str` in the serialized `dict`-table as well as
allow for a per pair-`Struct` value optionally defined on each type def;
the global is only used if none was defined per struct via a `ns_path:
str`.

Further deats:
- don't write non-struct-member fields to dict for TOML file cache.
- always keep object forms, well as objects (in tables).. XD
- factor cache loading from `dict` (and thus from TOML or presumably any
  other interchange form) into a `@classmethod` constructor method B)
- all choosing the subtable for `.search()` by name.
account_tests
Tyler Goodlet 2023-07-13 17:58:50 -04:00
parent 7f4884a6d9
commit da206f5242
1 changed files with 156 additions and 64 deletions

View File

@ -79,6 +79,9 @@ class SymbologyCache(Struct):
# backend-system pairs loaded in provider (schema) specific
# structs.
pairs: dict[str, Struct] = field(default_factory=dict)
# serialized namespace path to the backend's pair-info-`Struct`
# defn B)
pair_ns_path: tractor.msg.NamespacePath | None = None
# TODO: piker-normalized `.accounting.MktPair` table?
# loaded from the `.pairs` and a normalizer
@ -86,23 +89,28 @@ class SymbologyCache(Struct):
mktmaps: dict[str, MktPair] = field(default_factory=dict)
def write_config(self) -> None:
cachedict: dict[str, Any] = {}
for key, attr in {
# put the backend's pair-struct type ref at the top
# of file if possible.
cachedict: dict[str, Any] = {
'pair_ns_path': str(self.pair_ns_path) or '',
}
# serialize all tables as dicts for TOML.
for key, table in {
'assets': self.assets,
'pairs': self.pairs,
'mktmaps': self.mktmaps,
}.items():
if not attr:
if not table:
log.warning(
f'Asset cache table for `{key}` is empty?'
)
continue
cachedict[key] = attr
# serialize mkts
mktmapsdict = cachedict['mktmaps'] = {}
for fqme, mkt in self.mktmaps.items():
mktmapsdict[fqme] = mkt.to_dict()
dct = cachedict[key] = {}
for key, struct in table.items():
dct[key] = struct.to_dict(include_non_members=False)
try:
with self.fp.open(mode='wb') as fp:
@ -112,12 +120,27 @@ class SymbologyCache(Struct):
raise
async def load(self) -> None:
'''
Explicitly load the "symbology set" for this provider by using
2 required `Client` methods:
- `.get_assets()`: returning a table of `Asset`s
- `.get_mkt_pairs()`: returning a table of pair-`Struct`
types, custom defined by the particular backend.
AND, the required `.get_mkt_info()` module-level endpoint which
maps `fqme: str` -> `MktPair`s.
These tables are then used to fill out the `.assets`, `.pairs` and
`.mktmaps` tables on this cache instance, respectively.
'''
async with open_cached_client(self.mod.name) as client:
if get_assets := getattr(client, 'get_assets', None):
assets: dict[str, Asset] = await get_assets()
for bs_mktid, asset in assets.items():
self.assets[bs_mktid] = asset.to_dict()
self.assets[bs_mktid] = asset
else:
log.warning(
'No symbology cache `Asset` support for `{provider}`..\n'
@ -125,9 +148,20 @@ class SymbologyCache(Struct):
)
if get_mkt_pairs := getattr(client, 'get_mkt_pairs', None):
pairs: dict[str, Struct] = await get_mkt_pairs()
for bs_fqme, pair in pairs.items():
# NOTE: every backend defined pair should
# declare it's ns path for roundtrip
# serialization lookup.
if not getattr(pair, 'ns_path', None):
raise TypeError(
f'Pair-struct for {self.mod.name} MUST define a '
'`.ns_path: str`!\n'
f'{pair}'
)
entry = await self.mod.get_mkt_info(pair.bs_fqme)
if not entry:
continue
@ -135,10 +169,30 @@ class SymbologyCache(Struct):
mkt: MktPair
pair: Struct
mkt, _pair = entry
assert _pair is pair
self.pairs[pair.bs_fqme] = pair.to_dict()
assert _pair is pair, (
f'`{self.mod.name}` backend probably has a '
'keying-symmetry problem between the pair-`Struct` '
'returned from `Client.get_mkt_pairs()`and the '
'module level endpoint: `.get_mkt_info()`\n\n'
"Here's the struct diff:\n"
f'{_pair - pair}'
)
# NOTE XXX: this means backends MUST implement
# a `Struct.bs_mktid: str` field to provide
# a native-keyed map to their own symbol
# set(s).
self.pairs[pair.bs_mktid] = pair
# NOTE: `MktPair`s are keyed here using piker's
# internal FQME schema so that search,
# accounting and feed init can be accomplished
# a sane, uniform, normalized basis.
self.mktmaps[mkt.fqme] = mkt
self.pair_ns_path: str = tractor.msg.NamespacePath.from_ref(
pair,
)
else:
log.warning(
'No symbology cache `Pair` support for `{provider}`..\n'
@ -147,15 +201,94 @@ class SymbologyCache(Struct):
return self
@classmethod
def from_dict(
cls: type,
data: dict,
**kwargs,
) -> SymbologyCache:
# normal init inputs
cache = cls(**kwargs)
# XXX WARNING: this may break if backend namespacing
# changes (eg. `Pair` class def is moved to another
# module) in which case you can manually update the
# `pair_ns_path` in the symcache file and try again.
# TODO: probably a verbose error about this?
Pair: type = tractor.msg.NamespacePath(
str(data['pair_ns_path'])
).load_ref()
pairtable = data.pop('pairs')
for key, pairtable in pairtable.items():
# allow each serialized pair-dict-table to declare its
# specific struct type's path in cases where a backend
# supports multiples (normally with different
# schemas..) and we are storing them in a flat `.pairs`
# table.
ThisPair = Pair
if this_pair_type := pairtable.get('ns_path'):
ThisPair: type = tractor.msg.NamespacePath(
str(this_pair_type)
).load_ref()
pair: Struct = ThisPair(**pairtable)
cache.pairs[key] = pair
from ..accounting import (
Asset,
MktPair,
)
# load `dict` -> `Asset`
assettable = data.pop('assets')
for name, asdict in assettable.items():
cache.assets[name] = Asset.from_msg(asdict)
# load `dict` -> `MktPair`
dne: list[str] = []
mkttable = data.pop('mktmaps')
for fqme, mktdict in mkttable.items():
mkt = MktPair.from_msg(mktdict)
assert mkt.fqme == fqme
# sanity check asset refs from those (presumably)
# loaded asset set above.
src: Asset = cache.assets[mkt.src.name]
assert src == mkt.src
dst: Asset
if not (dst := cache.assets.get(mkt.dst.name)):
dne.append(mkt.dst.name)
continue
else:
assert dst.name == mkt.dst.name
cache.mktmaps[fqme] = mkt
log.warning(
f'These `MktPair.dst: Asset`s DNE says `{cache.mod.name}`?\n'
f'{pformat(dne)}'
)
return cache
def search(
self,
pattern: str,
table: str = 'mktmaps'
) -> dict[str, Struct]:
'''
(Fuzzy) search this cache's `.mktmaps` table, which is
keyed by FQMEs, for `pattern: str` and return the best
matches in a `dict` including the `MktPair` values.
'''
matches = fuzzy.extractBests(
pattern,
self.mktmaps,
getattr(self, table),
score_cutoff=50,
)
@ -206,11 +339,6 @@ async def open_symcache(
cachefile: Path = cachedir / f'{str(provider)}.symcache.toml'
cache = SymbologyCache(
mod=mod,
fp=cachefile,
)
# if no cache exists or an explicit reload is requested, load
# the provider API and call appropriate endpoints to populate
# the mkt and asset tables.
@ -218,6 +346,11 @@ async def open_symcache(
reload
or not cachefile.is_file()
):
cache = SymbologyCache(
mod=mod,
fp=cachefile,
)
log.info(f'GENERATING symbology cache for `{mod.name}`')
await cache.load()
@ -227,59 +360,18 @@ async def open_symcache(
else:
log.info(
f'Loading EXISTING `{mod.name}` symbology cache:\n'
f'> {cache.fp}'
f'> {cachefile}'
)
import time
from ..accounting import (
Asset,
MktPair,
)
now = time.time()
with cachefile.open('rb') as existing_fp:
data: dict[str, dict] = tomllib.load(existing_fp)
log.runtime(f'SYMCACHE TOML LOAD TIME: {time.time() - now}')
# copy in backend specific pairs table directly without
# struct loading for now..
pairtable = data.pop('pairs')
cache.pairs = pairtable
# TODO: some kinda way to allow the backend
# to provide a struct-loader per entry?
# for key, pairtable in pairtable.items():
# pair: Struct = cache.mod.load_pair(pairtable)
# cache.pairs[key] = pair
# load `dict` -> `Asset`
assettable = data.pop('assets')
for name, asdict in assettable.items():
cache.assets[name] = Asset.from_msg(asdict)
# load `dict` -> `MktPair`
dne: list[str] = []
mkttable = data.pop('mktmaps')
for fqme, mktdict in mkttable.items():
mkt = MktPair.from_msg(mktdict)
assert mkt.fqme == fqme
# sanity check asset refs from those (presumably)
# loaded asset set above.
src: Asset = cache.assets[mkt.src.name]
assert src == mkt.src
dst: Asset
if not (dst := cache.assets.get(mkt.dst.name)):
dne.append(mkt.dst.name)
continue
else:
assert dst.name == mkt.dst.name
cache.mktmaps[fqme] = mkt
log.warning(
f'These `MktPair.dst: Asset`s DNE says `{mod.name}` ?\n'
f'{pformat(dne)}'
cache = SymbologyCache.from_dict(
data,
mod=mod,
fp=cachefile,
)
# TODO: use a real profiling sys..