Start `piker.storage` subsys: cross-(ts)db middlewares
parent
eb51033b18
commit
d3da84e8d2
|
@ -865,9 +865,12 @@ async def manage_history(
|
||||||
):
|
):
|
||||||
log.info('Found existing `marketstored`')
|
log.info('Found existing `marketstored`')
|
||||||
|
|
||||||
|
# TODO: make the module adhere to an attribute API-schema
|
||||||
|
# which can used here at this management layer.
|
||||||
from ..service import marketstore
|
from ..service import marketstore
|
||||||
|
from .. import storage
|
||||||
async with (
|
async with (
|
||||||
marketstore.open_storage_client(fqsn)as storage,
|
storage.open_storage_client(fqsn)as storage,
|
||||||
):
|
):
|
||||||
# TODO: drop returning the output that we pass in?
|
# TODO: drop returning the output that we pass in?
|
||||||
await bus.nursery.start(
|
await bus.nursery.start(
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
# piker: trading gear for hackers
|
# piker: trading gear for hackers
|
||||||
# Copyright (C) Tyler Goodlet (in stewardship for piker0)
|
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
|
||||||
|
|
||||||
# This program is free software: you can redistribute it and/or modify
|
# This program is free software: you can redistribute it and/or modify
|
||||||
# it under the terms of the GNU Affero General Public License as published by
|
# it under the terms of the GNU Affero General Public License as published by
|
||||||
|
@ -25,11 +25,9 @@
|
||||||
'''
|
'''
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
from contextlib import asynccontextmanager as acm
|
from contextlib import asynccontextmanager as acm
|
||||||
from datetime import datetime
|
|
||||||
from typing import (
|
from typing import (
|
||||||
Any,
|
Any,
|
||||||
Optional,
|
Optional,
|
||||||
Union,
|
|
||||||
TYPE_CHECKING,
|
TYPE_CHECKING,
|
||||||
)
|
)
|
||||||
import time
|
import time
|
||||||
|
@ -37,28 +35,30 @@ from math import isnan
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
from bidict import bidict
|
from bidict import bidict
|
||||||
from msgspec.msgpack import encode, decode
|
from msgspec.msgpack import (
|
||||||
|
encode,
|
||||||
|
decode,
|
||||||
|
)
|
||||||
# import pyqtgraph as pg
|
# import pyqtgraph as pg
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tractor
|
import tractor
|
||||||
from trio_websocket import open_websocket_url
|
from trio_websocket import open_websocket_url
|
||||||
from anyio_marketstore import (
|
from anyio_marketstore import ( # noqa
|
||||||
open_marketstore_client,
|
open_marketstore_client,
|
||||||
MarketstoreClient,
|
MarketstoreClient,
|
||||||
Params,
|
Params,
|
||||||
)
|
)
|
||||||
import pendulum
|
import pendulum
|
||||||
import purerpc
|
# TODO: import this for specific error set expected by mkts client
|
||||||
|
# import purerpc
|
||||||
|
|
||||||
|
from ..data.feed import maybe_open_feed
|
||||||
|
from ..log import get_logger, get_console_log
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
import docker
|
import docker
|
||||||
from ._ahab import DockerContainer
|
from ._ahab import DockerContainer
|
||||||
|
|
||||||
from ..data.feed import maybe_open_feed
|
|
||||||
from ..log import get_logger, get_console_log
|
|
||||||
from .._profile import Profiler
|
|
||||||
|
|
||||||
|
|
||||||
log = get_logger(__name__)
|
log = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@ -370,356 +370,6 @@ tf_in_1s = bidict({
|
||||||
})
|
})
|
||||||
|
|
||||||
|
|
||||||
class Storage:
|
|
||||||
'''
|
|
||||||
High level storage api for both real-time and historical ingest.
|
|
||||||
|
|
||||||
'''
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
client: MarketstoreClient,
|
|
||||||
|
|
||||||
) -> None:
|
|
||||||
# TODO: eventually this should be an api/interface type that
|
|
||||||
# ensures we can support multiple tsdb backends.
|
|
||||||
self.client = client
|
|
||||||
|
|
||||||
# series' cache from tsdb reads
|
|
||||||
self._arrays: dict[str, np.ndarray] = {}
|
|
||||||
|
|
||||||
async def list_keys(self) -> list[str]:
|
|
||||||
return await self.client.list_symbols()
|
|
||||||
|
|
||||||
async def search_keys(self, pattern: str) -> list[str]:
|
|
||||||
'''
|
|
||||||
Search for time series key in the storage backend.
|
|
||||||
|
|
||||||
'''
|
|
||||||
...
|
|
||||||
|
|
||||||
async def write_ticks(self, ticks: list) -> None:
|
|
||||||
...
|
|
||||||
|
|
||||||
async def load(
|
|
||||||
self,
|
|
||||||
fqsn: str,
|
|
||||||
timeframe: int,
|
|
||||||
|
|
||||||
) -> tuple[
|
|
||||||
np.ndarray, # timeframe sampled array-series
|
|
||||||
Optional[datetime], # first dt
|
|
||||||
Optional[datetime], # last dt
|
|
||||||
]:
|
|
||||||
|
|
||||||
first_tsdb_dt, last_tsdb_dt = None, None
|
|
||||||
hist = await self.read_ohlcv(
|
|
||||||
fqsn,
|
|
||||||
# on first load we don't need to pull the max
|
|
||||||
# history per request size worth.
|
|
||||||
limit=3000,
|
|
||||||
timeframe=timeframe,
|
|
||||||
)
|
|
||||||
log.info(f'Loaded tsdb history {hist}')
|
|
||||||
|
|
||||||
if len(hist):
|
|
||||||
times = hist['Epoch']
|
|
||||||
first, last = times[0], times[-1]
|
|
||||||
first_tsdb_dt, last_tsdb_dt = map(
|
|
||||||
pendulum.from_timestamp, [first, last]
|
|
||||||
)
|
|
||||||
|
|
||||||
return (
|
|
||||||
hist, # array-data
|
|
||||||
first_tsdb_dt, # start of query-frame
|
|
||||||
last_tsdb_dt, # most recent
|
|
||||||
)
|
|
||||||
|
|
||||||
async def read_ohlcv(
|
|
||||||
self,
|
|
||||||
fqsn: str,
|
|
||||||
timeframe: int | str,
|
|
||||||
end: Optional[int] = None,
|
|
||||||
limit: int = int(800e3),
|
|
||||||
|
|
||||||
) -> np.ndarray:
|
|
||||||
|
|
||||||
client = self.client
|
|
||||||
syms = await client.list_symbols()
|
|
||||||
|
|
||||||
if fqsn not in syms:
|
|
||||||
return {}
|
|
||||||
|
|
||||||
# use the provided timeframe or 1s by default
|
|
||||||
tfstr = tf_in_1s.get(timeframe, tf_in_1s[1])
|
|
||||||
|
|
||||||
params = Params(
|
|
||||||
symbols=fqsn,
|
|
||||||
timeframe=tfstr,
|
|
||||||
attrgroup='OHLCV',
|
|
||||||
end=end,
|
|
||||||
# limit_from_start=True,
|
|
||||||
|
|
||||||
# TODO: figure the max limit here given the
|
|
||||||
# ``purepc`` msg size limit of purerpc: 33554432
|
|
||||||
limit=limit,
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
|
||||||
result = await client.query(params)
|
|
||||||
except purerpc.grpclib.exceptions.UnknownError as err:
|
|
||||||
# indicate there is no history for this timeframe
|
|
||||||
log.exception(
|
|
||||||
f'Unknown mkts QUERY error: {params}\n'
|
|
||||||
f'{err.args}'
|
|
||||||
)
|
|
||||||
return {}
|
|
||||||
|
|
||||||
# TODO: it turns out column access on recarrays is actually slower:
|
|
||||||
# https://jakevdp.github.io/PythonDataScienceHandbook/02.09-structured-data-numpy.html#RecordArrays:-Structured-Arrays-with-a-Twist
|
|
||||||
# it might make sense to make these structured arrays?
|
|
||||||
data_set = result.by_symbols()[fqsn]
|
|
||||||
array = data_set.array
|
|
||||||
|
|
||||||
# XXX: ensure sample rate is as expected
|
|
||||||
time = data_set.array['Epoch']
|
|
||||||
if len(time) > 1:
|
|
||||||
time_step = time[-1] - time[-2]
|
|
||||||
ts = tf_in_1s.inverse[data_set.timeframe]
|
|
||||||
|
|
||||||
if time_step != ts:
|
|
||||||
log.warning(
|
|
||||||
f'MKTS BUG: wrong timeframe loaded: {time_step}'
|
|
||||||
'YOUR DATABASE LIKELY CONTAINS BAD DATA FROM AN OLD BUG'
|
|
||||||
f'WIPING HISTORY FOR {ts}s'
|
|
||||||
)
|
|
||||||
await self.delete_ts(fqsn, timeframe)
|
|
||||||
|
|
||||||
# try reading again..
|
|
||||||
return await self.read_ohlcv(
|
|
||||||
fqsn,
|
|
||||||
timeframe,
|
|
||||||
end,
|
|
||||||
limit,
|
|
||||||
)
|
|
||||||
|
|
||||||
return array
|
|
||||||
|
|
||||||
async def delete_ts(
|
|
||||||
self,
|
|
||||||
key: str,
|
|
||||||
timeframe: Optional[Union[int, str]] = None,
|
|
||||||
fmt: str = 'OHLCV',
|
|
||||||
|
|
||||||
) -> bool:
|
|
||||||
|
|
||||||
client = self.client
|
|
||||||
syms = await client.list_symbols()
|
|
||||||
if key not in syms:
|
|
||||||
raise KeyError(f'`{key}` table key not found in\n{syms}?')
|
|
||||||
|
|
||||||
tbk = mk_tbk((
|
|
||||||
key,
|
|
||||||
tf_in_1s.get(timeframe, tf_in_1s[60]),
|
|
||||||
fmt,
|
|
||||||
))
|
|
||||||
return await client.destroy(tbk=tbk)
|
|
||||||
|
|
||||||
async def write_ohlcv(
|
|
||||||
self,
|
|
||||||
fqsn: str,
|
|
||||||
ohlcv: np.ndarray,
|
|
||||||
timeframe: int,
|
|
||||||
append_and_duplicate: bool = True,
|
|
||||||
limit: int = int(800e3),
|
|
||||||
|
|
||||||
) -> None:
|
|
||||||
# build mkts schema compat array for writing
|
|
||||||
mkts_dt = np.dtype(_ohlcv_dt)
|
|
||||||
mkts_array = np.zeros(
|
|
||||||
len(ohlcv),
|
|
||||||
dtype=mkts_dt,
|
|
||||||
)
|
|
||||||
# copy from shm array (yes it's this easy):
|
|
||||||
# https://numpy.org/doc/stable/user/basics.rec.html#assignment-from-other-structured-arrays
|
|
||||||
mkts_array[:] = ohlcv[[
|
|
||||||
'time',
|
|
||||||
'open',
|
|
||||||
'high',
|
|
||||||
'low',
|
|
||||||
'close',
|
|
||||||
'volume',
|
|
||||||
]]
|
|
||||||
|
|
||||||
m, r = divmod(len(mkts_array), limit)
|
|
||||||
|
|
||||||
tfkey = tf_in_1s[timeframe]
|
|
||||||
for i in range(m, 1):
|
|
||||||
to_push = mkts_array[i-1:i*limit]
|
|
||||||
|
|
||||||
# write to db
|
|
||||||
resp = await self.client.write(
|
|
||||||
to_push,
|
|
||||||
tbk=f'{fqsn}/{tfkey}/OHLCV',
|
|
||||||
|
|
||||||
# NOTE: will will append duplicates
|
|
||||||
# for the same timestamp-index.
|
|
||||||
# TODO: pre-deduplicate?
|
|
||||||
isvariablelength=append_and_duplicate,
|
|
||||||
)
|
|
||||||
|
|
||||||
log.info(
|
|
||||||
f'Wrote {mkts_array.size} datums to tsdb\n'
|
|
||||||
)
|
|
||||||
|
|
||||||
for resp in resp.responses:
|
|
||||||
err = resp.error
|
|
||||||
if err:
|
|
||||||
raise MarketStoreError(err)
|
|
||||||
|
|
||||||
if r:
|
|
||||||
to_push = mkts_array[m*limit:]
|
|
||||||
|
|
||||||
# write to db
|
|
||||||
resp = await self.client.write(
|
|
||||||
to_push,
|
|
||||||
tbk=f'{fqsn}/{tfkey}/OHLCV',
|
|
||||||
|
|
||||||
# NOTE: will will append duplicates
|
|
||||||
# for the same timestamp-index.
|
|
||||||
# TODO: pre deduplicate?
|
|
||||||
isvariablelength=append_and_duplicate,
|
|
||||||
)
|
|
||||||
|
|
||||||
log.info(
|
|
||||||
f'Wrote {mkts_array.size} datums to tsdb\n'
|
|
||||||
)
|
|
||||||
|
|
||||||
for resp in resp.responses:
|
|
||||||
err = resp.error
|
|
||||||
if err:
|
|
||||||
raise MarketStoreError(err)
|
|
||||||
|
|
||||||
# XXX: currently the only way to do this is through the CLI:
|
|
||||||
|
|
||||||
# sudo ./marketstore connect --dir ~/.config/piker/data
|
|
||||||
# >> \show mnq.globex.20220617.ib/1Sec/OHLCV 2022-05-15
|
|
||||||
# and this seems to block and use up mem..
|
|
||||||
# >> \trim mnq.globex.20220617.ib/1Sec/OHLCV 2022-05-15
|
|
||||||
|
|
||||||
# relevant source code for this is here:
|
|
||||||
# https://github.com/alpacahq/marketstore/blob/master/cmd/connect/session/trim.go#L14
|
|
||||||
# def delete_range(self, start_dt, end_dt) -> None:
|
|
||||||
# ...
|
|
||||||
|
|
||||||
|
|
||||||
@acm
|
|
||||||
async def open_storage_client(
|
|
||||||
fqsn: str,
|
|
||||||
period: Optional[Union[int, str]] = None, # in seconds
|
|
||||||
|
|
||||||
) -> tuple[Storage, dict[str, np.ndarray]]:
|
|
||||||
'''
|
|
||||||
Load a series by key and deliver in ``numpy`` struct array format.
|
|
||||||
|
|
||||||
'''
|
|
||||||
async with (
|
|
||||||
# eventually a storage backend endpoint
|
|
||||||
get_client() as client,
|
|
||||||
):
|
|
||||||
# slap on our wrapper api
|
|
||||||
yield Storage(client)
|
|
||||||
|
|
||||||
|
|
||||||
@acm
|
|
||||||
async def open_tsdb_client(
|
|
||||||
fqsn: str,
|
|
||||||
) -> Storage:
|
|
||||||
|
|
||||||
# TODO: real-time dedicated task for ensuring
|
|
||||||
# history consistency between the tsdb, shm and real-time feed..
|
|
||||||
|
|
||||||
# update sequence design notes:
|
|
||||||
|
|
||||||
# - load existing highest frequency data from mkts
|
|
||||||
# * how do we want to offer this to the UI?
|
|
||||||
# - lazy loading?
|
|
||||||
# - try to load it all and expect graphics caching/diffing
|
|
||||||
# to hide extra bits that aren't in view?
|
|
||||||
|
|
||||||
# - compute the diff between latest data from broker and shm
|
|
||||||
# * use sql api in mkts to determine where the backend should
|
|
||||||
# start querying for data?
|
|
||||||
# * append any diff with new shm length
|
|
||||||
# * determine missing (gapped) history by scanning
|
|
||||||
# * how far back do we look?
|
|
||||||
|
|
||||||
# - begin rt update ingest and aggregation
|
|
||||||
# * could start by always writing ticks to mkts instead of
|
|
||||||
# worrying about a shm queue for now.
|
|
||||||
# * we have a short list of shm queues worth groking:
|
|
||||||
# - https://github.com/pikers/piker/issues/107
|
|
||||||
# * the original data feed arch blurb:
|
|
||||||
# - https://github.com/pikers/piker/issues/98
|
|
||||||
#
|
|
||||||
profiler = Profiler(
|
|
||||||
disabled=True, # not pg_profile_enabled(),
|
|
||||||
delayed=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
async with (
|
|
||||||
open_storage_client(fqsn) as storage,
|
|
||||||
|
|
||||||
maybe_open_feed(
|
|
||||||
[fqsn],
|
|
||||||
start_stream=False,
|
|
||||||
|
|
||||||
) as feed,
|
|
||||||
):
|
|
||||||
profiler(f'opened feed for {fqsn}')
|
|
||||||
|
|
||||||
# to_append = feed.hist_shm.array
|
|
||||||
# to_prepend = None
|
|
||||||
|
|
||||||
if fqsn:
|
|
||||||
flume = feed.flumes[fqsn]
|
|
||||||
symbol = flume.symbol
|
|
||||||
if symbol:
|
|
||||||
fqsn = symbol.fqsn
|
|
||||||
|
|
||||||
# diff db history with shm and only write the missing portions
|
|
||||||
# ohlcv = flume.hist_shm.array
|
|
||||||
|
|
||||||
# TODO: use pg profiler
|
|
||||||
# for secs in (1, 60):
|
|
||||||
# tsdb_array = await storage.read_ohlcv(
|
|
||||||
# fqsn,
|
|
||||||
# timeframe=timeframe,
|
|
||||||
# )
|
|
||||||
# # hist diffing:
|
|
||||||
# # these aren't currently used but can be referenced from
|
|
||||||
# # within the embedded ipython shell below.
|
|
||||||
# to_append = ohlcv[ohlcv['time'] > ts['Epoch'][-1]]
|
|
||||||
# to_prepend = ohlcv[ohlcv['time'] < ts['Epoch'][0]]
|
|
||||||
|
|
||||||
# profiler('Finished db arrays diffs')
|
|
||||||
|
|
||||||
syms = await storage.client.list_symbols()
|
|
||||||
# log.info(f'Existing tsdb symbol set:\n{pformat(syms)}')
|
|
||||||
# profiler(f'listed symbols {syms}')
|
|
||||||
yield storage
|
|
||||||
|
|
||||||
# for array in [to_append, to_prepend]:
|
|
||||||
# if array is None:
|
|
||||||
# continue
|
|
||||||
|
|
||||||
# log.info(
|
|
||||||
# f'Writing datums {array.size} -> to tsdb from shm\n'
|
|
||||||
# )
|
|
||||||
# await storage.write_ohlcv(fqsn, array)
|
|
||||||
|
|
||||||
# profiler('Finished db writes')
|
|
||||||
|
|
||||||
|
|
||||||
async def ingest_quote_stream(
|
async def ingest_quote_stream(
|
||||||
symbols: list[str],
|
symbols: list[str],
|
||||||
brokername: str,
|
brokername: str,
|
||||||
|
|
|
@ -0,0 +1,414 @@
|
||||||
|
# piker: trading gear for hackers
|
||||||
|
# Copyright (C) Tyler Goodlet (in stewardship for pikers)
|
||||||
|
|
||||||
|
# This program is free software: you can redistribute it and/or modify
|
||||||
|
# it under the terms of the GNU Affero General Public License as published by
|
||||||
|
# the Free Software Foundation, either version 3 of the License, or
|
||||||
|
# (at your option) any later version.
|
||||||
|
|
||||||
|
# This program is distributed in the hope that it will be useful,
|
||||||
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
# GNU Affero General Public License for more details.
|
||||||
|
|
||||||
|
# You should have received a copy of the GNU Affero General Public License
|
||||||
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
'''
|
||||||
|
(time-series) database middle ware layer.
|
||||||
|
|
||||||
|
- APIs for read, write, delete, replicate over multiple
|
||||||
|
db systems.
|
||||||
|
- backend agnostic tick msg ingest machinery.
|
||||||
|
- broadcast systems for fan out of real-time ingested
|
||||||
|
data to live consumers.
|
||||||
|
- test harness utilities for data-processing verification.
|
||||||
|
|
||||||
|
'''
|
||||||
|
from __future__ import annotations
|
||||||
|
from contextlib import asynccontextmanager as acm
|
||||||
|
from datetime import datetime
|
||||||
|
from pprint import pformat
|
||||||
|
from typing import (
|
||||||
|
Optional,
|
||||||
|
Union,
|
||||||
|
)
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from anyio_marketstore import (
|
||||||
|
Params,
|
||||||
|
)
|
||||||
|
import pendulum
|
||||||
|
import purerpc
|
||||||
|
|
||||||
|
from ..service.marketstore import (
|
||||||
|
MarketstoreClient,
|
||||||
|
tf_in_1s,
|
||||||
|
mk_tbk,
|
||||||
|
_ohlcv_dt,
|
||||||
|
MarketStoreError,
|
||||||
|
)
|
||||||
|
from ..data.feed import maybe_open_feed
|
||||||
|
from ..log import get_logger
|
||||||
|
from .._profile import Profiler
|
||||||
|
|
||||||
|
|
||||||
|
log = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class Storage:
|
||||||
|
'''
|
||||||
|
High level storage api for both real-time and historical ingest.
|
||||||
|
|
||||||
|
'''
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
client: MarketstoreClient,
|
||||||
|
|
||||||
|
) -> None:
|
||||||
|
# TODO: eventually this should be an api/interface type that
|
||||||
|
# ensures we can support multiple tsdb backends.
|
||||||
|
self.client = client
|
||||||
|
|
||||||
|
# series' cache from tsdb reads
|
||||||
|
self._arrays: dict[str, np.ndarray] = {}
|
||||||
|
|
||||||
|
async def list_keys(self) -> list[str]:
|
||||||
|
return await self.client.list_symbols()
|
||||||
|
|
||||||
|
async def search_keys(self, pattern: str) -> list[str]:
|
||||||
|
'''
|
||||||
|
Search for time series key in the storage backend.
|
||||||
|
|
||||||
|
'''
|
||||||
|
...
|
||||||
|
|
||||||
|
async def write_ticks(self, ticks: list) -> None:
|
||||||
|
...
|
||||||
|
|
||||||
|
async def load(
|
||||||
|
self,
|
||||||
|
fqsn: str,
|
||||||
|
timeframe: int,
|
||||||
|
|
||||||
|
) -> tuple[
|
||||||
|
np.ndarray, # timeframe sampled array-series
|
||||||
|
Optional[datetime], # first dt
|
||||||
|
Optional[datetime], # last dt
|
||||||
|
]:
|
||||||
|
|
||||||
|
first_tsdb_dt, last_tsdb_dt = None, None
|
||||||
|
hist = await self.read_ohlcv(
|
||||||
|
fqsn,
|
||||||
|
# on first load we don't need to pull the max
|
||||||
|
# history per request size worth.
|
||||||
|
limit=3000,
|
||||||
|
timeframe=timeframe,
|
||||||
|
)
|
||||||
|
log.info(f'Loaded tsdb history {hist}')
|
||||||
|
|
||||||
|
if len(hist):
|
||||||
|
times = hist['Epoch']
|
||||||
|
first, last = times[0], times[-1]
|
||||||
|
first_tsdb_dt, last_tsdb_dt = map(
|
||||||
|
pendulum.from_timestamp, [first, last]
|
||||||
|
)
|
||||||
|
|
||||||
|
return (
|
||||||
|
hist, # array-data
|
||||||
|
first_tsdb_dt, # start of query-frame
|
||||||
|
last_tsdb_dt, # most recent
|
||||||
|
)
|
||||||
|
|
||||||
|
async def read_ohlcv(
|
||||||
|
self,
|
||||||
|
fqsn: str,
|
||||||
|
timeframe: int | str,
|
||||||
|
end: Optional[int] = None,
|
||||||
|
limit: int = int(800e3),
|
||||||
|
|
||||||
|
) -> np.ndarray:
|
||||||
|
|
||||||
|
client = self.client
|
||||||
|
syms = await client.list_symbols()
|
||||||
|
|
||||||
|
if fqsn not in syms:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
# use the provided timeframe or 1s by default
|
||||||
|
tfstr = tf_in_1s.get(timeframe, tf_in_1s[1])
|
||||||
|
|
||||||
|
params = Params(
|
||||||
|
symbols=fqsn,
|
||||||
|
timeframe=tfstr,
|
||||||
|
attrgroup='OHLCV',
|
||||||
|
end=end,
|
||||||
|
# limit_from_start=True,
|
||||||
|
|
||||||
|
# TODO: figure the max limit here given the
|
||||||
|
# ``purepc`` msg size limit of purerpc: 33554432
|
||||||
|
limit=limit,
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = await client.query(params)
|
||||||
|
except purerpc.grpclib.exceptions.UnknownError as err:
|
||||||
|
# indicate there is no history for this timeframe
|
||||||
|
log.exception(
|
||||||
|
f'Unknown mkts QUERY error: {params}\n'
|
||||||
|
f'{err.args}'
|
||||||
|
)
|
||||||
|
return {}
|
||||||
|
|
||||||
|
# TODO: it turns out column access on recarrays is actually slower:
|
||||||
|
# https://jakevdp.github.io/PythonDataScienceHandbook/02.09-structured-data-numpy.html#RecordArrays:-Structured-Arrays-with-a-Twist
|
||||||
|
# it might make sense to make these structured arrays?
|
||||||
|
data_set = result.by_symbols()[fqsn]
|
||||||
|
array = data_set.array
|
||||||
|
|
||||||
|
# XXX: ensure sample rate is as expected
|
||||||
|
time = data_set.array['Epoch']
|
||||||
|
if len(time) > 1:
|
||||||
|
time_step = time[-1] - time[-2]
|
||||||
|
ts = tf_in_1s.inverse[data_set.timeframe]
|
||||||
|
|
||||||
|
if time_step != ts:
|
||||||
|
log.warning(
|
||||||
|
f'MKTS BUG: wrong timeframe loaded: {time_step}'
|
||||||
|
'YOUR DATABASE LIKELY CONTAINS BAD DATA FROM AN OLD BUG'
|
||||||
|
f'WIPING HISTORY FOR {ts}s'
|
||||||
|
)
|
||||||
|
await self.delete_ts(fqsn, timeframe)
|
||||||
|
|
||||||
|
# try reading again..
|
||||||
|
return await self.read_ohlcv(
|
||||||
|
fqsn,
|
||||||
|
timeframe,
|
||||||
|
end,
|
||||||
|
limit,
|
||||||
|
)
|
||||||
|
|
||||||
|
return array
|
||||||
|
|
||||||
|
async def delete_ts(
|
||||||
|
self,
|
||||||
|
key: str,
|
||||||
|
timeframe: Optional[Union[int, str]] = None,
|
||||||
|
fmt: str = 'OHLCV',
|
||||||
|
|
||||||
|
) -> bool:
|
||||||
|
|
||||||
|
client = self.client
|
||||||
|
syms = await client.list_symbols()
|
||||||
|
if key not in syms:
|
||||||
|
raise KeyError(f'`{key}` table key not found in\n{syms}?')
|
||||||
|
|
||||||
|
tbk = mk_tbk((
|
||||||
|
key,
|
||||||
|
tf_in_1s.get(timeframe, tf_in_1s[60]),
|
||||||
|
fmt,
|
||||||
|
))
|
||||||
|
return await client.destroy(tbk=tbk)
|
||||||
|
|
||||||
|
async def write_ohlcv(
|
||||||
|
self,
|
||||||
|
fqsn: str,
|
||||||
|
ohlcv: np.ndarray,
|
||||||
|
timeframe: int,
|
||||||
|
append_and_duplicate: bool = True,
|
||||||
|
limit: int = int(800e3),
|
||||||
|
|
||||||
|
) -> None:
|
||||||
|
# build mkts schema compat array for writing
|
||||||
|
mkts_dt = np.dtype(_ohlcv_dt)
|
||||||
|
mkts_array = np.zeros(
|
||||||
|
len(ohlcv),
|
||||||
|
dtype=mkts_dt,
|
||||||
|
)
|
||||||
|
# copy from shm array (yes it's this easy):
|
||||||
|
# https://numpy.org/doc/stable/user/basics.rec.html#assignment-from-other-structured-arrays
|
||||||
|
mkts_array[:] = ohlcv[[
|
||||||
|
'time',
|
||||||
|
'open',
|
||||||
|
'high',
|
||||||
|
'low',
|
||||||
|
'close',
|
||||||
|
'volume',
|
||||||
|
]]
|
||||||
|
|
||||||
|
m, r = divmod(len(mkts_array), limit)
|
||||||
|
|
||||||
|
tfkey = tf_in_1s[timeframe]
|
||||||
|
for i in range(m, 1):
|
||||||
|
to_push = mkts_array[i-1:i*limit]
|
||||||
|
|
||||||
|
# write to db
|
||||||
|
resp = await self.client.write(
|
||||||
|
to_push,
|
||||||
|
tbk=f'{fqsn}/{tfkey}/OHLCV',
|
||||||
|
|
||||||
|
# NOTE: will will append duplicates
|
||||||
|
# for the same timestamp-index.
|
||||||
|
# TODO: pre-deduplicate?
|
||||||
|
isvariablelength=append_and_duplicate,
|
||||||
|
)
|
||||||
|
|
||||||
|
log.info(
|
||||||
|
f'Wrote {mkts_array.size} datums to tsdb\n'
|
||||||
|
)
|
||||||
|
|
||||||
|
for resp in resp.responses:
|
||||||
|
err = resp.error
|
||||||
|
if err:
|
||||||
|
raise MarketStoreError(err)
|
||||||
|
|
||||||
|
if r:
|
||||||
|
to_push = mkts_array[m*limit:]
|
||||||
|
|
||||||
|
# write to db
|
||||||
|
resp = await self.client.write(
|
||||||
|
to_push,
|
||||||
|
tbk=f'{fqsn}/{tfkey}/OHLCV',
|
||||||
|
|
||||||
|
# NOTE: will will append duplicates
|
||||||
|
# for the same timestamp-index.
|
||||||
|
# TODO: pre deduplicate?
|
||||||
|
isvariablelength=append_and_duplicate,
|
||||||
|
)
|
||||||
|
|
||||||
|
log.info(
|
||||||
|
f'Wrote {mkts_array.size} datums to tsdb\n'
|
||||||
|
)
|
||||||
|
|
||||||
|
for resp in resp.responses:
|
||||||
|
err = resp.error
|
||||||
|
if err:
|
||||||
|
raise MarketStoreError(err)
|
||||||
|
|
||||||
|
# XXX: currently the only way to do this is through the CLI:
|
||||||
|
|
||||||
|
# sudo ./marketstore connect --dir ~/.config/piker/data
|
||||||
|
# >> \show mnq.globex.20220617.ib/1Sec/OHLCV 2022-05-15
|
||||||
|
# and this seems to block and use up mem..
|
||||||
|
# >> \trim mnq.globex.20220617.ib/1Sec/OHLCV 2022-05-15
|
||||||
|
|
||||||
|
# relevant source code for this is here:
|
||||||
|
# https://github.com/alpacahq/marketstore/blob/master/cmd/connect/session/trim.go#L14
|
||||||
|
# def delete_range(self, start_dt, end_dt) -> None:
|
||||||
|
# ...
|
||||||
|
|
||||||
|
|
||||||
|
@acm
|
||||||
|
async def open_storage_client(
|
||||||
|
fqsn: str,
|
||||||
|
period: Optional[Union[int, str]] = None, # in seconds
|
||||||
|
|
||||||
|
) -> tuple[Storage, dict[str, np.ndarray]]:
|
||||||
|
'''
|
||||||
|
Load a series by key and deliver in ``numpy`` struct array format.
|
||||||
|
|
||||||
|
'''
|
||||||
|
# TODO: generic import-by-name system for each backend much like
|
||||||
|
# we have in ``piker.brokers`` module loading for `brokerd` B)
|
||||||
|
from ..service import marketstore
|
||||||
|
mod = marketstore
|
||||||
|
|
||||||
|
async with (
|
||||||
|
# eventually a storage backend endpoint
|
||||||
|
mod.get_client() as client,
|
||||||
|
):
|
||||||
|
# slap on our wrapper api
|
||||||
|
yield Storage(client)
|
||||||
|
|
||||||
|
|
||||||
|
# NOTE: pretty sure right now this is only being
|
||||||
|
# called by a CLI entrypoint?
|
||||||
|
@acm
|
||||||
|
async def open_tsdb_client(
|
||||||
|
fqsn: str,
|
||||||
|
|
||||||
|
) -> Storage:
|
||||||
|
|
||||||
|
# TODO: real-time dedicated task for ensuring
|
||||||
|
# history consistency between the tsdb, shm and real-time feed..
|
||||||
|
|
||||||
|
# update sequence design notes:
|
||||||
|
|
||||||
|
# - load existing highest frequency data from mkts
|
||||||
|
# * how do we want to offer this to the UI?
|
||||||
|
# - lazy loading?
|
||||||
|
# - try to load it all and expect graphics caching/diffing
|
||||||
|
# to hide extra bits that aren't in view?
|
||||||
|
|
||||||
|
# - compute the diff between latest data from broker and shm
|
||||||
|
# * use sql api in mkts to determine where the backend should
|
||||||
|
# start querying for data?
|
||||||
|
# * append any diff with new shm length
|
||||||
|
# * determine missing (gapped) history by scanning
|
||||||
|
# * how far back do we look?
|
||||||
|
|
||||||
|
# - begin rt update ingest and aggregation
|
||||||
|
# * could start by always writing ticks to mkts instead of
|
||||||
|
# worrying about a shm queue for now.
|
||||||
|
# * we have a short list of shm queues worth groking:
|
||||||
|
# - https://github.com/pikers/piker/issues/107
|
||||||
|
# * the original data feed arch blurb:
|
||||||
|
# - https://github.com/pikers/piker/issues/98
|
||||||
|
#
|
||||||
|
profiler = Profiler(
|
||||||
|
disabled=True, # not pg_profile_enabled(),
|
||||||
|
delayed=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
async with (
|
||||||
|
open_storage_client(fqsn) as storage,
|
||||||
|
|
||||||
|
maybe_open_feed(
|
||||||
|
[fqsn],
|
||||||
|
start_stream=False,
|
||||||
|
|
||||||
|
) as feed,
|
||||||
|
):
|
||||||
|
profiler(f'opened feed for {fqsn}')
|
||||||
|
|
||||||
|
# to_append = feed.hist_shm.array
|
||||||
|
# to_prepend = None
|
||||||
|
|
||||||
|
if fqsn:
|
||||||
|
flume = feed.flumes[fqsn]
|
||||||
|
symbol = flume.symbol
|
||||||
|
if symbol:
|
||||||
|
fqsn = symbol.fqsn
|
||||||
|
|
||||||
|
# diff db history with shm and only write the missing portions
|
||||||
|
# ohlcv = flume.hist_shm.array
|
||||||
|
|
||||||
|
# TODO: use pg profiler
|
||||||
|
# for secs in (1, 60):
|
||||||
|
# tsdb_array = await storage.read_ohlcv(
|
||||||
|
# fqsn,
|
||||||
|
# timeframe=timeframe,
|
||||||
|
# )
|
||||||
|
# # hist diffing:
|
||||||
|
# # these aren't currently used but can be referenced from
|
||||||
|
# # within the embedded ipython shell below.
|
||||||
|
# to_append = ohlcv[ohlcv['time'] > ts['Epoch'][-1]]
|
||||||
|
# to_prepend = ohlcv[ohlcv['time'] < ts['Epoch'][0]]
|
||||||
|
|
||||||
|
# profiler('Finished db arrays diffs')
|
||||||
|
|
||||||
|
syms = await storage.client.list_symbols()
|
||||||
|
log.info(f'Existing tsdb symbol set:\n{pformat(syms)}')
|
||||||
|
# profiler(f'listed symbols {syms}')
|
||||||
|
yield storage
|
||||||
|
|
||||||
|
# for array in [to_append, to_prepend]:
|
||||||
|
# if array is None:
|
||||||
|
# continue
|
||||||
|
|
||||||
|
# log.info(
|
||||||
|
# f'Writing datums {array.size} -> to tsdb from shm\n'
|
||||||
|
# )
|
||||||
|
# await storage.write_ohlcv(fqsn, array)
|
||||||
|
|
||||||
|
# profiler('Finished db writes')
|
Loading…
Reference in New Issue