Add diffing logic to `tsdb_history_update()`
Add some basic `numpy` epoch slice logic to generate append and prepend arrays to write to the db. Mooar cool things, - add a `Storage.delete_ts()` method to wipe a column series from the db easily. - don't attempt to read in any OHLC series by default on client load - add some `pyqtgraph` profiling and drop manual latency measures - if no db series for the fqsn exists write the entire shm arrayl1_precision_fix
parent
950cb03e07
commit
ca48577c60
|
@ -29,14 +29,13 @@ from typing import (
|
|||
Any,
|
||||
Optional,
|
||||
Union,
|
||||
# Callable,
|
||||
# TYPE_CHECKING,
|
||||
)
|
||||
import time
|
||||
from math import isnan
|
||||
|
||||
from bidict import bidict
|
||||
import msgpack
|
||||
import pyqtgraph as pg
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import tractor
|
||||
|
@ -49,15 +48,8 @@ from anyio_marketstore import (
|
|||
import purerpc
|
||||
|
||||
from .feed import maybe_open_feed
|
||||
from ._source import (
|
||||
mk_fqsn,
|
||||
# Symbol,
|
||||
)
|
||||
from ..log import get_logger, get_console_log
|
||||
|
||||
# if TYPE_CHECKING:
|
||||
# from ._sharedmem import ShmArray
|
||||
|
||||
|
||||
log = get_logger(__name__)
|
||||
|
||||
|
@ -235,6 +227,16 @@ class Storage:
|
|||
# series' cache from tsdb reads
|
||||
self._arrays: dict[str, np.ndarray] = {}
|
||||
|
||||
async def list_keys(self) -> list[str]:
|
||||
return await self.client.list_symbols()
|
||||
|
||||
async def search_keys(self, pattern: str) -> list[str]:
|
||||
'''
|
||||
Search for time series key in the storage backend.
|
||||
|
||||
'''
|
||||
...
|
||||
|
||||
async def write_ticks(self, ticks: list) -> None:
|
||||
...
|
||||
|
||||
|
@ -262,7 +264,9 @@ class Storage:
|
|||
for tfstr in tf_in_1s.values():
|
||||
try:
|
||||
log.info(f'querying for {tfstr}@{fqsn}')
|
||||
result = await client.query(Params(fqsn, tfstr, 'OHLCV',))
|
||||
result = await client.query(
|
||||
Params(fqsn, tfstr, 'OHLCV',)
|
||||
)
|
||||
break
|
||||
except purerpc.grpclib.exceptions.UnknownError:
|
||||
# XXX: this is already logged by the container and
|
||||
|
@ -276,6 +280,9 @@ class Storage:
|
|||
tfstr = tf_in_1s[timeframe]
|
||||
result = await client.query(Params(fqsn, tfstr, 'OHLCV',))
|
||||
|
||||
# TODO: it turns out column access on recarrays is actually slower:
|
||||
# https://jakevdp.github.io/PythonDataScienceHandbook/02.09-structured-data-numpy.html#RecordArrays:-Structured-Arrays-with-a-Twist
|
||||
# it might make sense to make these structured arrays?
|
||||
# Fill out a `numpy` array-results map
|
||||
arrays = {}
|
||||
for fqsn, data_set in result.by_symbols().items():
|
||||
|
@ -283,7 +290,22 @@ class Storage:
|
|||
tf_in_1s.inverse[data_set.timeframe]
|
||||
] = data_set.array
|
||||
|
||||
return arrays[fqsn][timeframe] if timeframe else arrays
|
||||
return arrays[fqsn][timeframe] if timeframe else arrays[fqsn]
|
||||
|
||||
async def delete_ts(
|
||||
self,
|
||||
key: str,
|
||||
timeframe: Optional[Union[int, str]] = None,
|
||||
|
||||
) -> bool:
|
||||
|
||||
client = self.client
|
||||
syms = await client.list_symbols()
|
||||
print(syms)
|
||||
# if key not in syms:
|
||||
# raise KeyError(f'`{fqsn}` table key not found?')
|
||||
|
||||
return await client.destroy(tbk=key)
|
||||
|
||||
|
||||
@acm
|
||||
|
@ -296,19 +318,16 @@ async def open_storage_client(
|
|||
Load a series by key and deliver in ``numpy`` struct array format.
|
||||
|
||||
'''
|
||||
async with get_client() as client:
|
||||
|
||||
storage_client = Storage(client)
|
||||
arrays = await storage_client.read_ohlcv(
|
||||
fqsn,
|
||||
period,
|
||||
)
|
||||
|
||||
yield storage_client, arrays
|
||||
async with (
|
||||
# eventually a storage backend endpoint
|
||||
get_client() as client,
|
||||
):
|
||||
# slap on our wrapper api
|
||||
yield Storage(client)
|
||||
|
||||
|
||||
async def backfill_history_diff(
|
||||
# symbol: Symbol
|
||||
async def tsdb_history_update(
|
||||
fqsn: str,
|
||||
|
||||
) -> list[str]:
|
||||
|
||||
|
@ -338,108 +357,92 @@ async def backfill_history_diff(
|
|||
# * the original data feed arch blurb:
|
||||
# - https://github.com/pikers/piker/issues/98
|
||||
#
|
||||
|
||||
broker = 'ib'
|
||||
symbol = 'mnq.globex'
|
||||
|
||||
# broker = 'binance'
|
||||
# symbol = 'btcusdt'
|
||||
|
||||
fqsn = mk_fqsn(broker, symbol)
|
||||
profiler = pg.debug.Profiler(
|
||||
disabled=False, # not pg_profile_enabled(),
|
||||
delayed=False,
|
||||
)
|
||||
|
||||
async with (
|
||||
get_client() as client,
|
||||
open_storage_client(fqsn) as storage,
|
||||
|
||||
maybe_open_feed(
|
||||
broker,
|
||||
[symbol],
|
||||
loglevel='info',
|
||||
# backpressure=False,
|
||||
[fqsn],
|
||||
start_stream=False,
|
||||
|
||||
) as (feed, stream),
|
||||
):
|
||||
syms = await client.list_symbols()
|
||||
log.info(f'Existing symbol set:\n{pformat(syms)}')
|
||||
profiler(f'opened feed for {fqsn}')
|
||||
|
||||
symbol = feed.symbols.get(fqsn)
|
||||
if symbol:
|
||||
fqsn = symbol.front_fqsn()
|
||||
|
||||
syms = await storage.client.list_symbols()
|
||||
log.info(f'Existing tsdb symbol set:\n{pformat(syms)}')
|
||||
profiler(f'listed symbols {syms}')
|
||||
|
||||
# diff db history with shm and only write the missing portions
|
||||
ohlcv = feed.shm.array
|
||||
|
||||
key = (fqsn, '1Sec', 'OHLCV')
|
||||
tbk = mk_tbk(key)
|
||||
# TODO: use pg profiler
|
||||
tsdb_arrays = await storage.read_ohlcv(fqsn)
|
||||
|
||||
# diff vs. existing array and append new history
|
||||
# TODO:
|
||||
to_append = feed.shm.array
|
||||
to_prepend = None
|
||||
|
||||
# TODO: should be no error?
|
||||
# assert not resp.responses
|
||||
# hist diffing
|
||||
if tsdb_arrays:
|
||||
onesec = tsdb_arrays[1]
|
||||
to_append = ohlcv[ohlcv['time'] > onesec['Epoch'][-1]]
|
||||
to_prepend = ohlcv[ohlcv['time'] < onesec['Epoch'][0]]
|
||||
|
||||
start = time.time()
|
||||
profiler('Finished db arrays diffs')
|
||||
|
||||
qr = await client.query(
|
||||
# Params(fqsn, '1Sec`', 'OHLCV',)
|
||||
Params(*key),
|
||||
)
|
||||
# # Dig out `numpy` results map
|
||||
arrays: dict[tuple[str, int], np.ndarray] = {}
|
||||
for name, data_set in qr.by_symbols().items():
|
||||
in_secs = tf_in_1s.inverse[data_set.timeframe]
|
||||
arrays[(name, in_secs)] = data_set.array
|
||||
for array in [to_append, to_prepend]:
|
||||
if array is None:
|
||||
continue
|
||||
|
||||
s1 = arrays[(fqsn, 1)]
|
||||
to_append = ohlcv[ohlcv['time'] > s1['Epoch'][-1]]
|
||||
log.info(
|
||||
f'Writing datums {array.size} -> to tsdb from shm\n'
|
||||
)
|
||||
|
||||
end_diff = time.time()
|
||||
diff_ms = round((end_diff - start) * 1e3, ndigits=2)
|
||||
# build mkts schema compat array for writing
|
||||
mkts_dt = np.dtype(_ohlcv_dt)
|
||||
mkts_array = np.zeros(
|
||||
len(array),
|
||||
dtype=mkts_dt,
|
||||
)
|
||||
# copy from shm array (yes it's this easy):
|
||||
# https://numpy.org/doc/stable/user/basics.rec.html#assignment-from-other-structured-arrays
|
||||
mkts_array[:] = array[[
|
||||
'time',
|
||||
'open',
|
||||
'high',
|
||||
'low',
|
||||
'close',
|
||||
'volume',
|
||||
]]
|
||||
|
||||
log.info(
|
||||
f'Appending {to_append.size} datums to tsdb from shm\n'
|
||||
f'Total diff time: {diff_ms} ms'
|
||||
)
|
||||
# write to db
|
||||
resp = await storage.client.write(
|
||||
mkts_array,
|
||||
tbk=f'{fqsn}/1Sec/OHLCV',
|
||||
|
||||
# build mkts schema compat array for writing
|
||||
mkts_dt = np.dtype(_ohlcv_dt)
|
||||
mkts_array = np.zeros(
|
||||
len(to_append),
|
||||
dtype=mkts_dt,
|
||||
)
|
||||
# copy from shm array (yes it's this easy):
|
||||
# https://numpy.org/doc/stable/user/basics.rec.html#assignment-from-other-structured-arrays
|
||||
mkts_array[:] = to_append[[
|
||||
'time',
|
||||
'open',
|
||||
'high',
|
||||
'low',
|
||||
'close',
|
||||
'volume',
|
||||
]]
|
||||
# NOTE: will will append duplicates
|
||||
# for the same timestamp-index.
|
||||
# TODO: pre deduplicate?
|
||||
isvariablelength=True,
|
||||
)
|
||||
|
||||
# write to db
|
||||
resp = await client.write(
|
||||
mkts_array,
|
||||
tbk=tbk,
|
||||
# NOTE: will will append duplicates
|
||||
# for the same timestamp-index.
|
||||
isvariablelength=True,
|
||||
)
|
||||
end_write = time.time()
|
||||
diff_ms = round((end_write - end_diff) * 1e3, ndigits=2)
|
||||
log.info(
|
||||
f'Wrote {to_append.size} datums to tsdb\n'
|
||||
f'Total write time: {diff_ms} ms'
|
||||
)
|
||||
for resp in resp.responses:
|
||||
err = resp.error
|
||||
if err:
|
||||
raise MarketStoreError(err)
|
||||
log.info(
|
||||
f'Wrote {to_append.size} datums to tsdb\n'
|
||||
)
|
||||
profiler('Finished db writes')
|
||||
|
||||
# TODO: backfiller loop
|
||||
from piker.ui._compression import downsample
|
||||
x, y = downsample(
|
||||
s1['Epoch'],
|
||||
s1['Close'],
|
||||
bins=10,
|
||||
)
|
||||
await tractor.breakpoint()
|
||||
for resp in resp.responses:
|
||||
err = resp.error
|
||||
if err:
|
||||
raise MarketStoreError(err)
|
||||
|
||||
|
||||
async def ingest_quote_stream(
|
||||
|
|
Loading…
Reference in New Issue