Standardize ohlc dtype
parent
4a1bcf7626
commit
c6b4b62228
|
@ -8,9 +8,9 @@ import numpy as np
|
|||
import pandas as pd
|
||||
|
||||
|
||||
OHLC_dtype = np.dtype(
|
||||
ohlc_dtype = np.dtype(
|
||||
[
|
||||
('id', int),
|
||||
('index', int),
|
||||
('time', float),
|
||||
('open', float),
|
||||
('high', float),
|
||||
|
@ -20,15 +20,16 @@ OHLC_dtype = np.dtype(
|
|||
]
|
||||
)
|
||||
|
||||
# tf = {
|
||||
# 1: TimeFrame.M1,
|
||||
# 5: TimeFrame.M5,
|
||||
# 15: TimeFrame.M15,
|
||||
# 30: TimeFrame.M30,
|
||||
# 60: TimeFrame.H1,
|
||||
# 240: TimeFrame.H4,
|
||||
# 1440: TimeFrame.D1,
|
||||
# }
|
||||
# map time frame "keys" to minutes values
|
||||
tf_in_1m = {
|
||||
'1m': 1,
|
||||
'5m': 5,
|
||||
'15m': 15,
|
||||
'30m': 30,
|
||||
'1h': 60,
|
||||
'4h': 240,
|
||||
'1d': 1440,
|
||||
}
|
||||
|
||||
|
||||
def ohlc_zeros(length: int) -> np.ndarray:
|
||||
|
@ -37,7 +38,7 @@ def ohlc_zeros(length: int) -> np.ndarray:
|
|||
For "why a structarray" see here: https://stackoverflow.com/a/52443038
|
||||
Bottom line, they're faster then ``np.recarray``.
|
||||
"""
|
||||
return np.zeros(length, dtype=OHLC_dtype)
|
||||
return np.zeros(length, dtype=ohlc_dtype)
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -87,7 +88,7 @@ def from_df(
|
|||
df = df.rename(columns=columns)
|
||||
|
||||
for name in df.columns:
|
||||
if name not in OHLC_dtype.names:
|
||||
if name not in ohlc_dtype.names[1:]:
|
||||
del df[name]
|
||||
|
||||
# TODO: it turns out column access on recarrays is actually slower:
|
||||
|
|
Loading…
Reference in New Issue