Standardize ohlc dtype
parent
4a1bcf7626
commit
c6b4b62228
|
@ -8,9 +8,9 @@ import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
OHLC_dtype = np.dtype(
|
ohlc_dtype = np.dtype(
|
||||||
[
|
[
|
||||||
('id', int),
|
('index', int),
|
||||||
('time', float),
|
('time', float),
|
||||||
('open', float),
|
('open', float),
|
||||||
('high', float),
|
('high', float),
|
||||||
|
@ -20,15 +20,16 @@ OHLC_dtype = np.dtype(
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
# tf = {
|
# map time frame "keys" to minutes values
|
||||||
# 1: TimeFrame.M1,
|
tf_in_1m = {
|
||||||
# 5: TimeFrame.M5,
|
'1m': 1,
|
||||||
# 15: TimeFrame.M15,
|
'5m': 5,
|
||||||
# 30: TimeFrame.M30,
|
'15m': 15,
|
||||||
# 60: TimeFrame.H1,
|
'30m': 30,
|
||||||
# 240: TimeFrame.H4,
|
'1h': 60,
|
||||||
# 1440: TimeFrame.D1,
|
'4h': 240,
|
||||||
# }
|
'1d': 1440,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
def ohlc_zeros(length: int) -> np.ndarray:
|
def ohlc_zeros(length: int) -> np.ndarray:
|
||||||
|
@ -37,7 +38,7 @@ def ohlc_zeros(length: int) -> np.ndarray:
|
||||||
For "why a structarray" see here: https://stackoverflow.com/a/52443038
|
For "why a structarray" see here: https://stackoverflow.com/a/52443038
|
||||||
Bottom line, they're faster then ``np.recarray``.
|
Bottom line, they're faster then ``np.recarray``.
|
||||||
"""
|
"""
|
||||||
return np.zeros(length, dtype=OHLC_dtype)
|
return np.zeros(length, dtype=ohlc_dtype)
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
|
@ -87,7 +88,7 @@ def from_df(
|
||||||
df = df.rename(columns=columns)
|
df = df.rename(columns=columns)
|
||||||
|
|
||||||
for name in df.columns:
|
for name in df.columns:
|
||||||
if name not in OHLC_dtype.names:
|
if name not in ohlc_dtype.names[1:]:
|
||||||
del df[name]
|
del df[name]
|
||||||
|
|
||||||
# TODO: it turns out column access on recarrays is actually slower:
|
# TODO: it turns out column access on recarrays is actually slower:
|
||||||
|
|
Loading…
Reference in New Issue