Add an ohlcv high/low tracer with optional downsampling
parent
dbe55ad4d2
commit
ab8ea41b93
|
@ -13,16 +13,121 @@
|
|||
|
||||
# You should have received a copy of the GNU Affero General Public License
|
||||
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
'''
|
||||
Graphics related downsampling routines for compressing to pixel
|
||||
limits on the display device.
|
||||
|
||||
'''
|
||||
# from typing import Optional
|
||||
|
||||
import numpy as np
|
||||
# from numpy.lib.recfunctions import structured_to_unstructured
|
||||
from numba import (
|
||||
jit, float64, optional, int64,
|
||||
jit,
|
||||
float64, optional, int64,
|
||||
)
|
||||
|
||||
from ..log import get_logger
|
||||
|
||||
|
||||
log = get_logger(__name__)
|
||||
|
||||
|
||||
def hl2mxmn(
|
||||
ohlc: np.ndarray,
|
||||
downsample_by: int = 0,
|
||||
|
||||
) -> np.ndarray:
|
||||
'''
|
||||
Convert a OHLC struct-array containing 'high'/'low' columns
|
||||
to a "joined" max/min 1-d array.
|
||||
|
||||
'''
|
||||
index = ohlc['index']
|
||||
hls = ohlc[[
|
||||
'low',
|
||||
'high',
|
||||
]]
|
||||
|
||||
# XXX: don't really need this any more since we implemented
|
||||
# the "tracer" routine, `numba`-style..
|
||||
# create a "max and min" sequence from ohlc datums
|
||||
# hl2d = structured_to_unstructured(hls)
|
||||
# hl1d = hl2d.flatten()
|
||||
|
||||
mxmn = np.empty(2*hls.size, dtype=np.float64)
|
||||
x = np.empty(2*hls.size, dtype=np.float64)
|
||||
trace_hl(hls, mxmn, x, index[0])
|
||||
x = x + index[0] - 1
|
||||
|
||||
if not downsample_by > 2:
|
||||
return mxmn, x
|
||||
|
||||
dsx, dsy = downsample(
|
||||
y=mxmn,
|
||||
x=x,
|
||||
bins=downsample_by,
|
||||
)
|
||||
log.info(f'downsampling by {downsample_by}')
|
||||
return dsy, dsx
|
||||
|
||||
|
||||
@jit(
|
||||
# TODO: the type annots..
|
||||
# float64[:](float64[:],),
|
||||
nopython=True,
|
||||
)
|
||||
def trace_hl(
|
||||
hl: 'np.ndarray',
|
||||
out: np.ndarray,
|
||||
x: np.ndarray,
|
||||
start: int,
|
||||
|
||||
# the "offset" values in the x-domain which
|
||||
# place the 2 output points around each ``int``
|
||||
# master index.
|
||||
margin: float = 0.43,
|
||||
|
||||
) -> None:
|
||||
'''
|
||||
"Trace" the outline of the high-low values of an ohlc sequence
|
||||
as a line such that the maximum deviation (aka disperaion) between
|
||||
bars if preserved.
|
||||
|
||||
This routine is expected to modify input arrays in-place.
|
||||
|
||||
'''
|
||||
last_l = hl['low'][0]
|
||||
last_h = hl['high'][0]
|
||||
|
||||
for i in range(hl.size):
|
||||
row = hl[i]
|
||||
l, h = row['low'], row['high']
|
||||
|
||||
up_diff = h - last_l
|
||||
down_diff = last_h - l
|
||||
|
||||
if up_diff > down_diff:
|
||||
out[2*i + 1] = h
|
||||
out[2*i] = last_l
|
||||
else:
|
||||
out[2*i + 1] = l
|
||||
out[2*i] = last_h
|
||||
|
||||
last_l = l
|
||||
last_h = h
|
||||
|
||||
x[2*i] = int(i) - margin
|
||||
x[2*i + 1] = int(i) + margin
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def downsample(
|
||||
x: np.ndarray,
|
||||
y: np.ndarray,
|
||||
bins: int,
|
||||
bins: int = 2,
|
||||
method: str = 'peak',
|
||||
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
|
@ -36,20 +141,31 @@ def downsample(
|
|||
# py3.10 syntax
|
||||
match method:
|
||||
case 'peak':
|
||||
# breakpoint()
|
||||
if bins < 2:
|
||||
log.warning('No downsampling taking place?')
|
||||
|
||||
ds = bins
|
||||
n = len(x) // ds
|
||||
x1 = np.empty((n, 2))
|
||||
|
||||
# start of x-values; try to select a somewhat centered point
|
||||
stx = ds//2
|
||||
stx = ds // 2
|
||||
x1[:] = x[stx:stx+n*ds:ds, np.newaxis]
|
||||
x = x1.reshape(n*2)
|
||||
|
||||
y1 = np.empty((n, 2))
|
||||
y2 = y[:n*ds].reshape((n, ds))
|
||||
|
||||
y1[:, 0] = y2.max(axis=1)
|
||||
y1[:, 1] = y2.min(axis=1)
|
||||
y = y1.reshape(n*2)
|
||||
|
||||
case '4px':
|
||||
return x, y
|
||||
|
||||
# TODO: this algo from infinite, see
|
||||
# https://github.com/pikers/piker/issues/109
|
||||
case 'infinite_4px':
|
||||
|
||||
# Ex. from infinite on downsampling viewable graphics.
|
||||
# "one thing i remembered about the binning - if you are
|
||||
|
@ -62,7 +178,7 @@ def downsample(
|
|||
def build_subchart(
|
||||
self,
|
||||
subchart,
|
||||
width, # width of screen?
|
||||
width, # width of screen in pxs?
|
||||
chart_type,
|
||||
lower, # x start?
|
||||
upper, # x end?
|
||||
|
@ -86,8 +202,9 @@ def downsample(
|
|||
# the width of the screen?
|
||||
(upper-lower)/float(width),
|
||||
)
|
||||
print(f'downsampled to {nb} bins')
|
||||
|
||||
return x, y
|
||||
return x, y
|
||||
|
||||
|
||||
@jit(nopython=True)
|
||||
|
@ -101,13 +218,16 @@ def subset_by_x(
|
|||
step: float,
|
||||
|
||||
) -> int:
|
||||
count = len(xs)
|
||||
# nbins = len(bins)
|
||||
count = len(xs)
|
||||
bincount = 0
|
||||
x_left = start
|
||||
x_left = x_start
|
||||
|
||||
# Find the first bin
|
||||
while xs[0] >= x_left + step:
|
||||
first = xs[0]
|
||||
while first >= x_left + step:
|
||||
x_left += step
|
||||
|
||||
bins[bincount] = x_left
|
||||
data[bincount] = ys[0]
|
||||
|
||||
|
|
Loading…
Reference in New Issue