Fix x-range -> # of frames calculation
Obviously determining the x-range from indices was wrong and was the reason for the incorrect (downsampled) output size XD. Instead correctly determine the x range and start value from the *values of* the input x-array. Pretty sure this makes the implementation nearly production ready. Relates to #109mkts_backup
parent
6d9a94065d
commit
a2ef955690
|
@ -19,7 +19,7 @@ Graphics related downsampling routines for compressing to pixel
|
|||
limits on the display device.
|
||||
|
||||
'''
|
||||
from typing import Optional
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
# from numpy.lib.recfunctions import structured_to_unstructured
|
||||
|
@ -141,7 +141,9 @@ def downsample(
|
|||
Downsample x/y data for lesser curve graphics gen.
|
||||
|
||||
The "peak" method is originally copied verbatim from
|
||||
``pyqtgraph.PlotDataItem.getDisplayDataset()``.
|
||||
``pyqtgraph.PlotDataItem.getDisplayDataset()`` which gets
|
||||
all credit, though we will likely drop this in favor of the M4
|
||||
algo below.
|
||||
|
||||
'''
|
||||
# py3.10 syntax
|
||||
|
@ -180,14 +182,13 @@ def ds_m4(
|
|||
# in display-device-local pixel units.
|
||||
px_width: int,
|
||||
|
||||
factor: Optional[int] = None,
|
||||
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
) -> tuple[int, np.ndarray, np.ndarray]:
|
||||
'''
|
||||
Downsample using the M4 algorithm.
|
||||
|
||||
'''
|
||||
This is more or less an OHLC style sampling of a line-style series.
|
||||
|
||||
'''
|
||||
# NOTE: this method is a so called "visualization driven data
|
||||
# aggregation" approach. It gives error-free line chart
|
||||
# downsampling, see
|
||||
|
@ -212,24 +213,34 @@ def ds_m4(
|
|||
# you could in theory pass these as the slicing params,
|
||||
# do we care though since we can always just pre-slice the
|
||||
# input?
|
||||
x_start = 0 # x index start
|
||||
x_end = len(x) # x index end
|
||||
x_start = x[0] # x value start/lowest in domain
|
||||
x_end = x[-1] # x end value/highest in domain
|
||||
|
||||
# uppx: units-per-pixel
|
||||
pts_per_pixel = len(x) / px_width
|
||||
print(f'UPPX: {pts_per_pixel}')
|
||||
# XXX: always round up on the input pixels
|
||||
px_width = math.ceil(px_width)
|
||||
|
||||
x_range = x_end - x_start
|
||||
|
||||
# ratio of indexed x-value to width of raster in pixels.
|
||||
if factor is None:
|
||||
w = (x_end-x_start) / float(px_width)
|
||||
print(f' pts/pxs = {w}')
|
||||
else:
|
||||
w = factor
|
||||
# this is more or less, uppx: units-per-pixel.
|
||||
w = x_range / float(px_width)
|
||||
|
||||
# ensure we make more then enough
|
||||
# frames (windows) for the output pixel
|
||||
frames = px_width
|
||||
|
||||
# if we have more and then exact integer's
|
||||
# (uniform quotient output) worth of datum-domain-points
|
||||
# per windows-frame, add one more window to ensure
|
||||
# we have room for all output down-samples.
|
||||
pts_per_pixel, r = divmod(len(x), px_width)
|
||||
if r:
|
||||
frames += 1
|
||||
|
||||
# these are pre-allocated and mutated by ``numba``
|
||||
# code in-place.
|
||||
ds = np.zeros((px_width, 4), y.dtype)
|
||||
i_win = np.zeros(px_width, x.dtype)
|
||||
y_out = np.zeros((frames, 4), y.dtype)
|
||||
i_win = np.zeros(frames, x.dtype)
|
||||
|
||||
# call into ``numba``
|
||||
nb = _m4(
|
||||
|
@ -237,7 +248,7 @@ def ds_m4(
|
|||
y,
|
||||
|
||||
i_win,
|
||||
ds,
|
||||
y_out,
|
||||
|
||||
# first index in x data to start at
|
||||
x_start,
|
||||
|
@ -245,9 +256,8 @@ def ds_m4(
|
|||
# scaled by the ratio of pixels on screen to data in x-range).
|
||||
w,
|
||||
)
|
||||
print(f'downsampled to {nb} bins')
|
||||
|
||||
return i_win, ds.flatten()
|
||||
return nb, i_win, y_out
|
||||
|
||||
|
||||
@jit(
|
||||
|
@ -275,13 +285,11 @@ def _m4(
|
|||
bincount = 0
|
||||
x_left = x_start
|
||||
|
||||
# Find the first window's starting index which *includes* the
|
||||
# first value in the x-domain array.
|
||||
# (this allows passing in an array which is indexed (and thus smaller then)
|
||||
# the ``x_start`` value normally passed in - say if you normally
|
||||
# want to start 0-indexed.
|
||||
first = xs[0]
|
||||
while first >= x_left + step:
|
||||
# Find the first window's starting value which *includes* the
|
||||
# first value in the x-domain array, i.e. the first
|
||||
# "left-side-of-window" **plus** the downsampling step,
|
||||
# creates a window which includes the first x **value**.
|
||||
while xs[0] >= x_left + step:
|
||||
x_left += step
|
||||
|
||||
# set all bins in the left-most entry to the starting left-most x value
|
||||
|
|
Loading…
Reference in New Issue