Extend `Flume` methods
Add some (untested) data slicing util methods for mapping time ranges to source data indices: - `.get_index()` which maps a single input epoch time to an equiv array (int) index. - add `slice_from_time()` which returns a view of the shm data from an input epoch range presuming the underlying struct array contains a `'time'` field with epoch stamps. - `.view_data()` which slices out the "in view" data according to the current state of the passed in `pg.PlotItem`'s view box.epoch_index_backup
parent
d115f43885
commit
8793b76ee2
|
@ -87,6 +87,7 @@ from ..brokers._util import (
|
|||
|
||||
if TYPE_CHECKING:
|
||||
from .marketstore import Storage
|
||||
from pyqtgraph import PlotItem
|
||||
|
||||
log = get_logger(__name__)
|
||||
|
||||
|
@ -1037,6 +1038,113 @@ class Flume(Struct):
|
|||
**msg,
|
||||
)
|
||||
|
||||
def get_index(
|
||||
self,
|
||||
time_s: float,
|
||||
|
||||
) -> int:
|
||||
'''
|
||||
Return array shm-buffer index for for epoch time.
|
||||
|
||||
'''
|
||||
array = self.rt_shm.array
|
||||
times = array['time']
|
||||
mask = (times >= time_s)
|
||||
|
||||
if any(mask):
|
||||
return array['index'][mask][0]
|
||||
|
||||
# just the latest index
|
||||
array['index'][-1]
|
||||
|
||||
def slice_from_time(
|
||||
self,
|
||||
array: np.ndarray,
|
||||
start_t: float,
|
||||
stop_t: float,
|
||||
timeframe_s: int = 1,
|
||||
return_data: bool = False,
|
||||
|
||||
) -> np.ndarray:
|
||||
'''
|
||||
Slice an input struct array providing only datums
|
||||
"in view" of this chart.
|
||||
|
||||
'''
|
||||
arr = {
|
||||
1: self.rt_shm.array,
|
||||
60: self.hist_shm.arry,
|
||||
}[timeframe_s]
|
||||
|
||||
times = arr['time']
|
||||
index = array['index']
|
||||
|
||||
# use advanced indexing to map the
|
||||
# time range to the index range.
|
||||
mask = (
|
||||
(times >= start_t)
|
||||
&
|
||||
(times < stop_t)
|
||||
)
|
||||
|
||||
# TODO: if we can ensure each time field has a uniform
|
||||
# step we can instead do some arithmetic to determine
|
||||
# the equivalent index like we used to?
|
||||
# return array[
|
||||
# lbar - ifirst:
|
||||
# (rbar - ifirst) + 1
|
||||
# ]
|
||||
|
||||
i_by_t = index[mask]
|
||||
i_0 = i_by_t[0]
|
||||
|
||||
abs_slc = slice(
|
||||
i_0,
|
||||
i_by_t[-1],
|
||||
)
|
||||
# slice data by offset from the first index
|
||||
# available in the passed datum set.
|
||||
read_slc = slice(
|
||||
0,
|
||||
i_by_t[-1] - i_0,
|
||||
)
|
||||
if not return_data:
|
||||
return (
|
||||
abs_slc,
|
||||
read_slc,
|
||||
)
|
||||
|
||||
# also return the readable data from the timerange
|
||||
return (
|
||||
abs_slc,
|
||||
read_slc,
|
||||
arr[mask],
|
||||
)
|
||||
|
||||
def view_data(
|
||||
self,
|
||||
plot: PlotItem,
|
||||
timeframe_s: int = 1,
|
||||
|
||||
) -> np.ndarray:
|
||||
|
||||
# get far-side x-indices plot view
|
||||
vr = plot.viewRect()
|
||||
l = vr.left()
|
||||
r = vr.right()
|
||||
|
||||
(
|
||||
abs_slc,
|
||||
buf_slc,
|
||||
iv_arr,
|
||||
) = self.slice_from_time(
|
||||
start_t=l,
|
||||
stop_t=r,
|
||||
timeframe_s=timeframe_s,
|
||||
return_data=True,
|
||||
)
|
||||
return iv_arr
|
||||
|
||||
|
||||
async def allocate_persistent_feed(
|
||||
bus: _FeedsBus,
|
||||
|
|
Loading…
Reference in New Issue