Allow passing a `plotItem` to `.draw_curve()`

If manually managing an overlay you'll likely call `.overlay_plotitem()`
and then a plotting method so we need to accept a plot item input so
that the chart's pi doesn't get assigned incorrectly in the `Flow` entry
(though it is by default if no input is provided).

More,
- add a `Flow.graphics` field and set it to the `pg.GraphicsObject`.
- make `Flow.maxmin()` return `None` in the "can't calculate" cases.
big_data_lines
Tyler Goodlet 2022-04-07 11:13:02 -04:00
parent b8374dbe9a
commit 7c615a403b
1 changed files with 107 additions and 102 deletions

View File

@ -658,102 +658,6 @@ class LinkedSplits(QWidget):
cpw.sidepane.setMaximumWidth(sp_w)
# class FlowsTable(pydantic.BaseModel):
# '''
# Data-AGGRegate: high level API onto multiple (categorized)
# ``Flow``s with high level processing routines for
# multi-graphics computations and display.
# '''
# flows: dict[str, np.ndarray] = {}
class Flow(msgspec.Struct): # , frozen=True):
'''
(FinancialSignal-)Flow compound type which wraps a real-time
graphics (curve) and its backing data stream together for high level
access and control.
The intention is for this type to eventually be capable of shm-passing
of incrementally updated graphics stream data between actors.
'''
name: str
plot: pg.PlotItem
is_ohlc: bool = False
# TODO: hackery to be able to set a shm later
# but whilst also allowing this type to hashable,
# likely will require serializable token that is used to attach
# to the underlying shm ref after startup?
_shm: Optional[ShmArray] = None # currently, may be filled in "later"
# cache of y-range values per x-range input.
_mxmns: dict[tuple[int, int], tuple[float, float]] = {}
@property
def shm(self) -> ShmArray:
return self._shm
@shm.setter
def shm(self, shm: ShmArray) -> ShmArray:
self._shm = shm
def maxmin(
self,
lbar,
rbar,
) -> tuple[float, float]:
'''
Compute the cached max and min y-range values for a given
x-range determined by ``lbar`` and ``rbar``.
'''
rkey = (lbar, rbar)
result = self._mxmns.get(rkey)
if result:
return result
shm = self.shm
if shm is None:
# print(f'no shm {self.name}?')
return 0, 0
arr = shm.array
# build relative indexes into shm array
# TODO: should we just add/use a method
# on the shm to do this?
ifirst = arr[0]['index']
slice_view = arr[
lbar - ifirst:(rbar - ifirst) + 1]
if not slice_view.size:
# print(f'no data in view {self.name}?')
return 0, 0
if self.is_ohlc:
ylow = np.min(slice_view['low'])
yhigh = np.max(slice_view['high'])
else:
view = slice_view[self.name]
ylow = np.min(view)
yhigh = np.max(view)
# else:
# ylow, yhigh = 0, 0
result = ylow, yhigh
if result != (0, 0):
self._mxmns[rkey] = result
if self.name == 'drk_vlm':
print(f'{self.name} mxmn @ {rkey} -> {result}')
return result
class ChartPlotWidget(pg.PlotWidget):
'''
``GraphicsView`` subtype containing a single ``PlotItem``.
@ -1086,6 +990,7 @@ class ChartPlotWidget(pg.PlotWidget):
name=name,
plot=self.plotItem,
is_ohlc=True,
graphics=graphics,
)
self._add_sticky(name, bg_color='davies')
@ -1159,6 +1064,7 @@ class ChartPlotWidget(pg.PlotWidget):
overlay: bool = False,
color: Optional[str] = None,
add_label: bool = True,
pi: Optional[pg.PlotItem] = None,
**pdi_kwargs,
@ -1203,12 +1109,13 @@ class ChartPlotWidget(pg.PlotWidget):
self._graphics[name] = curve
self._arrays[data_key] = data
pi = self.plotItem
pi = pi or self.plotItem
self._flows[data_key] = Flow(
name=name,
plot=pi,
is_ohlc=False,
graphics=curve,
)
# TODO: this probably needs its own method?
@ -1428,6 +1335,7 @@ class ChartPlotWidget(pg.PlotWidget):
'''
profiler = pg.debug.Profiler(
msg=f'`{str(self)}.maxmin()` loop cycle for: `{self.name}`',
disabled=not pg_profile_enabled(),
gt=ms_slower_then,
delayed=True,
@ -1444,16 +1352,113 @@ class ChartPlotWidget(pg.PlotWidget):
if (
flow is None
):
print(f"flow {flow_key} doesn't exist in chart {self.name}")
return 0, 0
log.error(f"flow {flow_key} doesn't exist in chart {self.name} !?")
res = 0, 0
else:
key = round(lbar), round(rbar)
res = flow.maxmin(*key)
profiler(f'{key} max-min {res}')
if res == (0, 0):
profiler(f'yrange mxmn: {key} -> {res}')
if res == (None, None):
log.error(
f"{flow_key} -> (0, 0) for bars_range = {key}"
f"{flow_key} no mxmn for bars_range => {key} !?"
)
res = 0, 0
return res
# class FlowsTable(pydantic.BaseModel):
# '''
# Data-AGGRegate: high level API onto multiple (categorized)
# ``Flow``s with high level processing routines for
# multi-graphics computations and display.
# '''
# flows: dict[str, np.ndarray] = {}
class Flow(msgspec.Struct): # , frozen=True):
'''
(FinancialSignal-)Flow compound type which wraps a real-time
graphics (curve) and its backing data stream together for high level
access and control.
The intention is for this type to eventually be capable of shm-passing
of incrementally updated graphics stream data between actors.
'''
name: str
plot: pg.PlotItem
is_ohlc: bool = False
graphics: pg.GraphicsObject
# TODO: hackery to be able to set a shm later
# but whilst also allowing this type to hashable,
# likely will require serializable token that is used to attach
# to the underlying shm ref after startup?
_shm: Optional[ShmArray] = None # currently, may be filled in "later"
# cache of y-range values per x-range input.
_mxmns: dict[tuple[int, int], tuple[float, float]] = {}
@property
def shm(self) -> ShmArray:
return self._shm
@shm.setter
def shm(self, shm: ShmArray) -> ShmArray:
self._shm = shm
def maxmin(
self,
lbar,
rbar,
) -> tuple[float, float]:
'''
Compute the cached max and min y-range values for a given
x-range determined by ``lbar`` and ``rbar``.
'''
rkey = (lbar, rbar)
cached_result = self._mxmns.get(rkey)
if cached_result:
return cached_result
shm = self.shm
if shm is None:
mxmn = None
else: # new block for profiling?..
arr = shm.array
# build relative indexes into shm array
# TODO: should we just add/use a method
# on the shm to do this?
ifirst = arr[0]['index']
slice_view = arr[
lbar - ifirst:
(rbar - ifirst) + 1
]
if not slice_view.size:
mxmn = None
else:
if self.is_ohlc:
ylow = np.min(slice_view['low'])
yhigh = np.max(slice_view['high'])
else:
view = slice_view[self.name]
ylow = np.min(view)
yhigh = np.max(view)
mxmn = ylow, yhigh
if mxmn is not None:
# cache new mxmn result
self._mxmns[rkey] = mxmn
return mxmn