Fix rsi history off-by-one due to `np.diff()`
parent
80fa76e8a9
commit
66da98ac5b
|
@ -16,6 +16,7 @@
|
|||
|
||||
"""
|
||||
Momentum bby.
|
||||
|
||||
"""
|
||||
from typing import AsyncIterator, Optional
|
||||
|
||||
|
@ -23,12 +24,9 @@ import numpy as np
|
|||
from numba import jit, float64, optional, int64
|
||||
|
||||
from ..data._normalize import iterticks
|
||||
from ..data._sharedmem import ShmArray
|
||||
|
||||
|
||||
# TODO: things to figure the fuck out:
|
||||
# - how to handle non-plottable values
|
||||
# - composition of fsps / implicit chaining
|
||||
|
||||
@jit(
|
||||
float64[:](
|
||||
float64[:],
|
||||
|
@ -39,11 +37,14 @@ from ..data._normalize import iterticks
|
|||
nogil=True
|
||||
)
|
||||
def ema(
|
||||
|
||||
y: 'np.ndarray[float64]',
|
||||
alpha: optional(float64) = None,
|
||||
ylast: optional(float64) = None,
|
||||
|
||||
) -> 'np.ndarray[float64]':
|
||||
r"""Exponential weighted moving average owka 'Exponential smoothing'.
|
||||
r'''
|
||||
Exponential weighted moving average owka 'Exponential smoothing'.
|
||||
|
||||
- https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
|
||||
- https://en.wikipedia.org/wiki/Exponential_smoothing
|
||||
|
@ -68,7 +69,8 @@ def ema(
|
|||
|
||||
More discussion here:
|
||||
https://stackoverflow.com/questions/42869495/numpy-version-of-exponential-weighted-moving-average-equivalent-to-pandas-ewm
|
||||
"""
|
||||
|
||||
'''
|
||||
n = y.shape[0]
|
||||
|
||||
if alpha is None:
|
||||
|
@ -105,14 +107,21 @@ def ema(
|
|||
# nogil=True
|
||||
# )
|
||||
def rsi(
|
||||
|
||||
# TODO: use https://github.com/ramonhagenaars/nptyping
|
||||
signal: 'np.ndarray[float64]',
|
||||
period: int64 = 14,
|
||||
up_ema_last: float64 = None,
|
||||
down_ema_last: float64 = None,
|
||||
|
||||
) -> 'np.ndarray[float64]':
|
||||
'''
|
||||
relative strengggth.
|
||||
|
||||
'''
|
||||
alpha = 1/period
|
||||
|
||||
df = np.diff(signal)
|
||||
df = np.diff(signal, prepend=0)
|
||||
|
||||
up = np.where(df > 0, df, 0)
|
||||
up_ema = ema(up, alpha, up_ema_last)
|
||||
|
@ -120,11 +129,12 @@ def rsi(
|
|||
down = np.where(df < 0, -df, 0)
|
||||
down_ema = ema(down, alpha, down_ema_last)
|
||||
|
||||
# avoid dbz errors
|
||||
# avoid dbz errors, this leaves the first
|
||||
# index == 0 right?
|
||||
rs = np.divide(
|
||||
up_ema,
|
||||
down_ema,
|
||||
out=np.zeros_like(up_ema),
|
||||
out=np.zeros_like(signal),
|
||||
where=down_ema != 0
|
||||
)
|
||||
|
||||
|
@ -137,10 +147,18 @@ def rsi(
|
|||
|
||||
|
||||
def wma(
|
||||
|
||||
signal: np.ndarray,
|
||||
length: int,
|
||||
weights: Optional[np.ndarray] = None,
|
||||
|
||||
) -> np.ndarray:
|
||||
'''
|
||||
Compute a windowed moving average of ``signal`` with window
|
||||
``length`` and optional ``weights`` (must be same size as
|
||||
``signal``).
|
||||
|
||||
'''
|
||||
if weights is None:
|
||||
# default is a standard arithmetic mean
|
||||
seq = np.full((length,), 1)
|
||||
|
@ -151,18 +169,22 @@ def wma(
|
|||
return np.convolve(signal, weights, 'valid')
|
||||
|
||||
|
||||
# @piker.fsp.signal(
|
||||
# @piker.fsp.emit(
|
||||
# timeframes=['1s', '5s', '15s', '1m', '5m', '1H'],
|
||||
# )
|
||||
async def _rsi(
|
||||
|
||||
source: 'QuoteStream[Dict[str, Any]]', # noqa
|
||||
ohlcv: "ShmArray[T<'close'>]",
|
||||
ohlcv: ShmArray,
|
||||
period: int = 14,
|
||||
|
||||
) -> AsyncIterator[np.ndarray]:
|
||||
"""Multi-timeframe streaming RSI.
|
||||
'''
|
||||
Multi-timeframe streaming RSI.
|
||||
|
||||
https://en.wikipedia.org/wiki/Relative_strength_index
|
||||
"""
|
||||
|
||||
'''
|
||||
sig = ohlcv.array['close']
|
||||
|
||||
# wilder says to seed the RSI EMAs with the SMA for the "period"
|
||||
|
@ -170,7 +192,8 @@ async def _rsi(
|
|||
|
||||
# TODO: the emas here should be seeded with a period SMA as per
|
||||
# wilder's original formula..
|
||||
rsi_h, last_up_ema_close, last_down_ema_close = rsi(sig, period, seed, seed)
|
||||
rsi_h, last_up_ema_close, last_down_ema_close = rsi(
|
||||
sig, period, seed, seed)
|
||||
up_ema_last = last_up_ema_close
|
||||
down_ema_last = last_down_ema_close
|
||||
|
||||
|
@ -178,7 +201,6 @@ async def _rsi(
|
|||
yield rsi_h
|
||||
|
||||
index = ohlcv.index
|
||||
|
||||
async for quote in source:
|
||||
# tick based updates
|
||||
for tick in iterticks(quote):
|
||||
|
@ -206,16 +228,20 @@ async def _rsi(
|
|||
|
||||
|
||||
async def _wma(
|
||||
|
||||
source, #: AsyncStream[np.ndarray],
|
||||
length: int,
|
||||
ohlcv: np.ndarray, # price time-frame "aware"
|
||||
|
||||
) -> AsyncIterator[np.ndarray]: # maybe something like like FspStream?
|
||||
"""Streaming weighted moving average.
|
||||
'''
|
||||
Streaming weighted moving average.
|
||||
|
||||
``weights`` is a sequence of already scaled values. As an example
|
||||
for the WMA often found in "techincal analysis":
|
||||
``weights = np.arange(1, N) * N*(N-1)/2``.
|
||||
"""
|
||||
|
||||
'''
|
||||
# deliver historical output as "first yield"
|
||||
yield wma(ohlcv.array['close'], length)
|
||||
|
||||
|
|
Loading…
Reference in New Issue