Always convert to posix time

bar_select
Tyler Goodlet 2020-07-08 15:41:14 -04:00
parent 5f89a2bf08
commit 4c5bc19ec7
1 changed files with 19 additions and 6 deletions

View File

@ -64,21 +64,35 @@ def from_df(
"""Convert OHLC formatted ``pandas.DataFrame`` to ``numpy.recarray``.
"""
df.reset_index(inplace=True)
df['Date'] = [d.timestamp() for d in df.Date]
# hackery to convert field names
date = 'Date'
if 'date' in df.columns:
date = 'date'
# convert to POSIX time
df[date] = [d.timestamp() for d in df[date]]
# try to rename from some camel case
columns={
columns = {
'Date': 'time',
'date': 'time',
'Open': 'open',
'High': 'high',
'Low': 'low',
'Close': 'close',
'Volume': 'volume',
}
for name in df.columns:
if name not in columns:
del df[name]
df = df.rename(columns=columns)
for name in df.columns:
if name not in OHLC_dtype.names:
del df[name]
# TODO: it turns out column access on recarrays is actually slower:
# https://jakevdp.github.io/PythonDataScienceHandbook/02.09-structured-data-numpy.html#RecordArrays:-Structured-Arrays-with-a-Twist
# it might make sense to make these structured arrays?
array = df.to_records()
_nan_to_closest_num(array)
@ -88,7 +102,6 @@ def from_df(
def _nan_to_closest_num(array: np.ndarray):
"""Return interpolated values instead of NaN.
"""
for col in ['open', 'high', 'low', 'close']:
mask = np.isnan(array[col])
if not mask.size: