Rewrite `slice_from_time()` using `numba`
Gives approx a 3-4x speedup using plain old iterate-with-for-loop style though still not really happy with this .5 to 1 ms latency.. Move the core `@njit` part to a `_slice_from_time()` with a pure python func with orig name around it. Also, drop the output `mask` array since we can generally just use the slices in the caller to accomplish the same input array slicing, duh..epoch_indexing_and_dataviz_layer
parent
6ca8334253
commit
46808fbb89
|
@ -33,6 +33,7 @@ from ._m4 import ds_m4
|
||||||
from .._profile import (
|
from .._profile import (
|
||||||
Profiler,
|
Profiler,
|
||||||
pg_profile_enabled,
|
pg_profile_enabled,
|
||||||
|
ms_slower_then,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -269,6 +270,87 @@ def ohlc_flatten(
|
||||||
return x, flat
|
return x, flat
|
||||||
|
|
||||||
|
|
||||||
|
@njit
|
||||||
|
def _slice_from_time(
|
||||||
|
arr: np.ndarray,
|
||||||
|
start_t: float,
|
||||||
|
stop_t: float,
|
||||||
|
|
||||||
|
) -> tuple[
|
||||||
|
tuple[int, int],
|
||||||
|
tuple[int, int],
|
||||||
|
np.ndarray | None,
|
||||||
|
]:
|
||||||
|
'''
|
||||||
|
Slice an input struct array to a time range and return the absolute
|
||||||
|
and "readable" slices for that array as well as the indexing mask
|
||||||
|
for the caller to use to slice the input array if needed.
|
||||||
|
|
||||||
|
'''
|
||||||
|
times = arr['time']
|
||||||
|
index = arr['index']
|
||||||
|
|
||||||
|
if (
|
||||||
|
start_t < 0
|
||||||
|
or start_t >= stop_t
|
||||||
|
):
|
||||||
|
return (
|
||||||
|
(
|
||||||
|
index[0],
|
||||||
|
index[-1],
|
||||||
|
),
|
||||||
|
(
|
||||||
|
0,
|
||||||
|
len(arr),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO: if we can ensure each time field has a uniform
|
||||||
|
# step we can instead do some arithmetic to determine
|
||||||
|
# the equivalent index like we used to?
|
||||||
|
# return array[
|
||||||
|
# lbar - ifirst:
|
||||||
|
# (rbar - ifirst) + 1
|
||||||
|
# ]
|
||||||
|
|
||||||
|
read_i_0: int = 0
|
||||||
|
read_i_last: int = 0
|
||||||
|
|
||||||
|
for i in range(times.shape[0]):
|
||||||
|
time = times[i]
|
||||||
|
if time >= start_t:
|
||||||
|
read_i_0 = i
|
||||||
|
break
|
||||||
|
|
||||||
|
for i in range(read_i_0, times.shape[0]):
|
||||||
|
time = times[i]
|
||||||
|
if time > stop_t:
|
||||||
|
read_i_last = time
|
||||||
|
break
|
||||||
|
|
||||||
|
abs_i_0 = int(index[0]) + read_i_0
|
||||||
|
abs_i_last = int(index[0]) + read_i_last
|
||||||
|
|
||||||
|
if read_i_last == 0:
|
||||||
|
read_i_last = times.shape[0]
|
||||||
|
|
||||||
|
abs_slc = (
|
||||||
|
int(abs_i_0),
|
||||||
|
int(abs_i_last),
|
||||||
|
)
|
||||||
|
|
||||||
|
read_slc = (
|
||||||
|
int(read_i_0),
|
||||||
|
int(read_i_last),
|
||||||
|
)
|
||||||
|
|
||||||
|
# also return the readable data from the timerange
|
||||||
|
return (
|
||||||
|
abs_slc,
|
||||||
|
read_slc,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def slice_from_time(
|
def slice_from_time(
|
||||||
arr: np.ndarray,
|
arr: np.ndarray,
|
||||||
start_t: float,
|
start_t: float,
|
||||||
|
@ -279,93 +361,29 @@ def slice_from_time(
|
||||||
slice,
|
slice,
|
||||||
np.ndarray | None,
|
np.ndarray | None,
|
||||||
]:
|
]:
|
||||||
'''
|
|
||||||
Slice an input struct array to a time range and return the absolute
|
|
||||||
and "readable" slices for that array as well as the indexing mask
|
|
||||||
for the caller to use to slice the input array if needed.
|
|
||||||
|
|
||||||
'''
|
|
||||||
profiler = Profiler(
|
profiler = Profiler(
|
||||||
msg='slice_from_time()',
|
msg='slice_from_time()',
|
||||||
disabled=not pg_profile_enabled(),
|
disabled=not pg_profile_enabled(),
|
||||||
ms_threshold=4,
|
ms_threshold=ms_slower_then,
|
||||||
# ms_threshold=ms_slower_then,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
times = arr['time']
|
(
|
||||||
index = arr['index']
|
abs_slc_tuple,
|
||||||
|
read_slc_tuple,
|
||||||
if (
|
) = _slice_from_time(
|
||||||
start_t < 0
|
arr,
|
||||||
or start_t >= stop_t
|
start_t,
|
||||||
):
|
stop_t,
|
||||||
return (
|
|
||||||
slice(
|
|
||||||
index[0],
|
|
||||||
index[-1],
|
|
||||||
),
|
|
||||||
slice(
|
|
||||||
0,
|
|
||||||
len(arr),
|
|
||||||
),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
|
|
||||||
# use advanced indexing to map the
|
|
||||||
# time range to the index range.
|
|
||||||
mask: np.ndarray = np.where(
|
|
||||||
(times >= start_t)
|
|
||||||
&
|
|
||||||
(times < stop_t)
|
|
||||||
)
|
|
||||||
profiler('advanced indexing slice')
|
|
||||||
# TODO: if we can ensure each time field has a uniform
|
|
||||||
# step we can instead do some arithmetic to determine
|
|
||||||
# the equivalent index like we used to?
|
|
||||||
# return array[
|
|
||||||
# lbar - ifirst:
|
|
||||||
# (rbar - ifirst) + 1
|
|
||||||
# ]
|
|
||||||
|
|
||||||
i_by_t = index[mask]
|
|
||||||
try:
|
|
||||||
i_0 = i_by_t[0]
|
|
||||||
i_last = i_by_t[-1]
|
|
||||||
i_first_read = index[0]
|
|
||||||
except IndexError:
|
|
||||||
if (
|
|
||||||
start_t < times[0]
|
|
||||||
or stop_t >= times[-1]
|
|
||||||
):
|
|
||||||
return (
|
|
||||||
slice(
|
|
||||||
index[0],
|
|
||||||
index[-1],
|
|
||||||
),
|
|
||||||
slice(
|
|
||||||
0,
|
|
||||||
len(arr),
|
|
||||||
),
|
|
||||||
None,
|
|
||||||
)
|
|
||||||
|
|
||||||
abs_slc = slice(i_0, i_last)
|
|
||||||
|
|
||||||
# slice data by offset from the first index
|
|
||||||
# available in the passed datum set.
|
|
||||||
read_slc = slice(
|
|
||||||
i_0 - i_first_read,
|
|
||||||
i_last - i_first_read + 1,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
abs_slc = slice(*abs_slc_tuple)
|
||||||
|
read_slc = slice(*read_slc_tuple)
|
||||||
profiler(
|
profiler(
|
||||||
'slicing complete'
|
'slicing complete'
|
||||||
f'{start_t} -> {abs_slc.start} | {read_slc.start}\n'
|
f'{start_t} -> {abs_slc.start} | {read_slc.start}\n'
|
||||||
f'{stop_t} -> {abs_slc.stop} | {read_slc.stop}\n'
|
f'{stop_t} -> {abs_slc.stop} | {read_slc.stop}\n'
|
||||||
)
|
)
|
||||||
# also return the readable data from the timerange
|
|
||||||
return (
|
return (
|
||||||
abs_slc,
|
abs_slc,
|
||||||
read_slc,
|
read_slc,
|
||||||
mask,
|
|
||||||
)
|
)
|
||||||
|
|
Loading…
Reference in New Issue