Add optional uppx log scaling to m4 sampler
We were previously ad-hoc scaling up the px count/width to get more detail at lower uppx values. Add a log scaling sigmoid that range scales between 1 < px_width < 16. Add in a flag to use the mxmn OH tracer in `ohlc_flatten()` if desired.big_data_lines
parent
03e0e3e76b
commit
44f3a08ef1
|
@ -20,6 +20,7 @@ limits on the display device.
|
||||||
|
|
||||||
'''
|
'''
|
||||||
import math
|
import math
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from numpy.lib import recfunctions as rfn
|
from numpy.lib import recfunctions as rfn
|
||||||
|
@ -34,11 +35,7 @@ from ..log import get_logger
|
||||||
log = get_logger(__name__)
|
log = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def hl2mxmn(
|
def hl2mxmn(ohlc: np.ndarray) -> np.ndarray:
|
||||||
ohlc: np.ndarray,
|
|
||||||
# downsample_by: int = 0,
|
|
||||||
|
|
||||||
) -> np.ndarray:
|
|
||||||
'''
|
'''
|
||||||
Convert a OHLC struct-array containing 'high'/'low' columns
|
Convert a OHLC struct-array containing 'high'/'low' columns
|
||||||
to a "joined" max/min 1-d array.
|
to a "joined" max/min 1-d array.
|
||||||
|
@ -50,12 +47,6 @@ def hl2mxmn(
|
||||||
'high',
|
'high',
|
||||||
]]
|
]]
|
||||||
|
|
||||||
# XXX: don't really need this any more since we implemented
|
|
||||||
# the "tracer" routine, `numba`-style..
|
|
||||||
# create a "max and min" sequence from ohlc datums
|
|
||||||
# hl2d = structured_to_unstructured(hls)
|
|
||||||
# hl1d = hl2d.flatten()
|
|
||||||
|
|
||||||
mxmn = np.empty(2*hls.size, dtype=np.float64)
|
mxmn = np.empty(2*hls.size, dtype=np.float64)
|
||||||
x = np.empty(2*hls.size, dtype=np.float64)
|
x = np.empty(2*hls.size, dtype=np.float64)
|
||||||
trace_hl(hls, mxmn, x, index[0])
|
trace_hl(hls, mxmn, x, index[0])
|
||||||
|
@ -63,18 +54,6 @@ def hl2mxmn(
|
||||||
|
|
||||||
return mxmn, x
|
return mxmn, x
|
||||||
|
|
||||||
# if downsample_by < 2:
|
|
||||||
# return mxmn, x
|
|
||||||
|
|
||||||
# dsx, dsy = downsample(
|
|
||||||
# y=mxmn,
|
|
||||||
# x=x,
|
|
||||||
# bins=downsample_by,
|
|
||||||
# )
|
|
||||||
# log.info(f'downsampling by {downsample_by}')
|
|
||||||
# print(f'downsampling by {downsample_by}')
|
|
||||||
# return dsy, dsx
|
|
||||||
|
|
||||||
|
|
||||||
@jit(
|
@jit(
|
||||||
# TODO: the type annots..
|
# TODO: the type annots..
|
||||||
|
@ -176,6 +155,7 @@ def downsample(
|
||||||
|
|
||||||
def ohlc_flatten(
|
def ohlc_flatten(
|
||||||
ohlc: np.ndarray,
|
ohlc: np.ndarray,
|
||||||
|
use_mxmn: bool = False,
|
||||||
|
|
||||||
) -> tuple[np.ndarray, np.ndarray]:
|
) -> tuple[np.ndarray, np.ndarray]:
|
||||||
'''
|
'''
|
||||||
|
@ -186,15 +166,18 @@ def ohlc_flatten(
|
||||||
'''
|
'''
|
||||||
index = ohlc['index']
|
index = ohlc['index']
|
||||||
|
|
||||||
flat = rfn.structured_to_unstructured(
|
if use_mxmn:
|
||||||
ohlc[['open', 'high', 'low', 'close']]
|
flat, x = hl2mxmn(ohlc)
|
||||||
).flatten()
|
else:
|
||||||
|
flat = rfn.structured_to_unstructured(
|
||||||
|
ohlc[['open', 'high', 'low', 'close']]
|
||||||
|
).flatten()
|
||||||
|
|
||||||
x = np.linspace(
|
x = np.linspace(
|
||||||
start=index[0] - 0.5,
|
start=index[0] - 0.5,
|
||||||
stop=index[-1] + 0.5,
|
stop=index[-1] + 0.5,
|
||||||
num=4*len(ohlc),
|
num=len(flat),
|
||||||
)
|
)
|
||||||
return x, flat
|
return x, flat
|
||||||
|
|
||||||
|
|
||||||
|
@ -202,16 +185,33 @@ def ohlc_to_m4_line(
|
||||||
ohlc: np.ndarray,
|
ohlc: np.ndarray,
|
||||||
px_width: int,
|
px_width: int,
|
||||||
|
|
||||||
|
uppx: Optional[float] = None,
|
||||||
|
|
||||||
) -> tuple[np.ndarray, np.ndarray]:
|
) -> tuple[np.ndarray, np.ndarray]:
|
||||||
'''
|
'''
|
||||||
Convert an OHLC struct-array to a m4 downsampled 1-d array.
|
Convert an OHLC struct-array to a m4 downsampled 1-d array.
|
||||||
|
|
||||||
'''
|
'''
|
||||||
xpts, flat = ohlc_flatten(ohlc)
|
xpts, flat = ohlc_flatten(ohlc)
|
||||||
|
|
||||||
|
if uppx:
|
||||||
|
# optionally log-scale down the "supposed pxs on screen"
|
||||||
|
# as the units-per-px (uppx) get's large.
|
||||||
|
scaler = round(
|
||||||
|
max(
|
||||||
|
# NOTE: found that a 16x px width brought greater
|
||||||
|
# detail, likely due to dpi scaling?
|
||||||
|
# px_width=px_width * 16,
|
||||||
|
32 / (1 + math.log(uppx, 2)),
|
||||||
|
1
|
||||||
|
)
|
||||||
|
)
|
||||||
|
px_width *= scaler
|
||||||
|
|
||||||
bins, x, y = ds_m4(
|
bins, x, y = ds_m4(
|
||||||
xpts,
|
xpts,
|
||||||
flat,
|
flat,
|
||||||
px_width=px_width * 16,
|
px_width=px_width,
|
||||||
)
|
)
|
||||||
x = np.broadcast_to(x[:, None], y.shape)
|
x = np.broadcast_to(x[:, None], y.shape)
|
||||||
x = (x + np.array([-0.43, 0, 0, 0.43])).flatten()
|
x = (x + np.array([-0.43, 0, 0, 0.43])).flatten()
|
||||||
|
@ -313,6 +313,7 @@ def ds_m4(
|
||||||
|
|
||||||
@jit(
|
@jit(
|
||||||
nopython=True,
|
nopython=True,
|
||||||
|
nogil=True,
|
||||||
)
|
)
|
||||||
def _m4(
|
def _m4(
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue