Make `Viz.slice_from_time()` take input array
Probably means it doesn't need to be a `Flume` method but it's convenient to expect the caller to pass in the `np.ndarray` with a `'time'` field instead of a `timeframe: str` arg; also, return the slice mask instead of the sliced array as output (again allowing the caller to do any slicing). Also, handle the slice-outside-time-range case by just returning the entire index range with a `None` mask. Adjust `Viz.view_data()` to instead do timeframe (for rt vs. hist shm array) lookup and equiv array slicing with the returned mask.multichartz_backup
parent
3d1b40c695
commit
448dce233e
|
@ -236,29 +236,43 @@ class Flume(Struct):
|
|||
|
||||
def slice_from_time(
|
||||
self,
|
||||
array: np.ndarray,
|
||||
arr: np.ndarray,
|
||||
start_t: float,
|
||||
stop_t: float,
|
||||
timeframe_s: int = 1,
|
||||
return_data: bool = False,
|
||||
|
||||
) -> np.ndarray:
|
||||
) -> tuple[
|
||||
slice,
|
||||
slice,
|
||||
np.ndarray | None,
|
||||
]:
|
||||
'''
|
||||
Slice an input struct array providing only datums
|
||||
"in view" of this chart.
|
||||
Slice an input struct array to a time range and return the absolute
|
||||
and "readable" slices for that array as well as the indexing mask
|
||||
for the caller to use to slice the input array if needed.
|
||||
|
||||
'''
|
||||
arr = {
|
||||
1: self.rt_shm.array,
|
||||
60: self.hist_shm.arry,
|
||||
}[timeframe_s]
|
||||
|
||||
times = arr['time']
|
||||
index = array['index']
|
||||
index = arr['index']
|
||||
|
||||
if (
|
||||
start_t < 0
|
||||
or start_t >= stop_t
|
||||
):
|
||||
return (
|
||||
slice(
|
||||
index[0],
|
||||
index[-1],
|
||||
),
|
||||
slice(
|
||||
0,
|
||||
len(arr),
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
# use advanced indexing to map the
|
||||
# time range to the index range.
|
||||
mask = (
|
||||
mask: np.ndarray = (
|
||||
(times >= start_t)
|
||||
&
|
||||
(times < stop_t)
|
||||
|
@ -273,7 +287,24 @@ class Flume(Struct):
|
|||
# ]
|
||||
|
||||
i_by_t = index[mask]
|
||||
i_0 = i_by_t[0]
|
||||
try:
|
||||
i_0 = i_by_t[0]
|
||||
except IndexError:
|
||||
if (
|
||||
start_t < times[0]
|
||||
or stop_t >= times[-1]
|
||||
):
|
||||
return (
|
||||
slice(
|
||||
index[0],
|
||||
index[-1],
|
||||
),
|
||||
slice(
|
||||
0,
|
||||
len(arr),
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
abs_slc = slice(
|
||||
i_0,
|
||||
|
@ -285,17 +316,12 @@ class Flume(Struct):
|
|||
0,
|
||||
i_by_t[-1] - i_0,
|
||||
)
|
||||
if not return_data:
|
||||
return (
|
||||
abs_slc,
|
||||
read_slc,
|
||||
)
|
||||
|
||||
# also return the readable data from the timerange
|
||||
return (
|
||||
abs_slc,
|
||||
read_slc,
|
||||
arr[mask],
|
||||
mask,
|
||||
)
|
||||
|
||||
def view_data(
|
||||
|
@ -304,18 +330,32 @@ class Flume(Struct):
|
|||
timeframe_s: int = 1,
|
||||
|
||||
) -> np.ndarray:
|
||||
'''
|
||||
Return sliced-to-view source data along with absolute
|
||||
(``ShmArray._array['index']``) and read-relative
|
||||
(``ShmArray.array``) slices.
|
||||
|
||||
'''
|
||||
# get far-side x-indices plot view
|
||||
vr = plot.viewRect()
|
||||
|
||||
if timeframe_s > 1:
|
||||
arr = self.hist_shm.array
|
||||
else:
|
||||
arr = self.rt_shm.array
|
||||
|
||||
(
|
||||
abs_slc,
|
||||
buf_slc,
|
||||
iv_arr,
|
||||
read_slc,
|
||||
mask,
|
||||
) = self.slice_from_time(
|
||||
arr,
|
||||
start_t=vr.left(),
|
||||
stop_t=vr.right(),
|
||||
timeframe_s=timeframe_s,
|
||||
return_data=True,
|
||||
)
|
||||
return iv_arr
|
||||
return (
|
||||
abs_slc,
|
||||
read_slc,
|
||||
arr[mask] if mask is not None else arr,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue